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Abstract In this research article, a new fractional derivative chaotic satellite system is presented. Nature of different
fractional derivative (order) satellite systems with phase portrait analysis versus parameters are analysed through uti-
lization of the fractional calculus in computational simulation. Phase portrait analysis of fractional derivatives of the
different satellite systems is drawn and tabled with various parameters values. In new fractional derivative satellite sys-
tems, chaos is existed in less than 3D (dimensional) satellite systems. The results are validated by the different tools:-
equilibrium points, dissipative, Lyapunov exponents and bifurcation diagrams. Feedback and active control techniques
for controlling chaos synchronization of new fractional derivative satellite systems are achieved.
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1 Introduction

Since many decades, fractional calculus has been one of the most effective methods for describing dynamical systems.
It is found in a variety of scientific and engineering domains, as well as in interdisciplinary fields. Many physical
systems, such as the fractional order Chen system [1], the fractional-order hyper-chaotic Chen system, the fractional
order Lorenz system [2], the fractional order Rossler system [4], the fractional derivative Duffing system [3], and the
fractional derivative financial system [5], have been well defined through fractional-order differential equations that
behave chaotically or hyper-chaotically.In several domains of science and engineering, such as medicine, biological
tissues, bioengineering, ECG testing, cardiac tissue, photoelasticity, fluid mechanics, material science, and so on, the
notion of fractional derivative is utilised to simulate the behaviour of real systems( [7], [8], [9], [10], [11], [12]). There are
numerous distinctions between fractional-order and corresponding ordinary differential equation systems [13]. Kumar
et al. used sliding mode approaches to discuss fractional derivative hyper chaotic financial systems as well as fractional
derivative Rabinovich-Fabrikant systems in their research articles ( [14], [15]).

In the realm of research, chaos management and synchronisation for fractional order systems have gotten a lot of
interest. Due to its wide-ranging potential used in various disciplines such as chemical reaction, weather forecasting,
power converters, aerospace, signal process, radar technology, physics of lasers, secure communication, global posi-
tioning systems and biological systems over the last several decades, chaotic synchronisation has become an interesting
subject in the field of nonlinear sciences( [16], [17]). Deng and Li, who created the synchronisation of fractional-order
Lu systems [18], were the first to introduce fractional-order chaotic system synchronisation. A few researchers and
scientists have since established synchronisation of various fractional-order chaotic systems. Gao et al. investigated
fractional order chaotic systems’ masterslave synchronisation [3]. Applying a scalar drive signal, the basic synchronisa-
tion methods were used to synchronise fractional-derivatives chaotic Arneodo systems [19]. Hegazi et al.havepresented
extended projective synchronisation of two chaotic or hyper-chaotic non-integer systems [20].
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Satellite systems play a vital part in space technological advancements, scientific activities, tele-communication,
civil and military applications, and so on, thanks chevaliers chevaliers chevaliers chevaliers chevaliers chevaliers cheva-
liers chevaliers chevaliers Predictive control, adaptive control, and sliding mode control, among other techniques and
approaches, were utilised to synchronise and control the satellite systems( [21], [22]). Modern space mission designs that
include multiplying satellites flying information have used fractional-order satellite synchronisation. This is addressed
by the synchronisation control method, which regulates the relative inaccuracies between satellite systems( [23], [24]).
The chaotic satellite system has received a lot of attention. Many scholars and scientists ( Kuang and Tan, [25]; Tsui
and Jones [26] ; Kong and Zhoul ( [27], [28]); Kuang, Tan, Arichandran and Leung [29] etc.)have focused on this
topic. Various strategies have been used by Hamidzadeh and Esmaelzadeh [30] to control and synchronise chaotic
satellites. The generalised projective synchronisation of chaotic satellites problem using linear matrix inequality was
studied by Farid and Moghaddam [31]. In their articles on sliding mode attitude control of a small satellite for ground
tracking operations, Goeree and Fasse [32] have discussed their findings. Kumar and Khan in their research works,
( [23], [24], [33], [34], [35])measured the chaos in satellite systems using many tools and established the synchronisa-
tion of chaotic satellite systems using numerous methodologies. Furthermore, much study is required to investigate the
systems.

In this research paper, we examine the fractional-order chaotic behaviour of satellite systems with various orders,
as a result of the previous debate. Equilibrium points, dissipativity, bifurcation diagrams, and Lyapunov exponents are
used to investigate the nature of fractional order satellite systems. The occurrence of chaos is thereby justified in the
fractional order satellite system’s lowest dimension, which is less than 3. We also use feedback and active mode control
approaches to produce chaos control and synchronisation of fractional-order satellite systems. These researches add to
our knowledge of fractional order satellite systems’ behaviour. Telecommunications, weather forecasting, GPS systems,
and earth observation can all benefit from these measures. These studies will prove that our study paper is unique.

This paper is organized as follows: section 1 is introduction; section 2 describes the basic definitions of fractional-
order chaotic system; in section 3, we discuss the system description and assumption of satellite systems; in section 4, we
address the controlling chaos in the fractional-order chaotic satellite system; in section 5, we present the synchronization
of fractional-order identical satellite systems via active control technique; we add the numerical simulation in section 6;
conclusion is given in section 7; finally, statements and declarations are added in section 8.

2 Basic concepts of fractional derivatives

The non-integer-order integro-differential operator aDα1
t .in fractional calculus is a generalisation of integration and

differentiation notions. It’s written in the following manner:

aDα1
t =


dα1
dtα1 , if R(α1)> 0
1, if R(α1) = 0∫ t

a(dτ)−α1 , otherwise, i.e.R(α1)< 0.
(1)

The definition of the generalised Riemann-Liouville definition [8] is as follows:

Dα1 f (t) =
dα1

dtα1
Jn−α1 f (t), α1 > 0, (2)

where n = [α1]and n is the first integer greater than or equal to α1,Jβ1 is the Riemann-Liouville integral operator of
β1order, which is defined as follows:

Jβ1 f (t) =
1

Γ (β1)

∫ t

0

f (τ)
(t− τ)1−β1

dτ (3)

for 0 < β1 ≤ 1, where Γ (.) is the gamma function.
The definitions below are utilised as

Dα1 f (t) = Jn−α1 f n(t), α1 > 0, (4)

where n = [α1]. The operator Dα1 is commonly referred to as the Caputo differential operator of order α1since it was
initially employed for the solution of practical problems by Caputo ( [8], [36]).
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2.1 Fractional derivatives and integrals: Basic definitions and properties ( [8], [36], [37])

Definition 1: A real function f (t), t > 0 is indeed in Caputo space C α1,α1 ∈Rif there is a real integer p(> α1),such
that f (t) = t p f 1(t) with f 1(t) ∈ C [0,∞).

Definition 2: A real function f (t), t > 0 is indeed in Caputo space C m
α1
,m ∈ IN∪0 if f (m) ∈ Cα1 .

Definition 3: If f ∈ Cα1 and α1 ≥−1, then the Riemann-Liouville integral of order α1,(α1 > 0) are obtained by

Iα1 f (t) =
1

Γ (α1)

∫ t

0
(t−α1)

α1−1 f (τ)dτ, t > 0. (5)

Definition 4: The fractional derivative of f , f ∈ C m
−1,m ∈ IN∪0,described by Caputo is:

Dα1 f (t) =
dm

dtm f (t), α1 = m = Im−α1
dm f (t)

dtm ,m−1 < α1 < m, m ∈ IN. (6)

Note that for m−1 < α1 ≤ m, m ∈ IN,

Iα1 Dα1 f (t) = f (t)−
m−1

∑
k=0

dk f
dtk (0)

tk

k!
, Iα1tα1 =

Γ (v+1)
Γ (α1 + v+1)

tα1+v. (7)

3 System description and assumption of satellite system

The attitude dynamics of the satellite are described in the inertial coordinate system as ( [40], [41]):

Ṫ = Ta +Tb +Tc, (8)

The total momentum acting on the satellite is T. The flywheel torques, gravitational torques, and disturbance torques are
represented by Ta,Tb and Tc, respectively. The overall momentum T is calculated as follows:

T = Iω, (9)

where ω is the angular velocity and I is the inertia matrix. The total momentum derivatives T are represented as

Ṫ = Iω̇ +ω× Iω. (10)

The cross-product of the vectors is denoted by the symbol ×. When we combine these equations, we get

Iω̇ +ω× Iω = Ta +Tb +Tc. (11)

We have made our decision, I = diag(Ix,Iy,Iz).

Ta =

Tax
Tay
Taz

 ;Tb =

Tbx
Tby
Tbz

 ;Tc =

Tcx
Tcy
Tcz

 .
The satellite system ( [21], [40], [41] ) is written as.

Ixω̇x = ωyωz(Iy− Iz)+hx +ux,
Iyω̇y = ωxωz(Iz− Ix)+hy +uy,
Izω̇z = ωxωy(Ix− Iy)+hz +uz,

(12)

where
hx =

[
Tax +Tbx +Tcx

]
;hy =

[
Tay +Tby +Tcy

]
;

hz =
[
Taz +Tbz +Tcz

]
.

ux, uy and uzare three control torques, while hx, hy and hzare perturbing disturbance torques. We suppose that Ix >
Iy > Iz = 1.Ix = 3, Iy = 2 and Iz = 1. The perturbing torques [26] is defined in the form ashx

hy
hz

=

(−1.2 0
√

6
2

0 0.35 0
−
√

6 0 −0.4)

ωx
ωy
ωz

 . (13)
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The following is the formula for a three-dimensional chaotic satellite system:

ẋ = d
dt (x(t)) = σxyz− 1.2

Ix
x+

√
6

2Ix
z,

ẏ = d
dt (y(t)) = σyxz+ 0.35

Iy
y,

ż = d
dt (z(t)) = σzxy−

√
6

Iz
x− 0.4

Iz
z,

(14)

where σx =
Iy−Iz

Ix
; σy =

Iz−Ix
Iy

; σz =
Ix−Iy

Iz
and σx =

1
3 , σy =−1 and σz = 1. The 3D chaotic satellite system becomes:

ẋ = d
dt (x(t)) =

1
3 yz−ax+ 1√

6
z,

ẏ = d
dt (y(t)) =−xz+by,

ż = d
dt (z(t)) = xy−

√
6x− cz,

(15)

a, b, and c are known parameters values. a = 0.4, b = 0.175, and c = 0.4 are the values we have. The order α1 = 0.95
of the 3D (dimensional) fractional derivative satellite system is represented as:

dα1 x(t)
dtα1 = 1

3 yz−ax+ 1√
6
z,

dα1 y(t)
dtα1 =−xz+by,

dα1 z(t)
dtα1 = xy−

√
6x− cz,

(16)

Equilibrium Points The equilibrium point of a fractional derivative dynamical system is the same as the equilibrium
point of an integer-order dynamical system [37]. By solving the following system of equations, the equilibrium points
of the satellite system (16) can be found. Ẋ(t) = 0

F(x) =

 1
3 yz−ax+ 1√

6
z = 0

−xz+by = 0
xy−
√

6x− cz = 0.


Equilibrium points are

ℵ0 =

0
0
0

 ,ℵ1 =

1.1910
2.5766
0.3785

 ,ℵ2 =

 0.1582
−1.3641
−1.5086

 ,ℵ3 =

−0.1582
−1.3641
1.5086

 ,ℵ4 =

−1.1910
2.5766
−0.3785

 . (17)

The satellite system’s Jacobian matrix, (16)is calculated as follows:

J(X) =

 −a 0.33∗ z (0.33∗ y+ 1√
6
)

−z b −x
(y−
√

6) x −c.

 (18)

At each equilibrium point, one of the eigenvalues of Jacobian matrix (18) has a positive real portion. This demon-
strates that the equilibrium points ℵ0, ℵ1, ℵ2, ℵ3, and ℵ4are saddle-focus, which is inherently unstable. As a result, all
five of the satellite system’s equilibrium points (16)are unstable equilibrium points [24]. Invariant: y-axis If x(0) = 0
and z(0) = 0, then for all t x and z retain zero , according to equations (16). As a result, the y-axis is an orbit.

dα1 y(t)
dtα1

= by(t),hence y(t) = y(0)ebt ; for x,z = 0. (19)

As a result, for the equilibrium, the y-axis illustrated the section of the unstable manifold at the origin.
Dissipative system We can write the system (16) as follows in vector notation:

dα1 X(t)
dtα1

= F(x) =

F1(x,y,z)
F2(x,y,z)
F3(x,y,z),

 (20)

where, X(t) = (x,y,z) and

F(x) =

 F1(x,y,z) = 1
3 yz−ax+ 1√

6
z,

F2(x,y,z) =−xz+by
F3(x,y,z) = xy−

√
6x− cz


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where, a = 0.4,b = 0.175 and c = 0.4.. We assume any smooth boundary area Λ(t)∈R3with Λ(t) =Θt(Λ), where
Θtdisplayed the flow of f .

The volume of Λ(t) is V(t).
We get through Liouville’s theorem

V̇(t) =
∫

Λ(t)
(∇.F)dxdydz (21)

The divergence of the satellite system (21)is calculated as:

∇. f =
[

∂F1
∂x + ∂F2

∂y + ∂F3
∂ z

]
=−a+b− c =−0.625 (22)

From (21) and (22), the first derivatives ordinary differential equation can be written as follows:

V̇(t) =−0.625V(t) (23)

We derive the following solution by integrating the equation (23):

V(t) = e−0.625tV(0) (24)

That is, the volumes with initial points decline by a factor of e as time t passes. The equation (24) V(t)→ 0 when
t→ ∞.The system’s limit settings are constrained to a single limit set with zero volume. A weird attractor is determined
by the asymptotic motion of fractional derivative satellite system (16). This demonstrates the dissipative character
(behaviours)of the satellite system (24) [23].

4 The fractional derivative unpredicted satellite system: chaos control

The fractional derivative highly nonlinear system in the form is written as

dα1 x
dtα1

= f (x)+Bu. (25)

where x ∈ Rn is a system’s state vector,u ∈ Rm is a system’s input vector, f : Rn→ Rn is a nonlinear map from Rn

to Rn . ∈ Rnm is a constant matrix. Assume x∗ ∈ Rn is the controlled chaotic system’s equilibrium point. That means,
f (x∗) = 0.

Remark 1 The goal of this study is to determine and analyse the stability of x∗. Under the sake of simplicity, we
state all formulations and conclusions for the scenario where the equilibrium point of the controlled dynamic system
(25)is at the origin of Rn. That is, x∗ = 0. By adjusting variables, It is possible to move the every equilibrium point to
the origin, hence there is no loss of generality.

Remark 2 Consider the change of variables y = x− x∗ and assume x∗ = 0.is an equilibrium point of the controlled
chaotic system (25). Then, y derivative is equal to-

dα1 y
dtα1

=
dα1 x∗

dtα1
= f (x)+Bu = f (y+ x∗) = s(y). (26)

where s(0) = 0. The system is in equilibrium at the origin with the new variable y. As a result, we will always
assume that f (x) fulfils f (0) = 0 and analyse the stability of the origin x = 0. without losing generality. Using Taylor
series for the nonlinear function f (x) of system (25)

f (x) = f (0)+
∂ f (x)

∂x
+h(x). (27)

where h(x) fulfils lim‖x‖→0
‖h(x)‖
‖x‖ = 0.

We notice that when f (0) = 0 is substituted into the controlled chaotic system (25) and combined with (27), we get

dα1 x
dtα1

= Ax+h(x)+Bu. (28)

where A = ∂ f (x)
∂x at x = 0.

5



4.1 Controllers with linear state feedback

Theorem: (A;B) is entirely state controllable for the linearization of dynamical system (28) of controlled chaotic
system (25). Control law of the linear state feedback is therefore specified as u = BT Pφ , where P is a unique positive
definite symmetry matrix, and the controlled chaotic system (25) is asymptotically stable in origin. The equation for
Riccati algebra matrices is PA+AT P−PBBT P+Q = 0, where Q is an arbitrary positive definite matrix.

4.2 Simulations and control of a fractional derivative chaotic satellite system

The eigenvalues of system (18) at equilibrium point ℵ0 = (0,0,0) is
λ01 =−0.4+0.99ι , λ02 =−0.4+0.99ι and λ03 = 0.175 are obtained, where ιas

√
−1. Because one of the eigen-

values is positive, both the linearized and original forms of the fractional order satellite system are unstable.
The linear state feedback law of unpredictable system is provided by after controllers arithmetic.

u =−BT P

x
y
z

 . (29)

At equilibrium points ℵ0, ℵ1, ℵ2, ℵ3 and ℵ4 the corresponding positive definite symmetric matrices are denoted
as;

p0 =

0.0977 0 0.0160
0 0 0

0.0160 0 0.0350

 ;p1 =

 0.2803 0.2246 0.2132
0.2246 0.1799 −0.1708
−0.2132 −0.1708 0.1622

 ;p2 =

0.0.0278 0.0129 0.0080
0.0129 0.0060 0.0037
0.0080 0.0037 0.0023

 ;

p3 =

 0.3607 −0.1673 0.1040
−0.1673 0.0776 −0.0482
0.1040 −0.0482 0.0300

 ;p4 =

 0.0068 −0.0070 −0.0214
−0.0070 0.0349 0.0220
−0.0214 0.0220 0.0673

 .
5 Using active control techniques, synchronization of identical fractional derivative satellite systems

For the satellite system Equation, (16), two identical master (drive) and slave (response) systems are rebuilt in the form
of x and y subscripts, respectively:
Drive (master) system:

dα1 x1(t)
dtα1 = 1

3 x2(t)x3(t)−ax1(t)+ 1√
6
x3(t),

dα1 x1(t)
dtα1 =−x1(t)x3(t)+bx2(t),

dα1 x1(t)
dtα1 = x1(t)x2(t)−

√
6x1(t)− cx3(t).

(30)

Response (slave) System:

dα1 y1(t)
dtα1 = 1

3 y2(t)y3(t)−ay1(t)+ 1√
6
y3(t)+u1(t),

dα1 y2(t)
dtα1 =−y1(t)y3(t)+by2(t)+u2(t),

dα1 y3(t)
dtα1 = y1(t)y2(t)−

√
6y1(t)− cy3(t)+u3(t),

(31)

where the three controller torques are u1(t), u2(t) and u3(t). The synchronization of error signal is defined as

e1(t) = y1(t)− x1(t),

e2(t) = y2(t)− x2(t),

e3(t) = y3(t)− x3(t).

(32)

The error dynamics is written as:

dα1 e1(t)
dtα1

=
dα1 y1(t)

dtα1
− dα1 x1(t)

dtα1
=

1
3
(y2(t)y3(t)− x2(t)x3(t))−a(y1(t)− x1(t))+1/

√
6(y3(t)− x3(t))+u1(t),

dα1 e2(t)
dtα1

=
dα1 y2(t)

dtα1
− dα1 x2(t)

dtα1
= (x3(t)x1(t)− y3(t)y1(t))+b(y2(t)− x2(t))+u2(t),

dα1 e3(t)
dtα1

=
dα1 y3(t)

dtα1
− dα1 x3(t)

dtα1
= (y1(t)y2(t)− x1(t)x2(t))−

√
6(y3(t)− x3(t))− c(y3(t)− x3(t))+u3(t).

(33)
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We define the the active control function as,

u1(t) =−
1
3
(y2(t)y3(t)− x2(t)x3(t))+

1√
6

e3(t)+ v1(t),

u2(t) =−(x3(t)x1(t)− y2(t)y3(t))+be2− e2(t)+ v2(t),

u1(t) =−(y1(t)y2(t)− x1(t)x2(t))+
√

6e1(t)+ v3(t).

(34)

The terms vi(t) are the linear function of the error terms ei(t), i = 1,2,3. With the choice of ui(t) given by the
previous equations, error dynamics is written as

dα1 e1(t)
dtα1

=−ae1(t)+ v1(t),

dα1 e2(t)
dtα1

=−e2(t)+ v2(t),

dα1 e3(t)
dtα1

=−ce3(t)+ v3(t).

(35)

The control terms vi(t)are selected to stabilise the error system. For such functions, there isn’t a single option. We takev1(t)
v2(t)
v3(t)

= A

e1(t)
e2(t)
e3(t)

 ;A = [ai j]3x3. (36)

A is chosen so that the criterion |arg(λi(J))| > α1
π

2 is satisfied for all eigenvalues λi of the error system. At the
equilibrium point of the error system, the Jacobi matrix of the above system is J. We take

A =

a−1 0 0
0 0 0
0 0 c−1

 . (37)

The eigen value of the linear error system are −1,0,−1. Fractional derivative stability theory, the error ei(t), i =
1,2,3 will converge to zero when t→ ∞. That is,

lim
t→∞

e(t) = 0

This indicates that the slave and master systems are synchronized. The stability theory of fractional order systems is
thus used to create synchronisation between fractional-order master and slave systems.

Table 1: Fractional-order satellite systems phase portrait analysis versus parameters (α1;a;b;c).

Nature of the system
Figure 1(a) α1 ≤ 0.90;a = 0.4;b = 0.175;c = 0.4 Stable
Figure 1(b) α1 = 0.91;a = 0.4;b = 0.175;c = 0.4 Stable
Figure 1(c) α1 = 0.92;a = 0.4;b = 0.175;c = 0.4 Periodic
Figure 1(d) α1 = 0.93;a = 0.4;b = 0.175;c = 0.4 Quasi-Periodic
Figure 1(e) α1 = 0.94;a = 0.4;b = 0.175;c = 0.4 Periodic
Figure 1(f) α1 = 0.95;a = 0.4;b = 0.175;c = 0.4 Chaotic
Figure 1(g) α1 = 0.95;a = 0.30;b = 0.175;c = 0.4 Quasi-Periodic
Figure 1(h) α1 = 0.95;a = 0.35;b = 0.175;c = 0.4 Periodic
Figure 1(i) α1 = 0.95;a = 0.4;b = 0.100;c = 0.4 Chaotic
Figure 1(j) α1 = 0.95;a = 0.4;b = 0.150;c = 0.4 Chaotic
Figure 1(k) α1 = 0.95;a = 0.4;b = 0.175;c = 0.10 Periodic
Figure 1(l) α1 = 0.95;a = 0.4;b = 0.175;c = 0.30 Chaotic

.

6 Numerical simulation

Take x(0) = (3.5,0.5,0.8)T and y(0) = (2.5,1.5,0.3)T as initial conditions for fractional derivative master system and
fractional derivative slave satellite systems. The phase portraits and time series graphs of fractional-order satellite sys-
tems with different orders are illustrated in Figures (1)(a-l). Table provides the characteristics of fractional derivative
satellite systems through analysis the phase portraits diagrams and time series diagrams of the systems with different or-
der and parameters values. Figure (2) is shown the phase portraits of three and two dimensional fractional order satellite
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system with order α1 = 0.95. Figures (3)(a-c) show the bifurcation plotting with respect to varying parameters a, b and
c respectively. The Lyapunov exponents of satellite system, at t = 200. is calculated. It is shown in Figure (4). Feedback
control of fractional derivative unpredictable satellite is displayed in (4) when controlling is started at t = 20. Figures
(6)(a-c) show the tracking the trajectories of slave to master fractional derivative satellite system with order α1 = 0.95
in x1y1, x2y2 and x3y3 respectively. Figure (7) is provided the synchronization of fractional derivative of error dynamic
in the form of e1e2e3 with respect to time t at the initial condition of error system, e(0) = (−1.0,1.0,−0.5)T . That is,

lim
t→∞

e(t) = 0
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Fig. 1: 3-D Phase portrait and time series graphs of chaotic satellite systems with different fractional orders (without
controller).

9



−5
0

5

0
5

10
−5

0

5

x
1
(t)x

2
(t)

x 3
(t

)
−4 −2 0 2 4
0

2

4

6

x
1
(t)

x 2
(t

)

0 2 4 6
−4

−2

0

2

4

x
2
(t)

x 3
(t

)

−4 −2 0 2 4
−4

−2

0

2

4

x
3
(t)

x 1
(t

)

Fig. 2: 3D and 2D (dimensional) phase portraits of fractional order satellite system with α1 = 0.95.
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Fig. 3: Bifurcation plotting with varying the parameters a, b and c respectively.
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Fig. 6: Tracking trajectories for fractional-order master satellite to the salve system with order α1 = 0.95 (with con-
trollers).
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7 Conclusions

We looked at how to solve fractional-order dynamical systems in our research paper. We’ve established the fundamentals
of fractional dynamics. The chaotic behaviour of specific fractional order satellite systems was studied using equilib-
rium points. Different methods, such as dissipativity, equilibrium points, bifurcation diagrams, and Lyapunov exponents,
are used to analyse the chaotic behaviour of fractional-order satellite systems with phase portrait analysis vs parame-
ters. Phase portrait analysis of fractional derivatives of the different satellite systems is drawn and tabled with various
parameters values. Such tools have allowed us to rationalise the system’s chaos. To verify the unstable zone, we got
the equilibrium points of fractional-order satellite systems and calculated the eigenvalue of the Jacobian matrix of the
satellite system at each equilibrium point. It has been realised a feedback control approach for a novel fractional-order
satellite system. Using active control methodology, we were able to synchronise two identical fractional-order satellite
systems. The veracity of the results is confirmed through fractional-order system synchronisation. These investigations
could help with secure telecommunications, data security, radar detection, weather forecasting, GPS systems, and earth
observation.
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