References

Barraclough, T.G. (2015). How do species interactions affect evolutionary dynamics across whole communities? Annu. Rev. Ecol. Evol. Syst. , 46, 25–48.
Bruno, J.F., Boyer, K.E., Duffy, J.E. & Lee, S.C. (2008). Relative and interactive effects of plant and grazer richness in a benthic marine community. Ecology , 89, 2518–2528.
Bush, T., Diao, M., Allen, R.J., Sinnige, R., Muyzer, G. & Huisman, J. (2017). Oxic-anoxic regime shifts mediated by feedbacks between biogeochemical processes and microbial community dynamics. Nat. Commun. , 8, 789.
Ceulemans, R., Gaedke, U., Klauschies, T. & Guill, C. (2019). The effects of functional diversity on biomass production, variability, and resilience of ecosystem functions in a tritrophic system. Sci. Rep. , 9, 7541.
Ceulemans, R., Guill, C. & Gaedke, U. (2021). Top predators govern multitrophic diversity effects in tritrophic food webs. Ecology , 102, e03379.
Chaparro-Pedraza, P.C. (2021). Fast environmental change and eco-evolutionary feedbacks can drive regime shifts in ecosystems before tipping points are crossed. Proc. R. Soc. B Biol. Sci. , 288, 20211192.
Chaparro-Pedraza, P.C., Matthews, B., de Meester, L. & Dakos, V. (2021). Adaptive evolution can both prevent ecosystem collapse and delay ecosystem recovery. Am. Nat. , 198, E185–E197.
Conley, D.J., Carstensen, J., Vaquer-Sunyer, R. & Duarte, C.M. (2009). Ecosystem thresholds with hypoxia. Hydrobiologia , 629, 21–29.
Dakos, V., Matthews, B., Hendry, A.P., Levine, J., Loeuille, N., Norberg, J., et al. (2019). Ecosystem tipping points in an evolving world. Nat. Ecol. Evol. , 3, 355–362.
Diaz, R.J. & Rosenberg, R. (2008). Spreading dead zones and consequences for marine ecosystems. Science , 321, 926–929.
Eisenhauer, N., Reich, P.B. & Isbell, F. (2012). Decomposer diversity and identity influence plant diversity effects on ecosystem functioning.Ecology , 93, 2227–2240.
Escalas, A., Hale, L., Voordeckers, J.W., Yang, Y., Firestone, M.K., Alvarez-Cohen, L., et al. (2019). Microbial functional diversity: from concepts to applications. Ecol. Evol. , 9, 12000–12016.
Ferenci, T. (2016). Trade-off mechanisms shaping the diversity of bacteria. Trends Microbiol. , 24, 209–223.
Foley, J.A., Coe, M.T., Scheffer, M. & Wang, G. (2003). Regime shifts in the Sahara and Sahel: interactions between ecological and climatic systems in northern Africa. Ecosystems , 6, 524–532.
Govaert, L., Fronhofer, E.A., Lion, S., Eizaguirre, C., Bonte, D., Egas, M., et al. (2019). Eco-evolutionary feedbacks - theoretical models and perspectives. Funct. Ecol. , 33, 13–30.
Holling, C.S. (1973). Resilience and stability of ecological systems.Annu. Rev. Ecol. Syst. , 4, 1–23.
Hughes, A.R. & Stachowicz, J.J. (2004). Genetic diversity enhances the resistance of a seagrass ecosystem to disturbance. Proc. Natl. Acad. Sci. , 101, 8998–9002.
Hughes, B.B., Levey, M.D., Fountain, M.C., Carlisle, A.B., Chavez, F.P. & Gleason, M.G. (2015). Climate mediates hypoxic stress on fish diversity and nursery function at the land–sea interface. Proc. Natl. Acad. Sci. , 112, 8025–8030.
Isbell, F., Craven, D., Connolly, J., Loreau, M., Schmid, B., Beierkuhnlein, C., et al. (2015). Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature , 526, 574–577.
Jane, S.F., Hansen, G.J.A., Kraemer, B.M., Leavitt, P.R., Mincer, J.L., North, R.L., et al. (2021). Widespread deoxygenation of temperate lakes. Nature , 594, 66–70.
Jones, L.E., Becks, L., Ellner, S.P., Hairston, N.G., Yoshida, T. & Fussmann, G.F. (2009). Rapid contemporary evolution and clonal food web dynamics. Philos. Trans. R. Soc. B Biol. Sci. , 364, 1579–1591.
Kéfi, S., Holmgren, M. & Scheffer, M. (2016). When can positive interactions cause alternative stable states in ecosystems? Funct. Ecol. , 30, 88–97.
Knoll, A.H. & Bauld, J. (1989). The evolution of ecological tolerance in prokaryotes. Earth Environ. Sci. Trans. R. Soc. Edinb. , 80, 209–223.
Krug, R.M. & Petchey, O.L. (2022). microxanox: model to simulate three functional group system. (v0.9.1). Zenodo. https://doi.org/10.5281/zenodo.7148667.
Lavik, G., Stührmann, T., Brüchert, V., Van der Plas, A., Mohrholz, V., Lam, P., et al. (2009). Detoxification of sulphidic African shelf waters by blooming chemolithotrophs. Nature , 457, 581–584.
Leary, D.J. & Petchey, O.L. (2009). Testing a biological mechanism of the insurance hypothesis in experimental aquatic communities. J. Anim. Ecol. , 78, 1143–1151.
Litchman, E. & Klausmeier, C.A. (2008). Trait-based community ecology of phytoplankton. Annu. Rev. Ecol. Evol. Syst. , 39, 615–639.
Locey, K.J. & Lennon, J.T. (2016). Scaling laws predict global microbial diversity. Proc. Natl. Acad. Sci. , 113, 5970–5975.
Loreau, M. & Mazancourt, C. de. (2013). Biodiversity and ecosystem stability: a synthesis of underlying mechanisms. Ecol. Lett. , 16, 106–115.
Martín-Clemente, E., Melero-Jiménez, I.J., Bañares-España, E., Flores-Moya, A. & García-Sánchez, M.J. (2019). Adaptation dynamics and evolutionary rescue under sulfide selection in cyanobacteria: a comparative study between Microcystis aeruginosa andOscillatoria sp. (cyanobacteria). J. Phycol. , 55, 1348–1360.
Miller, S.R. & Bebout, B.M. (2004). Variation in sulfide tolerance of photosystem II in phylogenetically diverse cyanobacteria from sulfidic habitats. Appl. Environ. Microbiol. , 70, 736–744.
Moisset de Espanés, P., Ramos-Jiliberto, R. & Soto, J.A. (2021). Avoiding artifacts when varying the number of species in ecological models. Ecol. Lett. , 24, 1976–1987.
Naeem, S. & Wright, J.P. (2003). Disentangling biodiversity effects on ecosystem functioning: deriving solutions to a seemingly insurmountable problem. Ecol. Lett. , 6, 567–579.
Orr, H.A. (2000). Adaptation and the cost of complexity.Evolution , 54, 13–20.
Petchey, O.L., Daugaard, U., Gupta, A., Krug, R.M., Lemmen, K.D., van Moorsel, S.J., et al. (2022). Supplementary Report for the article “Functional diversity can facilitate the collapse of an undesirable ecosystem state”. https://doi.org/10.5281/zenodo.6334543; https://uzh-peg.github.io/diversity_envresp1/index.html.
R Core Team. (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
Ramel, F., Brasseur, G., Pieulle, L., Valette, O., Hirschler-Réa, A., Fardeau, M.L., et al. (2015). Growth of the obligate anaerobeDesulfovibrio vulgaris Hildenborough under continuous low oxygen concentration sparging: impact of the membrane-bound oxygen reductases.PLOS ONE , 10, e0123455.
Ratzke, C., Denk, J. & Gore, J. (2018). Ecological suicide in microbes.Nat. Ecol. Evol. , 2, 867–872.
Ratzke, C. & Gore, J. (2018). Modifying and reacting to the environmental pH can drive bacterial interactions. PLOS Biol. , 16, e2004248.
Reusch, T.B.H., Ehlers, A., Hämmerli, A. & Worm, B. (2005). Ecosystem recovery after climatic extremes enhanced by genotypic diversity.Proc. Natl. Acad. Sci. , 102, 2826–2831.
Rolfe, R.D., Hentges, D.J., Campbell, B.J. & Barrett, J.T. (1978). Factors related to the oxygen tolerance of anaerobic bacteria.Appl. Environ. Microbiol. , 36, 306–313.
Scavia, D., David Allan, J., Arend, K.K., Bartell, S., Beletsky, D., Bosch, N.S., et al. (2014). Assessing and addressing the re-eutrophication of Lake Erie: Central basin hypoxia. J. Gt. Lakes Res. , 40, 226–246.
Scheffer, M., Bascompte, J., Brock, W.A., Brovkin, V., Carpenter, S.R., Dakos, V., et al. (2009). Early-warning signals for critical transitions. Nature , 461, 53–59.
Scheffer, M., Carpenter, S., Foley, J.A., Folke, C. & Walker, B. (2001). Catastrophic shifts in ecosystems. Nature , 413, 591–596.
Scheffer, M., Hosper, S.H., Meijer, M.-L., Moss, B. & Jeppesen, E. (1993). Alternative equilibria in shallow lakes. Trends Ecol. Evol. , 8, 275–279.
Schoeffler, M., Gaudin, A.-L., Ramel, F., Valette, O., Denis, Y., Hania, W.B., et al. (2019). Growth of an anaerobic sulfate-reducing bacterium sustained by oxygen respiratory energy conservation after O2 -driven experimental evolution. Environ. Microbiol. , 21, 360–373.
Suding, K.N., Lavorel, S., Chapin, F.S., Cornelissen, J.H.C., Díaz, S., Garnier, E., et al. (2008). Scaling environmental change through the community-level: a trait-based response-and-effect framework for plants. Glob. Change Biol. , 14, 1125–1140.
Thébault, E. & Loreau, M. (2003). Food-web constraints on biodiversity–ecosystem functioning relationships. Proc. Natl. Acad. Sci. , 100, 14949–14954.
Vaquer-Sunyer, R. & Duarte, C.M. (2008). Thresholds of hypoxia for marine biodiversity. Proc. Natl. Acad. Sci. U. S. A. , 105, 15452–15457.
de Vargas, C., Audic, S., Henry, N., Decelle, J., Mahé, F., Logares, R.,et al. (2015). Eukaryotic plankton diversity in the sunlit ocean.Science , 348, 1261605.
Villéger, S., Mason, N.W.H. & Mouillot, D. (2008). New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology , 89, 2290–2301.
Wetzel, R. (2001). Limnology: Lake and river ecosystems . 3rd edn. Academic Press, San Diego.
Wojcik, L.A., Ceulemans, R. & Gaedke, U. (2021). Functional diversity buffers the effects of a pulse perturbation on the dynamics of tritrophic food webs. Ecol. Evol. , 11, 15639–15663.
Yachi, S. & Loreau, M. (1999). Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. Proc. Natl. Acad. Sci. , 96, 1463–1468.
Zhao, Q., Van den Brink, P.J., Carpentier, C., Wang, Y.X.G., Rodríguez-Sánchez, P., Xu, C., et al. (2019). Horizontal and vertical diversity jointly shape food web stability against small and large perturbations. Ecol. Lett. , 22, 1152–1162.
Table 1: Range of growth rates and tolerances. Without trait variation, all strains of a functional group had the reference trait value. With trait variation, the trait values of the strains varied around the reference trait value. Here we give the range of growth rates and tolerances when trait variation was at its maximum and for the results displayed in Figure 4. The maximum amount of variation was set to a range so that the region of bistability was usually within the range of oxygen diffusivity values used in Bush et al (2017). Tolerance is given as the concentration of the inhibiting substrate where growth rate is reduced by 50%.