References
Barraclough, T.G. (2015). How do species interactions affect
evolutionary dynamics across whole communities? Annu. Rev. Ecol.
Evol. Syst. , 46, 25–48.
Bruno, J.F., Boyer, K.E., Duffy, J.E. & Lee, S.C. (2008). Relative and
interactive effects of plant and grazer richness in a benthic marine
community. Ecology , 89, 2518–2528.
Bush, T., Diao, M., Allen, R.J., Sinnige, R., Muyzer, G. & Huisman, J.
(2017). Oxic-anoxic regime shifts mediated by feedbacks between
biogeochemical processes and microbial community dynamics. Nat.
Commun. , 8, 789.
Ceulemans, R., Gaedke, U., Klauschies, T. & Guill, C. (2019). The
effects of functional diversity on biomass production, variability, and
resilience of ecosystem functions in a tritrophic system. Sci.
Rep. , 9, 7541.
Ceulemans, R., Guill, C. & Gaedke, U. (2021). Top predators govern
multitrophic diversity effects in tritrophic food webs. Ecology ,
102, e03379.
Chaparro-Pedraza, P.C. (2021). Fast environmental change and
eco-evolutionary feedbacks can drive regime shifts in ecosystems before
tipping points are crossed. Proc. R. Soc. B Biol. Sci. , 288,
20211192.
Chaparro-Pedraza, P.C., Matthews, B., de Meester, L. & Dakos, V.
(2021). Adaptive evolution can both prevent ecosystem collapse and delay
ecosystem recovery. Am. Nat. , 198, E185–E197.
Conley, D.J., Carstensen, J., Vaquer-Sunyer, R. & Duarte, C.M. (2009).
Ecosystem thresholds with hypoxia. Hydrobiologia , 629, 21–29.
Dakos, V., Matthews, B., Hendry, A.P., Levine, J., Loeuille, N.,
Norberg, J., et al. (2019). Ecosystem tipping points in an
evolving world. Nat. Ecol. Evol. , 3, 355–362.
Diaz, R.J. & Rosenberg, R. (2008). Spreading dead zones and
consequences for marine ecosystems. Science , 321, 926–929.
Eisenhauer, N., Reich, P.B. & Isbell, F. (2012). Decomposer diversity
and identity influence plant diversity effects on ecosystem functioning.Ecology , 93, 2227–2240.
Escalas, A., Hale, L., Voordeckers, J.W., Yang, Y., Firestone, M.K.,
Alvarez-Cohen, L., et al. (2019). Microbial functional diversity:
from concepts to applications. Ecol. Evol. , 9, 12000–12016.
Ferenci, T. (2016). Trade-off mechanisms shaping the diversity of
bacteria. Trends Microbiol. , 24, 209–223.
Foley, J.A., Coe, M.T., Scheffer, M. & Wang, G. (2003). Regime shifts
in the Sahara and Sahel: interactions between ecological and climatic
systems in northern Africa. Ecosystems , 6, 524–532.
Govaert, L., Fronhofer, E.A., Lion, S., Eizaguirre, C., Bonte, D., Egas,
M., et al. (2019). Eco-evolutionary feedbacks - theoretical
models and perspectives. Funct. Ecol. , 33, 13–30.
Holling, C.S. (1973). Resilience and stability of ecological systems.Annu. Rev. Ecol. Syst. , 4, 1–23.
Hughes, A.R. & Stachowicz, J.J. (2004). Genetic diversity enhances the
resistance of a seagrass ecosystem to disturbance. Proc. Natl.
Acad. Sci. , 101, 8998–9002.
Hughes, B.B., Levey, M.D., Fountain, M.C., Carlisle, A.B., Chavez, F.P.
& Gleason, M.G. (2015). Climate mediates hypoxic stress on fish
diversity and nursery function at the land–sea interface. Proc.
Natl. Acad. Sci. , 112, 8025–8030.
Isbell, F., Craven, D., Connolly, J., Loreau, M., Schmid, B.,
Beierkuhnlein, C., et al. (2015). Biodiversity increases the
resistance of ecosystem productivity to climate extremes. Nature ,
526, 574–577.
Jane, S.F., Hansen, G.J.A., Kraemer, B.M., Leavitt, P.R., Mincer, J.L.,
North, R.L., et al. (2021). Widespread deoxygenation of temperate
lakes. Nature , 594, 66–70.
Jones, L.E., Becks, L., Ellner, S.P., Hairston, N.G., Yoshida, T. &
Fussmann, G.F. (2009). Rapid contemporary evolution and clonal food web
dynamics. Philos. Trans. R. Soc. B Biol. Sci. , 364, 1579–1591.
Kéfi, S., Holmgren, M. & Scheffer, M. (2016). When can positive
interactions cause alternative stable states in ecosystems? Funct.
Ecol. , 30, 88–97.
Knoll, A.H. & Bauld, J. (1989). The evolution of ecological tolerance
in prokaryotes. Earth Environ. Sci. Trans. R. Soc. Edinb. , 80,
209–223.
Krug, R.M. & Petchey, O.L. (2022). microxanox: model to simulate three
functional group system. (v0.9.1). Zenodo.
https://doi.org/10.5281/zenodo.7148667.
Lavik, G., Stührmann, T., Brüchert, V., Van der Plas, A., Mohrholz, V.,
Lam, P., et al. (2009). Detoxification of sulphidic African shelf
waters by blooming chemolithotrophs. Nature , 457, 581–584.
Leary, D.J. & Petchey, O.L. (2009). Testing a biological mechanism of
the insurance hypothesis in experimental aquatic communities. J.
Anim. Ecol. , 78, 1143–1151.
Litchman, E. & Klausmeier, C.A. (2008). Trait-based community ecology
of phytoplankton. Annu. Rev. Ecol. Evol. Syst. , 39, 615–639.
Locey, K.J. & Lennon, J.T. (2016). Scaling laws predict global
microbial diversity. Proc. Natl. Acad. Sci. , 113, 5970–5975.
Loreau, M. & Mazancourt, C. de. (2013). Biodiversity and ecosystem
stability: a synthesis of underlying mechanisms. Ecol. Lett. , 16,
106–115.
Martín-Clemente, E., Melero-Jiménez, I.J., Bañares-España, E.,
Flores-Moya, A. & García-Sánchez, M.J. (2019). Adaptation dynamics and
evolutionary rescue under sulfide selection in cyanobacteria: a
comparative study between Microcystis aeruginosa andOscillatoria sp. (cyanobacteria). J. Phycol. , 55,
1348–1360.
Miller, S.R. & Bebout, B.M. (2004). Variation in sulfide tolerance of
photosystem II in phylogenetically diverse cyanobacteria from sulfidic
habitats. Appl. Environ. Microbiol. , 70, 736–744.
Moisset de Espanés, P., Ramos-Jiliberto, R. & Soto, J.A. (2021).
Avoiding artifacts when varying the number of species in ecological
models. Ecol. Lett. , 24, 1976–1987.
Naeem, S. & Wright, J.P. (2003). Disentangling biodiversity effects on
ecosystem functioning: deriving solutions to a seemingly insurmountable
problem. Ecol. Lett. , 6, 567–579.
Orr, H.A. (2000). Adaptation and the cost of complexity.Evolution , 54, 13–20.
Petchey, O.L., Daugaard, U., Gupta, A., Krug, R.M., Lemmen, K.D., van
Moorsel, S.J., et al. (2022). Supplementary Report for the
article “Functional diversity can facilitate the collapse of an
undesirable ecosystem state”. https://doi.org/10.5281/zenodo.6334543;
https://uzh-peg.github.io/diversity_envresp1/index.html.
R Core Team. (2021). R: A language and environment for statistical
computing. R Foundation for Statistical Computing, Vienna, Austria.
Ramel, F., Brasseur, G., Pieulle, L., Valette, O., Hirschler-Réa, A.,
Fardeau, M.L., et al. (2015). Growth of the obligate anaerobeDesulfovibrio vulgaris Hildenborough under continuous low oxygen
concentration sparging: impact of the membrane-bound oxygen reductases.PLOS ONE , 10, e0123455.
Ratzke, C., Denk, J. & Gore, J. (2018). Ecological suicide in microbes.Nat. Ecol. Evol. , 2, 867–872.
Ratzke, C. & Gore, J. (2018). Modifying and reacting to the
environmental pH can drive bacterial interactions. PLOS Biol. ,
16, e2004248.
Reusch, T.B.H., Ehlers, A., Hämmerli, A. & Worm, B. (2005). Ecosystem
recovery after climatic extremes enhanced by genotypic diversity.Proc. Natl. Acad. Sci. , 102, 2826–2831.
Rolfe, R.D., Hentges, D.J., Campbell, B.J. & Barrett, J.T. (1978).
Factors related to the oxygen tolerance of anaerobic bacteria.Appl. Environ. Microbiol. , 36, 306–313.
Scavia, D., David Allan, J., Arend, K.K., Bartell, S., Beletsky, D.,
Bosch, N.S., et al. (2014). Assessing and addressing the
re-eutrophication of Lake Erie: Central basin hypoxia. J. Gt.
Lakes Res. , 40, 226–246.
Scheffer, M., Bascompte, J., Brock, W.A., Brovkin, V., Carpenter, S.R.,
Dakos, V., et al. (2009). Early-warning signals for critical
transitions. Nature , 461, 53–59.
Scheffer, M., Carpenter, S., Foley, J.A., Folke, C. & Walker, B.
(2001). Catastrophic shifts in ecosystems. Nature , 413, 591–596.
Scheffer, M., Hosper, S.H., Meijer, M.-L., Moss, B. & Jeppesen, E.
(1993). Alternative equilibria in shallow lakes. Trends Ecol.
Evol. , 8, 275–279.
Schoeffler, M., Gaudin, A.-L., Ramel, F., Valette, O., Denis, Y., Hania,
W.B., et al. (2019). Growth of an anaerobic sulfate-reducing
bacterium sustained by oxygen respiratory energy conservation after O2
-driven experimental evolution. Environ. Microbiol. , 21,
360–373.
Suding, K.N., Lavorel, S., Chapin, F.S., Cornelissen, J.H.C., Díaz, S.,
Garnier, E., et al. (2008). Scaling environmental change through
the community-level: a trait-based response-and-effect framework for
plants. Glob. Change Biol. , 14, 1125–1140.
Thébault, E. & Loreau, M. (2003). Food-web constraints on
biodiversity–ecosystem functioning relationships. Proc. Natl.
Acad. Sci. , 100, 14949–14954.
Vaquer-Sunyer, R. & Duarte, C.M. (2008). Thresholds of hypoxia for
marine biodiversity. Proc. Natl. Acad. Sci. U. S. A. , 105,
15452–15457.
de Vargas, C., Audic, S., Henry, N., Decelle, J., Mahé, F., Logares, R.,et al. (2015). Eukaryotic plankton diversity in the sunlit ocean.Science , 348, 1261605.
Villéger, S., Mason, N.W.H. & Mouillot, D. (2008). New multidimensional
functional diversity indices for a multifaceted framework in functional
ecology. Ecology , 89, 2290–2301.
Wetzel, R. (2001). Limnology: Lake and river ecosystems . 3rd edn.
Academic Press, San Diego.
Wojcik, L.A., Ceulemans, R. & Gaedke, U. (2021). Functional diversity
buffers the effects of a pulse perturbation on the dynamics of
tritrophic food webs. Ecol. Evol. , 11, 15639–15663.
Yachi, S. & Loreau, M. (1999). Biodiversity and ecosystem productivity
in a fluctuating environment: the insurance hypothesis. Proc.
Natl. Acad. Sci. , 96, 1463–1468.
Zhao, Q., Van den Brink, P.J., Carpentier, C., Wang, Y.X.G.,
Rodríguez-Sánchez, P., Xu, C., et al. (2019). Horizontal and
vertical diversity jointly shape food web stability against small and
large perturbations. Ecol. Lett. , 22, 1152–1162.
Table 1: Range of growth rates and tolerances. Without trait
variation, all strains of a functional group had the reference trait
value. With trait variation, the trait values of the strains varied
around the reference trait value. Here we give the range of growth rates
and tolerances when trait variation was at its maximum and for the
results displayed in Figure 4. The maximum amount of variation was set
to a range so that the region of bistability was usually within the
range of oxygen diffusivity values used in Bush et al (2017).
Tolerance is given as the concentration of the inhibiting substrate
where growth rate is reduced by 50%.