References
Allen, P.M., Arnold, J.G., Auguste, L., White, J., Dunbar, J., 2018. Application of a simple headcut advance model for gullies. Earth Surface Processes and Landforms, 43, 202-217.https://doi.org/10.1002/esp.4233.
Anache, J.A.A., Flanagan, D.C., Srivastava, A., Wendland, E.C., 2018. Land use and climate change impacts on runoff and soil erosion at the hillslope scale in the Brazilian Cerrado. Science of The Total Environment, 622-623, 140-151.https://doi.org/10.1016/j.scitotenv.2017.11.257.
Aneseyee, A.B., Elias, E., Soromessa, T., Feyisa, G.L., 2020. Land use/land cover change effect on soil erosion and sediment delivery in the Winike watershed, Omo Gibe Basin, Ethiopia. Science of The Total Environment, 728, 138776.https://doi.org/10.1016/j.scitotenv.2020.138776.
Arabameri, A., Pradhan, B., Rezaei, K., 2019. Spatial prediction of gully erosion using ALOS PALSAR data and ensemble bivariate and data mining models. Geosciences Journal, 1, 1-18. https://doi org/10.1007/s12303-018-0067-3.
Badrinarayanan, V., Kendall, A., Cipolla, R., 2017. SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39, 2481-2495.https://doi.org/10.1109/TPAMI.2016.2644615.
Barthès, B., Roose, E., 2002. Aggregate stability as an indicator of soil susceptibility to runoff and erosion; validation at several levels. Catena, 47, 133-149.https://doi.org/10.1016/S0341-8162(01)00180-1.
Boardman, J., Favis-Mortlock, D., Foster, I., 2015. A 13-year record of erosion on badland sites in the Karoo, South Africa. Earth Surface Processes and Landforms, 40, 1964-1981.https://doi.org/10.1002/esp.3775.
Cao, J.J., Tang, G.A., Fang, X., Liu, Y.J., Zhu, Y., Li, J.L., Wagner, W., 2020. Identification of active gully erosion sites in the Loess Plateau of China using MF-DFA. Remote Sensing, 12, 589.https://doi.org/10.3390/rs12030589.
Cao, Z.H., Ke, Q.H., Zhang, K.L., Zhang, Z.D., Liu, Y.N., Xiao, S.Z., Wei, M.Y., 2022. Millennial scale erosion and sedimentation investigation in karst watersheds using dating and palynology. Catena, 217, 106526.https://doi.org/10.1016/j.catena.2022.106526.
Capra, A., Mazzara, L.M., Scicolone, B., 2005. Application of the EGEM model to predict ephemeral gully erosion in Sicily, Italy. Catena, 59, 133-146.https://doi.org/10.1016/j.catena.2004.07.001.
Capra, A., Porto, P., Scicolone, B., 2009. Relationships between rainfall characteristics and ephemeral gully erosion in a cultivated catchment in Sicily (Italy). Soil and Tillage Research, 105, 77-87.https://doi.org/10.1016/j.still.2009.05.009.
Casalí, J., Loizu, J., Campo, M.A., De Santisteban, L.M., Álvarez-Mozos, J., 2006. Accuracy of methods for field assessment of rill and ephemeral gully erosion. Catena, 67, 128-138.https://doi.org/10.1016/j.catena.2006.03.005.
Chen, C., Park, T., Wang, X., Piao, S., Xu, B., Chaturvedi, R.K., Fuchs, R., Brovkin, V., Ciais, P., Fensholt, R., Tømmervik, H., Bala, G., Zhu, Z., Nemani, R.R., Myneni, R.B., 2019. China and India lead in greening of the world through land-use management. Nature Sustainability, 2, 122-129.https://doi.org/10.1038/s41893-019-0220-7.
Chen, W.L., Xu, Q., Zhao, K.Y., Zhou, X.P., Li, S.L., Wang, J., Wang, X.C., Xu, J.Q., 2020. Spatial analysis of land-use management for gully land consolidation on the Loess Plateau in China. Ecological Indicators, 117, 106633.https://doi.org/10.1016/j.ecolind.2020.106633.
Cheng, H., Wu, Y.Q., Zou, X.Y., Si, H., Zhao, Y.Z., Liu, D.G., Yue, X.L., 2006. Study of ephemeral gully erosion in a small upland catchment on the Inner-Mongolian Plateau. Soil and Tillage Research, 90, 184-193.https://doi.org/10.1016/j.still.2005.09.006.
Cheng, H., Zou, X.Y., Wu, Y.Q., Zhang, C.L., Zheng, Q.H., Jiang, Z.Y., 2007. Morphology parameters of ephemeral gully in characteristics hillslopes on the Loess Plateau of China. Soil and Tillage Research, 94, 4-14.https://doi.org/10.1016/j.still.2006.06.007.
Choudhury, B.U., Nengzouzam, G., Islam, A., 2022. Evaluation of climate change impact on soil erosion in the integrated farming system based hilly micro-watersheds using Revised Universal Soil Loss Equation. Catena, 214, 106306.https://doi.org/10.1016/j.catena.2022.106306.
Dai, W., Hu, G.H., Yang, X., Yang, X.W., Cheng, Y.H., Xiong, L.Y., Strobl, J., Tang, G.A., 2020. Identifying ephemeral gullies from high-resolution images and DEMs using flow-directional detection. Journal of Mountain Science, 17, 3024-3038.https://doi.org/10.1007/s11629-020-6084-5.
De Baets, S., Poesen, J., 2010. Empirical models for predicting the erosion-reducing effects of plant roots during concentrated flow erosion. Geomorphology, 118, 425-432.https://doi.org/10.1016/j.geomorph.2010.02.011.
Deng, T.F., Fu, B.L., Liu, M., He, H.C., Fan, D.L., Li, L.L., Huang, L.K., Gao, E.T., 2022. Comparison of multi-class and fusion of multiple single-class SegNet model for mapping karst wetland vegetation using UAV images. Scientific Reports, 12, 13270.https://doi.org/10.1038/s41598-022-17620-2.
Devátý, J., Dostál, T., Hösl, R., Krása, J., Strauss, P., 2019. Effects of historical land use and land pattern changes on soil erosion – Case studies from Lower Austria and Central Bohemia. Land Use Policy, 82, 674-685.https://doi.org/10.1016/j.landusepol.2018.11.058.
Dominati, E., Patterson, M., Mackay, A., 2010. A framework for classifying and quantifying the natural capital and ecosystem services of soils. Ecological Economics, 69, 1858-1868.https://doi.org/10.1016/j.ecolecon.2010.05.002.
Dou, Y.X., Yang, Y., An, S.S., Zhu, Z.L., 2020. Effects of different vegetation restoration measures on soil aggregate stability and erodibility on the Loess Plateau, China. Catena, 185, 104294.https://doi.org/10.1016/j.catena.2019.104294.
Eekhout, J.P.C., de Vente, J., 2022. Global impact of climate change on soil erosion and potential for adaptation through soil conservation. Earth-Science Reviews, 226, 103921.https://doi.org/10.1016/j.earscirev.2022.103921.
Evans, M., Lindsay, J., 2010. High resolution quantification of gully erosion in upland peatlands at the landscape scale. Earth Surface Processes and Landforms, 35, 876-886.https://doi.org/10.1002/esp.1918.
Fox, G.A., Sheshukov, A., Cruse, R., Kolar, R.L., Guertault, L., Gesch, K.R., Dutnell, R.C., 2016. Reservoir sedimentation and upstream sediment sources: perspectives and future research needs on streambank and gully erosion. Environmental Management, 57, 945-955.https://doi.org/10.1007/s00267-016-0671-9 .
Frankl, A., Poesen, J., Scholiers, N., Jacob, M., Haile, M., Deckers, J., Nyssen, J., 2013. Factors controlling the morphology and volume (V)–length (L) relations of permanent gullies in the northern Ethiopian Highlands. Earth Surface Processes and Landforms, 38, 1672-1684.https://doi.org/10.1002/esp.3405.
Fu, B.J., Liu, Y., Lü, Y.H., He, C.S., Zeng, Y., Wu, B.F., 2011. Assessing the soil erosion control service of ecosystems change in the Loess Plateau of China. Ecological Complexity, 8, 284-293.https://doi.org/10.1016/j.ecocom.2011.07.003.
Fu, B.J., Wang, S., Liu, Y., Liu, J.B., Liang, W., Miao, C.Y., 2017. Hydrogeomorphic ecosystem responses to natural and anthropogenic changes in the Loess Plateau of China. Annual Review of Earth and Planetary Sciences, 45, 223-243.https://doi.org/10.1146/annurev-earth-063016-020552.
Galdies, C., Azzopardi, D., Sacco, A., 2022. Estimates of soil erosion rates in a principal watershed in Gozo, Malta under current and future climatic conditions. Catena, 210, 105900.https://doi.org/10.1016/j.catena.2021.105900.
Gholami, A., Bonakdari, H., Mohammadian, M., Zaji, A.H., Gharabaghi, B., 2019. Assessment of geomorphological bank evolution of the alluvial threshold rivers based on entropy concept parameters. Hydrological Sciences Journal, 64, 856-872.https://doi.org/10.1080/02626667.2019.1608995.
Gómez-Gutiérrez, Á., Schnabel, S., Berenguer-Sempere, F., Lavado-Contador, F., Rubio-Delgado, J., 2014. Using 3D photo-reconstruction methods to estimate gully headcut erosion. Catena, 120, 91-101.https://doi.org/10.1016/j.catena.2014.04.004.
Guduru, J.U., Jilo, N.B., 2022. Assessment of rainfall-induced soil erosion rate and severity analysis for prioritization of conservation measures using RUSLE and Multi-Criteria Evaluations Technique at Gidabo watershed, Rift Valley Basin, Ethiopia. Ecohydrology & Hydrobiology.https://doi.org/10.1016/j.ecohyd.2022.09.002.
Guo, M.M., Wang, W.L., Shi, Q.H., Chen, T.D., Kang, H.L., Li, J.M., 2019. An experimental study on the effects of grass root density on gully headcut erosion in the gully region of China’s Loess Plateau. Land Degradation & Development, 30, 2107-2125.https://doi.org/10.1002/ldr.3404.
Gupta, A.K., Rudra, R.P., Gharabaghi, B., Daggupati, P., Goel, P.K., Shukla, R., 2019. CoBAGNPS: A toolbox for simulating water and sediment control basin, WASCoB through AGNPS model. Catena, 179, 49-65.https://doi.org/10.1016/j.catena.2019.02.003.
Han, X.L., Lv, P.Y., Zhao, S., Sun, Y., Yan, S.Y., Wang, M.H., Han, X.N., Wang, X.R., 2018. The effect of the gully land consolidation project on soil erosion and crop production on a typical watershed in the Loess Plateau. Land, 7, 113.https://doi.org/10.3390/land7040113.
Hao, H.X., Cheng, L., Guo, Z.L., Wang, L., Shi, Z.H., 2020. Plant community characteristics and functional traits as drivers of soil erodibility mitigation along a land degradation gradient. Land Degradation & Development, 31, 1851-1863.https://doi.org/10.1002/ldr.3579.
Hayas, A., Poesen, J., Vanwalleghem, T., 2017. Rainfall and vegetation effects on temporal variation of topographic thresholds for gully initiation in Mediterranean Cropland and Olive Groves. Land Degradation & Development, 28, 2540-2552.https://doi.org/10.1002/ldr.2805.
Hu, J.F., Gao, P., Mu, X.M., Zhao, G.J., Sun, W.Y., Li, P.F., Zhang, L.M., 2019. Runoff-sediment dynamics under different flood patterns in a Loess Plateau catchment, China. Catena, 173, 234-245.https://doi.org/10.1016/j.catena.2018.10.023.
Jiang, J., Lyu, C.J., Liu, S.Y., He, Y.Q., Hao, X.T., 2020. RWSNet: a semantic segmentation network based on SegNet combined with random walk for remote sensing. International Journal of Remote Sensing, 41, 487-505.https://doi.org/10.1080/01431161.2019.1643937.
Jiang, Y.Q., Wang, Z.L., Hu, G.R., Hao, X.P., 1999. Distribution features of shallow gully. Research of Soil and Water Conservation, 6, 182-185.https://doi.org/10.3969/j.issn.1005-3409.1999.02.037. (in Chinese with English abstract)
Jin, Z., 2014. The creation of farmland by gully filling on the Loess Plateau: a double-edged sword. Environment Science & Technology, 48, 883-4.https://doi.org/10.1021/es405392c.
Jin, Z., Guo, L., Wang, Y.Q., Yu, Y.L., Lin, H., Chen, Y.P., Chu, G.C., Zhang, J., Zhang, N.P., 2019. Valley reshaping and damming induce water table rise and soil salinization on the Chinese Loess Plateau. Geoderma, 339, 115-125.