References
1. U.S. Energy Information Administration. International Energy Outlook 2021. https://www.eia.gov/outlooks/ieo/pdf/IEO2021_Narrative.pdf. Published 2021. Accessed December 31, 2021.
2. Raffa P. Where is research on fossil fuels going in times of climate change? A perspective on chemical enhanced oil recovery. MRS Commun . 2021;11(6):716-725. doi:10.1557/s43579-021-00131-y
3. Energy Transition Outlook 2021 Executive Summary. A global and regional forecast to 2050. 2021:40. https://eto.dnv.com/2021.
4. Mohsenatabar Firozjaii A, Saghafi HR. Review on chemical enhanced oil recovery using polymer flooding: Fundamentals, experimental and numerical simulation. Petroleum . 2020;6(2):115-122. doi:10.1016/j.petlm.2019.09.003
5. Farajzadeh R, Kahrobaei S, Eftekhari AA, Mjeni RA, Boersma D, Bruining J. Chemical enhanced oil recovery and the dilemma of more and cleaner energy. Sci Rep . 2021;11(1):1-14. doi:10.1038/s41598-020-80369-z
6. Sheng JJ. Modern Chemical Enhanced Oil Recovery: Theory and Practice . Gulf Professional Publishing; 2010.
7. Nikolova C, Gutierrez T. Use of Microorganisms in the Recovery of Oil From Recalcitrant Oil Reservoirs: Current State of Knowledge, Technological Advances and Future Perspectives. Front Microbiol . 2020;10(January). doi:10.3389/fmicb.2019.02996
8. She H, Kong D, Li Y, Hu Z, Guo H. Recent Advance of Microbial Enhanced Oil Recovery (MEOR) in China. Geofluids . 2019;2019. doi:10.1155/2019/1871392
9. Lazar I, Petrisor IG, Yen TF. Microbial Enhanced Oil Recovery.Pet Sci Technol . 2007;25(September):1353-1366. doi:10.1016/S0376-7361(09)70098-6
10. Bermont-Bouis D, Janvier M, Grimont PAD, Dupont I, Vallaeys T. Both sulfate-reducing bacteria and Enterobacteriaceae take part in marine biocorrosion of carbon steel. J Appl Microbiol . 2007;102(1):161-168. doi:10.1111/j.1365-2672.2006.03053.x
11. Hubert C, Voordouw G. Oil field souring control by nitrate-reducing Sulfurospirillum spp. that outcompete sulfate-reducing bacteria for organic electron donors. Appl Environ Microbiol . 2007;73(8):2644-2652. doi:10.1128/AEM.02332-06
12. Foo JL, Ling H, Lee YS, Chang MW. Microbiome engineering: Current applications and its future. Biotechnol J . 2017:1600099. doi:10.1002/biot.201600099
13. Lee ED, Aurand ER, Friedman DC, Group EBRCMRW. Engineering Microbiomes—Looking Ahead. ACS Synth Biol . 2020;9(12):3181-3183.
14. Ke J, Wang B, Yoshikuni Y. Microbiome Engineering: Synthetic Biology of Plant-Associated Microbiomes in Sustainable Agriculture. Trends Biotechnol . 2021;39(3):244-261. doi:10.1016/j.tibtech.2020.07.008
15. Lawson CE, Harcombe WR, Hatzenpichler R, et al. Common principles and best practices for engineering microbiomes. Nat Rev Microbiol . 2019;17(12):725-741. doi:10.1038/s41579-019-0255-9
16. Youssef N, Simpson DR, Duncan KE, et al. In situ biosurfactant production by Bacillus strains injected into a limestone petroleum reservoir. Appl Environ Microbiol . 2007;73(4):1239-1247. doi:10.1128/AEM.02264-06
17. Yue M, Zhu W, Song Z, Long Y, Song H. Study on distribution of reservoir endogenous microbe and oil displacement mechanism. Saudi J Biol Sci . 2017;24(2):263-267. doi:10.1016/j.sjbs.2016.09.014
18. Lin X, Zheng X, Liu R, et al. Extracellular Polymeric Substances Production by ZL-02 for Microbial Enhanced Oil Recovery. Ind Eng Chem Res . 2021;60(2):842-850. doi:10.1021/acs.iecr.0c05130
19. Quraishi M, Bhatia SK, Pandit S, et al. Exploiting Microbes in the Petroleum Field : Analyzing the Credibility of Microbial Enhanced Oil Recovery (MEOR). Energies . 2021;14(4684):1-30.
20. Diaz-Colunga J, Lu N, Sanchez-Gorostiaga A, et al. Top-down and bottom-up cohesiveness in microbial community coalescence. Proc Natl Acad Sci U S A . 2022;119(6):1-11. doi:10.1073/pnas.2111261119
21. Walter J, Maldonado-Gómez MX, Martínez I. To engraft or not to engraft: an ecological framework for gut microbiome modulation with live microbes. Curr Opin Biotechnol . 2018;49:129-139. doi:https://doi.org/10.1016/j.copbio.2017.08.008
22. Lindemann SR, Bernstein HC, Song HS, et al. Engineering microbial consortia for controllable outputs. ISME J . 2016;10(9):2077-2084. doi:10.1038/ismej.2016.26
23. Amor DR, Bello MD. Bottom-up approaches to synthetic cooperation in microbial communities. Life . 2019;9(1). doi:10.3390/life9010022
24. Rottinghaus AG, Ferreiro A, Fishbein SRS, Dantas G, Moon TS. Genetically stable CRISPR-based kill switches for engineered microbes.Nat Commun . 2022;13(1):1-17. doi:10.1038/s41467-022-28163-5
25. Gilmore SP, Lankiewicz TS, Wilken SE, et al. Top-Down Enrichment Guides in Formation of Synthetic Microbial Consortia for Biomass Degradation. ACS Synth Biol . 2019;8(9):2174-2185. doi:10.1021/acssynbio.9b00271
26. Pacheco AR, Osborne ML, Segrè D. Non-additive microbial community responses to environmental complexity. Nat Commun . 2021;12(1):1-11. doi:10.1038/s41467-021-22426-3
27. Portwood JT. A Commercial Microbial Enhanced Oil Recovery Technology: Evaluation of 322 Projects. In: Vol All Days. SPE Oklahoma City Oil and Gas Symposium / Production and Operations Symposium. ; 1995.
28. Nikolova C, Gutierrez T. Marine Hydrocarbon-Degrading Bacteria: Their Role and Application in Oil-Spill Response and Enhanced Oil Recovery . INC; 2022. doi:10.1016/b978-0-323-85455-9.00005-9
29. Zahner RLL, Tapper SJJ, Marcotte BWGWG, Govreau BRR. Lessons Learned From Applications of a New Organic-Oil-Recovery Method That Activates Resident Microbes. SPE Reserv Eval Eng . 2012;15(06):688-694.
30. Sen R. Biotechnology in petroleum recovery: The microbial EOR.Prog Energy Combust Sci . 2008;34(6):714-724. doi:10.1016/j.pecs.2008.05.001
31. Safdel M, Anbaz MA, Daryasafar A, Jamialahmadi M. Microbial enhanced oil recovery, a critical review on worldwide implemented field trials in different countries. Renew Sustain Energy Rev . 2017;74(January):159-172. doi:10.1016/j.rser.2017.02.045
32. Anantharaman K, Hausmann B, Jungbluth SP, et al. Expanded diversity of microbial groups that shape the dissimilatory sulfur cycle.ISME J . 2018;12(7):1715-1728. doi:10.1038/s41396-018-0078-0
33. Rojas CA, De Santiago Torio A, Park S, Bosak T, Klepac-Ceraj V. Organic Electron Donors and Terminal Electron Acceptors Structure Anaerobic Microbial Communities and Interactions in a Permanently Stratified Sulfidic Lake. Front Microbiol . 2021;12:0-19. doi:10.3389/fmicb.2021.620424
34. Hahn CR, Farag IF, Murphy CL, Podar M, Elshahed MS, Youssef NH. Microbial Diversity and Sulfur Cycling in an Early Earth Analogue: From Ancient Novelty to Modern Commonality. MBio . 2022. doi:10.1128/mbio.00016-22
35. Begmatov S, Savvichev AS, Kadnikov V V., et al. Microbial communities involved in methane, sulfur, and nitrogen cycling in the sediments of the barents sea. Microorganisms . 2021;9(11). doi:10.3390/microorganisms9112362
36. Zhan Y, Wang Q, Chen C, et al. Potential of wheat bran to promote indigenous microbial enhanced oil recovery. J Ind Microbiol Biotechnol . 2017;44(6):845-855. doi:10.1007/s10295-017-1909-0
37. Nazina T, Sokolova D, Grouzdev D, et al. The potential application of microorganisms for sustainable petroleum recovery from heavy oil reservoirs. Sustain . 2020;12(1). doi:10.3390/SU12010015
38. Iwanowicz DD, Jonas RB, Schill WB, Marano-Briggs K. Novel microbiome dominated by Arcobacter during anoxic excurrent flow from an ocean blue hole in Andros Island, the Bahamas. PLoS One . 2021;16(8 August):1-16. doi:10.1371/journal.pone.0256305
39. Varjani SJ, Gnansounou E. Microbial dynamics in petroleum oilfields and their relationship with physiological properties of petroleum oil reservoirs. Bioresour Technol . 2017;245(August):1258-1265. doi:10.1016/j.biortech.2017.08.028
40. Kögler F, Hartmann FSF, Schulze-Makuch D, Herold A, Alkan H, Dopffel N. Inhibition of microbial souring with molybdate and its application under reservoir conditions. Int Biodeterior Biodegrad . 2021;157(June 2020). doi:10.1016/j.ibiod.2020.105158
41. de Jesus EB, de Andrade Lima LRP, Bernardez LA, Almeida PF. Inhibition of Microbial Sulfate Reduction By Molybdate. Brazilian J Pet Gas . 2015;9(3):95-106. doi:10.5419/bjpg2015-0010
42. Nemati M, Mazutinec TJ, Jenneman GE, Voordouw G. Control of biogenic h2s production with nitrite and molybdate. J Ind Microbiol Biotechnol . 2001;26(6):350-355. doi:10.1038/sj.jim.7000142
43. Stoeva MK, Coates JD. Specific inhibitors of respiratory sulfate reduction: Towards a mechanistic understanding. Microbiol (United Kingdom) . 2019;165(3):254-269. doi:10.1099/mic.0.000750
44. Saeed AM, El Shatoury E, Hadid R. Production of molybdenum blue by two novel molybdate-reducing bacteria belonging to the genus Raoultella isolated from Egypt and Iraq. J Appl Microbiol . 2019;126(6):1722-1728. doi:10.1111/jam.14254
45. Rahman MF, Rusnam M, Gusmanizar N, et al. Molybdate-reducing and SDS-degrading Enterobacter sp. Strain Neni-13. Nov Biotechnol Chim . 2016;15(2):166-181. doi:10.1515/nbec-2016-0017
46. Lohmayer R, Kappler A, Lösekann-Behrens T, Planer-Friedrich B. Sulfur species as redox partners and electron shuttles for ferrihydrite reduction by Sulfurospirillum deleyianum. Appl Environ Microbiol . 2014;80(10):3141-3149. doi:10.1128/AEM.04220-13
47. Yutin N, Galperin MY. A genomic update on clostridial phylogeny: Gram-negative spore formers and other misplaced clostridia.Environ Microbiol . 2013;15(10):2631-2641. doi:10.1111/1462-2920.12173
48. El-Sayed WS, Al-Senani SR, Elbahloul Y. Diversity of dehalorespiring bacteria and selective enrichment of aryl halides-dechlorinating consortium from sedimentary environment near an oil refinery. J Taibah Univ Sci . 2018;12(6):711-722. doi:10.1080/16583655.2018.1495869
49. Sallam A, Steinbüchel A. Clostridium sulfidigenes sp. nov., a mesophilic, proteolytic, thiosulfate- and sulfur-reducing bacterium isolated from pond sediment. Int J Syst Evol Microbiol . 2009;59(7):1661-1665. doi:10.1099/ijs.0.004986-0
50. Dennis JJ, Zylstra GJ. Complete sequence and genetic organization of pDTG1, the 83 kilobase naphthalene degradation plasmid from Pseudomonas putida strain NCIB 9816-4. J Mol Biol . 2004;341(3):753-768. doi:10.1016/j.jmb.2004.06.034
51. Okoye AU, Chikere CB, Okpokwasili GC. Characterization of Potential Paraffin Wax Removing Bacteria for Sustainable Biotechnological Application. In: Vol Day 3 Wed,. SPE Nigeria Annual International Conference and Exhibition. ; 2019. doi:10.2118/198799-MS
52. Speight JG, El-Gendy NS. Chapter 9 - Chemistry of Biotransformation. In: Introduction to Petroleum Biotechnology . Gulf Professional Publishing; 2018:287-359.
53. Alsebri H, Hamad AA, Hassam MM. Biodegradation of petroleum hydrocarbons using indigenious bacterial and actinomycetes cultures.Pakistan J Biol Sci . 2020;23(6).
54. Das K, Mukherjee AK. Crude petroleum-oil biodegradation efficiency of Bacillus subtilis and Pseudomonas aeruginosa strains isolated from a petroleum-oil contaminated soil from North-East India. Bioresour Technol . 2007;98(7):1339-1345. doi:10.1016/j.biortech.2006.05.032
55. Li YP, Pan JC, Ma YL. Elucidation of multiple alkane hydroxylase systems in biodegradation of crude oil n-alkane pollution by Pseudomonas aeruginosa DN1. J Appl Microbiol . 2020;128(1):151-160. doi:10.1111/jam.14470
56. Lan G, Fan Q, Liu Y, et al. Effects of the addition of waste cooking oil on heavy crude oil biodegradation and microbial enhanced oil recovery using Pseudomonas sp. SWP- 4. Biochem Eng J . 2015;103:219-226. doi:10.1016/j.bej.2015.08.004
57. Barman SR, Banerjee P, Mukhopadhayay A, Das P. Biodegradation of acenapthene and naphthalene by Pseudomonas mendocina: Process optimization, and toxicity evaluation. J Environ Chem Eng . 2017;5(5):4803-4812. doi:10.1016/j.jece.2017.09.012
58. Samanta SK, Singh O V, Jain RK. Polycyclic aromatic hydrocarbons: environmental pollution and bioremediation. Trends Biotechnol . 2002;20(6):243-248. doi:10.1016/s0167-7799(02)01943-1
59. Hillman ET, Li M, Hooker CA, Englaender JA, Wheeldon I, Solomon K V. Hydrolysis of lignocellulose by anaerobic fungi produces free sugars and organic acids for two-stage fine chemical production with Kluyveromyces marxianus. Biotechnol Prog . 2021;e3172. doi:https://doi.org/10.1002/btpr.3172
60. Daly RA, Borton MA, Wilkins MJ, et al. Microbial metabolisms in a 2.5-km-deep ecosystem created by hydraulic fracturing in shales.Nat Microbiol . 2016;1(September):1-9. doi:10.1038/nmicrobiol.2016.146
61. RedCorn RM, Hillman ET, Solomon K V, Engelberth AS. Xanthobacter-dominated biofilm as a novel source for high-value rhamnose. Appl Microbiol Biotechnol . 2019;103(11):4525-4538.
62. Walters W, Hyde ER, Berg-lyons D, et al. Improved Bacterial 16S rRNA Gene (V4 and V4-5) and Fungal Internal Transcribed Spacer Marker Gene Primers for Microbial Community Analysis. mSystems . 2016;1(1):e0009-15. doi:10.1128/mSystems.00009-15.Editor
63. Bolyen E, Rideout JR, Dillon MR, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol . 2019;37(8):852-857. doi:10.1038/s41587-019-0209-9
64. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: High-resolution sample inference from Illumina amplicon data.Nat Methods . 2016;13(7):581-583. doi:10.1038/nmeth.3869
65. Quast C, Pruesse E, Yilmaz P, et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools.Nucleic Acids Res . 2013;41(D1):590-596. doi:10.1093/nar/gks1219
66. Varlet V, Giuliani N, Palmiere C, Maujean G, Augsburger M. Hydrogen sulfide measurement by headspace-gas chromatography-mass spectrometry (HS-GC-MS): Application to gaseous samples and gas dissolved in muscle.J Anal Toxicol . 2015;39(1):52-57. doi:10.1093/jat/bku114
67. Vozka P, Kilaz G. How to obtain a detailed chemical composition for middle distillates via GC × GC-FID without the need of GC × GC-TOF/MS. Fuel . 2019;247(January):368-377. doi:10.1016/j.fuel.2019.03.009