References
1. Kirkfeldt RE, Johansen JB, Nohr EA, et al. Complications after cardiac implantable electronic device implantations: an analysis of a complete, nationwide cohort in Denmark. Eur Heart J, 2014. 35(18): p. 1186-94.
2. Udo EO, Zuithoff NP, van Hemel NM, et al. Incidence and predictors of short- and long-term complications in pacemaker therapy: the FOLLOWPACE study. Heart Rhythm, 2012. 9(5): p. 728-35.
3. Reynolds D, Duray GZ, Omar R, et al. A Leadless Intracardiac Transcatheter Pacing System. N Engl J Med, 2016. 374(6): p. 533-41.
4. Roberts PR, Clementy N, Al Samadi F, et al. A leadless pacemaker in the real-world setting: The Micra Transcatheter Pacing System Post-Approval Registry. Heart Rhythm, 2017. 14(9): p. 1375-1379.
5. El-Chami MF, Al-Samadi F, Clementy N, et al. Updated performance of the Micra transcatheter pacemaker in the real-world setting: A comparison to the investigational study and a transvenous historical control. Heart Rhythm, 2018. 15(12): p. 1800-1807.
6. Sharma P, Singh Guleria V, Bharadwaj P, et al. Assessing safety of leadless pacemaker (MICRA) at various implantation sites and its impact on paced QRS in Indian population. Indian Heart J, 2020. 72(5): p. 376-382.
7. Spickler JW, Rasor NS, Kezdi P, et al. Totally self-contained intracardiac pacemaker. J Electrocardiol, 1970. 3(3-4): p. 325-31.
8. Duray GZ, Ritter P, El-Chami M, et al. Long-term performance of a transcatheter pacing system: 12-Month results from the Micra Transcatheter Pacing Study. Heart Rhythm, 2017. 14(5): p. 702-709.
9. Shimeno K, Yoshiyama T, Abe Y, et al. The usefulness of right ventriculography to aid anchoring a pacing lead to the right ventricular septum. Europace, 2018. 20(7): p. 1154-1160.
10. Steinwender C, Blessberger H, Kiblböck D, et al. [Micra™ leadless pacemaker : Clinical experience and perspectives]. Herzschrittmacherther Elektrophysiol, 2018. 29(4): p. 334-339.
11. Wherry K, Stromberg K, Hinnenthal JA, et al. Using Medicare Claims to Identify Acute Clinical Events Following Implantation of Leadless Pacemakers. Pragmat Obs Res, 2020. 11: p. 19-26.
12. Hauser RG, Gornick CC, Abdelhadi RH, et al. Major adverse clinical events associated with implantation of a leadless intracardiac pacemaker. Heart Rhythm, 2021. 18(7): p. 1132-1139.
13. Ritter P, Duray GZ, Steinwender C, et al. Early performance of a miniaturized leadless cardiac pacemaker: the Micra Transcatheter Pacing Study. Eur Heart J, 2015. 36(37): p. 2510-9.
14. Garweg C, Vandenberk B, Foulon S, et al. Leadless pacing with Micra TPS: A comparison between right ventricular outflow tract, mid-septal, and apical implant sites. J Cardiovasc Electrophysiol, 2019. 30(10): p. 2002-2011.
15. Hai JJ, Fang J, Tam CC, et al. Safety and feasibility of a midseptal implantation technique of a leadless pacemaker. Heart Rhythm, 2019. 16(6): p. 896-902.
16. Zhang J, Wang Z, Zu L, et al. Simplifying Physiological Left Bundle Branch Area Pacing Using a New Nine-Partition Method. Can J Cardiol, 2021. 37(2): p. 329-338.
17. Chen K, Li Y, Dai Y, et al. Comparison of electrocardiogram characteristics and pacing parameters between left bundle branch pacing and right ventricular pacing in patients receiving pacemaker therapy. Europace, 2019. 21(4): p. 673-680.
18. Chen K and Li Y How to implant left bundle branch pacing lead in routine clinical practice. J Cardiovasc Electrophysiol, 2019. 30(11): p. 2569-2577.
19. Vijayaraman P and Panikkath R Intracardiac echocardiography-guided left bundle branch pacing in a patient with tricuspid valve replacement. J Cardiovasc Electrophysiol, 2019. 30(11): p. 2525-2527.
20. Huang W, Su L, Wu S, et al. A Novel Pacing Strategy With Low and Stable Output: Pacing the Left Bundle Branch Immediately Beyond the Conduction Block. Can J Cardiol, 2017. 33(12): p. 1736.e1-1736.e3.
21. Sanchez R, Nadkarni A, Buck B, et. Al. Incidence of pacing‐induced cardiomyopathy in pacemaker‐dependent patients is lower with leadless pacemakers compared to transvenous pacemakers. J Cardiovasc Electrophysiol. 2021. 32:477–483.