References
1. Kirkfeldt RE, Johansen JB, Nohr EA, et al. Complications after
cardiac implantable electronic device implantations: an analysis of a
complete, nationwide cohort in Denmark. Eur Heart J, 2014. 35(18): p.
1186-94.
2. Udo EO, Zuithoff NP, van Hemel NM, et al. Incidence and predictors of
short- and long-term complications in pacemaker therapy: the FOLLOWPACE
study. Heart Rhythm, 2012. 9(5): p. 728-35.
3. Reynolds D, Duray GZ, Omar R, et al. A Leadless Intracardiac
Transcatheter Pacing System. N Engl J Med, 2016. 374(6): p. 533-41.
4. Roberts PR, Clementy N, Al Samadi F, et al. A leadless pacemaker in
the real-world setting: The Micra Transcatheter Pacing System
Post-Approval Registry. Heart Rhythm, 2017. 14(9): p. 1375-1379.
5. El-Chami MF, Al-Samadi F, Clementy N, et al. Updated performance of
the Micra transcatheter pacemaker in the real-world setting: A
comparison to the investigational study and a transvenous historical
control. Heart Rhythm, 2018. 15(12): p. 1800-1807.
6. Sharma P, Singh Guleria V, Bharadwaj P, et al. Assessing safety of
leadless pacemaker (MICRA) at various implantation sites and its impact
on paced QRS in Indian population. Indian Heart J, 2020. 72(5): p.
376-382.
7. Spickler JW, Rasor NS, Kezdi P, et al. Totally self-contained
intracardiac pacemaker. J Electrocardiol, 1970. 3(3-4): p. 325-31.
8. Duray GZ, Ritter P, El-Chami M, et al. Long-term performance of a
transcatheter pacing system: 12-Month results from the Micra
Transcatheter Pacing Study. Heart Rhythm, 2017. 14(5): p. 702-709.
9. Shimeno K, Yoshiyama T, Abe Y, et al. The usefulness of right
ventriculography to aid anchoring a pacing lead to the right ventricular
septum. Europace, 2018. 20(7): p. 1154-1160.
10. Steinwender C, Blessberger H, Kiblböck D, et al. [Micra™ leadless
pacemaker : Clinical experience and perspectives].
Herzschrittmacherther Elektrophysiol, 2018. 29(4): p. 334-339.
11. Wherry K, Stromberg K, Hinnenthal JA, et al. Using Medicare Claims
to Identify Acute Clinical Events Following Implantation of Leadless
Pacemakers. Pragmat Obs Res, 2020. 11: p. 19-26.
12. Hauser RG, Gornick CC, Abdelhadi RH, et al. Major adverse clinical
events associated with implantation of a leadless intracardiac
pacemaker. Heart Rhythm, 2021. 18(7): p. 1132-1139.
13. Ritter P, Duray GZ, Steinwender C, et al. Early performance of a
miniaturized leadless cardiac pacemaker: the Micra Transcatheter Pacing
Study. Eur Heart J, 2015. 36(37): p. 2510-9.
14. Garweg C, Vandenberk B, Foulon S, et al. Leadless pacing with Micra
TPS: A comparison between right ventricular outflow tract, mid-septal,
and apical implant sites. J Cardiovasc Electrophysiol, 2019. 30(10): p.
2002-2011.
15. Hai JJ, Fang J, Tam CC, et al. Safety and feasibility of a midseptal
implantation technique of a leadless pacemaker. Heart Rhythm, 2019.
16(6): p. 896-902.
16. Zhang J, Wang Z, Zu L, et al. Simplifying Physiological Left Bundle
Branch Area Pacing Using a New Nine-Partition Method. Can J Cardiol,
2021. 37(2): p. 329-338.
17. Chen K, Li Y, Dai Y, et al. Comparison of electrocardiogram
characteristics and pacing parameters between left bundle branch pacing
and right ventricular pacing in patients receiving pacemaker therapy.
Europace, 2019. 21(4): p. 673-680.
18. Chen K and Li Y How to implant left bundle branch pacing lead in
routine clinical practice. J Cardiovasc Electrophysiol, 2019. 30(11): p.
2569-2577.
19. Vijayaraman P and Panikkath R Intracardiac echocardiography-guided
left bundle branch pacing in a patient with tricuspid valve replacement.
J Cardiovasc Electrophysiol, 2019. 30(11): p. 2525-2527.
20. Huang W, Su L, Wu S, et al. A Novel Pacing Strategy With Low and
Stable Output: Pacing the Left Bundle Branch Immediately Beyond the
Conduction Block. Can J Cardiol, 2017. 33(12): p. 1736.e1-1736.e3.
21. Sanchez R, Nadkarni A, Buck B, et. Al. Incidence of pacing‐induced
cardiomyopathy in pacemaker‐dependent patients is lower with leadless
pacemakers compared to transvenous pacemakers. J Cardiovasc
Electrophysiol. 2021. 32:477–483.