References:
  1. Ngugi AK, Bottomley C, Kleinschmidt I, et al. Estimation of the burden of active and life-time epilepsy: a meta-analytic approach. Epilepsia 2010, 51, 5, 883–90.
  2. Savic I. Sex differences in human epilepsy. Exp Neurol 2014, 259, 38–43.
  3. Zack MM, Kobau R. National and state estimates of the numbers of adults and children with active epilepsy—United States, 2015. MMWR Morb Mortal Wkly Rep 2017, 66, 31, 821–25.
  4. Harden CL, Hopp J, Ting TY, et al. Practice parameter update: management issues for women with epilepsy—focus on pregnancy (an evidence-based review): obstetrical complications and change in seizure frequency: report of the Quality Standards Subcommittee and Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology and American Epilepsy Society. Neurology 2009, 73, 2, 126–32.
  5. Lhatoo SD, Bernasconi N, Blumcke I, et al. Big data in epilepsy: Clinical and research considerations. Report from the Epilepsy Big Data Task Force of the International League Against Epilepsy. Epilepsia, 2020, 61, 1869-83.
  6. Geng JF, Liu X, Zhao HB et al. LncRNA UCA1 inhibits epilepsy and seizure-induced brain injury by regulating miR-495/Nrf2- ARE signal pathway. Int J Biochem Cell Biol, 2018, 99, 133-39.
  7. Crudgington H, Rogers M, Morris H et al. Epilepsy-specific patient-reported outcome measures of children’s health-related quality of life: A systematic review of measurement properties. Epilepsia, 2020, 61, 230-48.
  8. Rogawski MA. Molecular targets versus models for new antiepileptic drug discovery. Epilepsy Res 2006, 68, 22-8.
  9. Bialer M, White HS. Key factors in the discovery and development of new antiepileptic drugs. Nat Rev Drug Discov. 2010, 9, 68–82.
  10. Barker-Haliski M, Steve White H. Validated animal models for antiseizure drug (ASD) discovery: Advantages and potential pitfalls in ASD screening. Neuropharmacology. 2020, 167, 107750.
  11. Löscher W. Critical review of current animal models of seizures and epilepsy used in the discovery and development of new antiepileptic drugs. Seizure. 2011 Jun, 20, 5, 359-68.
  12. Paynter AN, Dunbar MD, Creevy KE, et al. Veterinary big data: when data goes to the dogs. Animals. 2021 11, 1872.
  13. Bailey J, Thew M, Balls M. An analysis of the use of dogs in predicting human toxicology and drug safety. Altern Lab Anim. 2013.
  14. Patterson EE. Canine epilepsy: an underutilized model. ILAR J. 2014, 55, 182–6.
  15. Holliday TA, Cunningham JG, Gutnick MJ. Comparative clinical and electroencephalographic studies of canine epilepsy. Epilepsia. 1970, 11, 281– 92.
  16. Cunningham JG. Canine seizure disorders. J Am Vet Med Assoc. 1971, 158, 589–97
  17. Löscher W, Klitgaard H, Twyman RE, et al. new avenues for antiepileptic drug discovery and development. Nat Rev Drug Discov, 2012 12, 757–76.
  18. Smith M, Wilcox KS, White HS. Discovery of antiepileptic drugs. Neurotherapeutics. 2007, 1, 12-7.
  19. Heinemann U, Staley KJ. What is the clinical relevance of in vitro epileptiform activity? Adv Exp Med Biol. 2014, 813, 25–41
  20. Khalilov I, Esclapez M, Medina I, et al. A Novel In Vitro Preparation: the Intact Hippocampal Formation. Neuron. 1997, 19, 743–49
  21. Müller CJ, Gröticke I, Hoffmann K, et al. Differences in sensitivity to the convulsant pilocarpine in substrains and sublines of C57BL/6 mice. Genes Brain Behav. 2009, 8, 481–92.
  22. McKhann G, Wenzel H, Robbins C, et al. Mouse strain differences in kainic acid sensitivity, seizure behavior, mortality, and hippocampal pathology. Neuroscience. 2003, 122, 551–61.
  23. Khazipov R, Khalilov I, Tyzio R, et al. Developmental changes in GABAergic actions and seizure susceptibility in the rat hippocampus. Eur J Neurosci. 2004, 19, 590–600.
  24. Rivera C, Voipio J, Kaila K. Two developmental switches in GABAergic signalling: the K+-Cl- cotransporter KCC2 and carbonic anhydrase CAVII. J Physiol. 2005, 562, 27–36.
  25. Galanopoulou AS, Moshé SL. In search of epilepsy biomarkers in the immature brain: goals, challenges and strategies. Biomark Med. 2011, 5, 615–28.
  26. Ben-Ari Y. Excitatory actions of GABA during development: the nature of the nurture. Nat Rev Neurosci. 2002, 3, 728–39.
  27. Rubio C, Rubio-Osornio M, Retana-Márquez S, et al. In vivo experimental models of epilepsy. Cent Nerv Syst Agents Med Chem. 2010 Dec 1, 10, 298-309.
  28. Fisher, R.S. Animal models of the epilepsies. Brain Res. Rev., 1989, 14, 245-78.
  29. Sharma NK, Kaur S, Goel RK. Exploring the ameliorative role of α7 neuronal nicotinic acetylcholine receptor modulation in epilepsy and associated comorbidities in post-PTZ-kindled mice. Epilepsy Behav. 2020, 14, 16-27.
  30. Krantz J. C. Jr. Truitt E. B. Jr. et al. Anesthesia. LV. The pharmacologic response to hexafluorodiethyl ether. J Pharmacol Exp Ther 1957, 121: 362-68.
  31. Witkin JM, Cerne R, Newman AH, et al. N-Substituted-3-alkoxy-derivatives of dextromethorphan are functional NMDA receptor antagonists in vivo: Evidence from an NMDA-induced seizure model in rats. Pharmacol Biochem Behav. 2021 Apr, 203, 1731-54
  32. Sharma V, Babu PP, Singh A et al. Iron-induced experimental cortical seizures: electroencephalographic mapping of seizure spread in the subcortical brain areas. Seizure. 2007, 16, 680-90.
  33. Kamei C, Masuda Y, Oka M et al. Effects of antiepileptics on both behavioral and electrographic seizure patterns induced by maximal electroshock in rats. Epilepsia. 1978,19, 625–36.
  34. Pansani AP, Colugnati DB, Scorza CA et al. Furthering our understanding of SUDEP: the role of animal models. Expert Rev Neurother. 2016, 16, 561–72.
  35. Damasceno DD, Savergnini SQ, Gomes ER, et al. CNS dysfunction in rats prone to optogenetics. Seizure. 2013, 22, 259–66.
  36. Schneider J, Thomalske G, Trautmann P et al. The EEG behavior of humans and animals subjected to the progressive action of sodium 4-hydroxybutyrate. Agressologie 1963; 4: 55–70.
  37. Monti JM, Altier H, D’Angelo L. The effects of the combined administration of gamma-hydroxybutyrate and diazepam on sleep parameters in the rat. J Neural Transm 1979, 45, 177–83.
  38. Depaulis A, David O, Charpier S, The genetic absence epilepsy rat from Strasbourg as a model to decipher the neuronal and network mechanisms of generalized idiopathic epilepsies. J Neurosci Methods, 2016, 260,159–74.
  39. Sarkisova K, van Luijtelaar G. The WAG/Rij strain: a genetic animal model of absence epilepsy with comorbidity of depression [corrected]. Prog Neuropsychopharmacol Biol Psychiatry. 2011, 35, 854-76.
  40. Kim TY, Maki T, Zhou Y et al. Absence-like seizures and their pharmacological profile in tottering-6j mice. Biochem Biophys Res Commun. 2015, 1, 148-53.
  41. Hartman AL, Lyle M, Rogawski MA et al. Efficacy of the ketogenic diet in the 6-Hz seizure test. Epilepsia . 2008, 49, 334–39.
  42. Giordano C, Marchiò M, Timofeeva E, Biagini G. Neuroactive peptides as putative mediators of antiepileptic ketogenic diets. Front Neurol . 2014, 10, 15-24
  43. Giordano C, Vinet J, Curia G, Biagini G. Repeated 6-Hz Corneal Stimulation Progressively Increases FosB/ΔFosB Levels in the Lateral Amygdala and Induces Seizure Generalization to the Hippocampus. PLoS One. 2015,10, 16-25.
  44. Phelan KD, Shwe UT, Williams DK et al. Pilocarpine-induced status epilepticus in mice: A comparison of spectral analysis of electroencephalogram and behavioral grading using the Racine scale. Epilepsy Res. 2015, 117, 90-6.
  45. Kryukov K. A., Kim K. K., Magazanik L. G. et al. Status epilepticus alters hippocampal long-term synaptic potentiation in a rat pilocarpine model. Neuroreport  27, 1191–95.
  46. Gurbanova AA, Aker RG, Sirvanci S et al. Intra-amygdaloid injection of kainic acid in rats with genetic absence epilepsy: the relationship of typical absence epilepsy and temporal lobe epilepsy. J Neurosci Off J Soc Neurosci.  2008; 28: 7828–836.
  47. Swartz B. E., Houser C. R., Tomiyasu U et al. and Delgado-Escueta A. Hippocampal cell loss in posttraumatic human epilepsy. Epilepsia 2006, 47: 1373-82.
  48. Wang Y, Zhou D, Wang B et al. A kindling model of pharmacoresistant temporal lobe epilepsy in Sprague-Dawley rats induced by Coriaria lactone and its possible mechanism. Epilepsia. 2003 Apr; 44: 475-88.
  49. Sherdil A, Chabardès S, Guillemain I et al. An on-demand macaque model of mesial temporal lobe seizures induced by unilateral intra hippocampal injection of penicillin. Epilepsy Res. 2018 May; 142: 20-28.
  50. Jiruska P, Finnerty GT, Powell AD et al. High-frequency network activity in a model of non-lesional temporal lobe epilepsy. Brain.  2010; 133: 1380–90.
  51. Glushakov AV, Glushakova et al. Animal Models of Posttraumatic Seizures and Epilepsy. Methods Mol Biol, 1462: 481- 519.
  52. Batot G, Metcalf CS, Bell LA et al. A Model for Epilepsy of Infectious Etiology using Theiler’s Murine Encephalomyelitis Virus. J Vis Exp. 2022 Jun 23;(184).