References:
- Ngugi AK, Bottomley C, Kleinschmidt I, et al. Estimation of the burden
of active and life-time epilepsy: a meta-analytic
approach. Epilepsia 2010, 51, 5, 883–90.
- Savic I. Sex differences in human epilepsy. Exp Neurol 2014, 259,
38–43.
- Zack MM, Kobau R. National and state estimates of the numbers of
adults and children with active epilepsy—United States, 2015. MMWR
Morb Mortal Wkly Rep 2017, 66, 31, 821–25.
- Harden CL, Hopp J, Ting TY, et al. Practice parameter update:
management issues for women with epilepsy—focus on pregnancy (an
evidence-based review): obstetrical complications and change in
seizure frequency: report of the Quality Standards Subcommittee and
Therapeutics and Technology Assessment Subcommittee of the American
Academy of Neurology and American Epilepsy Society. Neurology 2009,
73, 2, 126–32.
- Lhatoo SD, Bernasconi N, Blumcke I, et al. Big data in epilepsy:
Clinical and research considerations. Report from the Epilepsy Big
Data Task Force of the International League Against Epilepsy.
Epilepsia, 2020, 61, 1869-83.
- Geng JF, Liu X, Zhao HB et al. LncRNA UCA1 inhibits epilepsy and
seizure-induced brain injury by regulating miR-495/Nrf2- ARE signal
pathway. Int J Biochem Cell Biol, 2018, 99, 133-39.
- Crudgington H, Rogers M, Morris H et al. Epilepsy-specific
patient-reported outcome measures of children’s health-related quality
of life: A systematic review of measurement properties. Epilepsia,
2020, 61, 230-48.
- Rogawski MA. Molecular targets versus models for new antiepileptic
drug discovery. Epilepsy Res 2006, 68, 22-8.
- Bialer M, White HS. Key factors in the discovery and development of
new antiepileptic drugs. Nat Rev Drug Discov. 2010, 9, 68–82.
- Barker-Haliski M, Steve White H. Validated animal models for
antiseizure drug (ASD) discovery: Advantages and potential pitfalls in
ASD screening. Neuropharmacology. 2020, 167, 107750.
- Löscher W. Critical review of current animal models of seizures and
epilepsy used in the discovery and development of new antiepileptic
drugs. Seizure. 2011 Jun, 20, 5, 359-68.
- Paynter AN, Dunbar MD, Creevy KE, et al. Veterinary big data: when
data goes to the dogs. Animals. 2021 11, 1872.
- Bailey J, Thew M, Balls M. An analysis of the use of dogs in
predicting human toxicology and drug safety. Altern Lab Anim. 2013.
- Patterson EE. Canine epilepsy: an underutilized model. ILAR J. 2014,
55, 182–6.
- Holliday TA, Cunningham JG, Gutnick MJ. Comparative clinical and
electroencephalographic studies of canine epilepsy. Epilepsia. 1970,
11, 281– 92.
- Cunningham JG. Canine seizure disorders. J Am Vet Med Assoc. 1971,
158, 589–97
- Löscher W, Klitgaard H, Twyman RE, et al. new avenues for
antiepileptic drug discovery and development. Nat Rev Drug Discov,
2012 12, 757–76.
- Smith M, Wilcox KS, White HS. Discovery of antiepileptic drugs.
Neurotherapeutics. 2007, 1, 12-7.
- Heinemann U, Staley KJ. What is the clinical relevance of in vitro
epileptiform activity? Adv Exp Med Biol. 2014, 813, 25–41
- Khalilov I, Esclapez M, Medina I, et al. A Novel In Vitro
Preparation: the Intact Hippocampal Formation. Neuron. 1997, 19,
743–49
- Müller CJ, Gröticke I, Hoffmann K, et al. Differences in sensitivity
to the convulsant pilocarpine in substrains and sublines of C57BL/6
mice. Genes Brain Behav. 2009, 8, 481–92.
- McKhann G, Wenzel H, Robbins C, et al. Mouse strain differences in
kainic acid sensitivity, seizure behavior, mortality, and hippocampal
pathology. Neuroscience. 2003, 122, 551–61.
- Khazipov R, Khalilov I, Tyzio R, et al. Developmental changes in
GABAergic actions and seizure susceptibility in the rat
hippocampus. Eur J Neurosci. 2004, 19, 590–600.
- Rivera C, Voipio J, Kaila K. Two developmental switches in GABAergic
signalling: the K+-Cl- cotransporter KCC2 and carbonic anhydrase
CAVII. J Physiol. 2005, 562, 27–36.
- Galanopoulou AS, Moshé SL. In search of epilepsy biomarkers in the
immature brain: goals, challenges and strategies. Biomark Med. 2011,
5, 615–28.
- Ben-Ari Y. Excitatory actions of GABA during development: the nature
of the nurture. Nat Rev Neurosci. 2002, 3, 728–39.
- Rubio C, Rubio-Osornio M, Retana-Márquez S, et al. In vivo
experimental models of epilepsy. Cent Nerv Syst Agents Med Chem. 2010
Dec 1, 10, 298-309.
- Fisher, R.S. Animal models of the epilepsies. Brain Res. Rev., 1989,
14, 245-78.
- Sharma NK, Kaur S, Goel RK. Exploring the ameliorative role of α7
neuronal nicotinic acetylcholine receptor modulation in epilepsy and
associated comorbidities in post-PTZ-kindled mice. Epilepsy Behav.
2020, 14, 16-27.
- Krantz J. C. Jr. Truitt E. B. Jr. et al. Anesthesia. LV. The
pharmacologic response to hexafluorodiethyl ether. J Pharmacol Exp
Ther 1957, 121: 362-68.
- Witkin JM, Cerne R, Newman AH, et al.
N-Substituted-3-alkoxy-derivatives of dextromethorphan are functional
NMDA receptor antagonists in vivo: Evidence from an NMDA-induced
seizure model in rats. Pharmacol Biochem Behav. 2021 Apr, 203, 1731-54
- Sharma V, Babu PP, Singh A et al. Iron-induced experimental cortical
seizures: electroencephalographic mapping of seizure spread in the
subcortical brain areas. Seizure. 2007, 16, 680-90.
- Kamei C, Masuda Y, Oka M et al. Effects of antiepileptics on both
behavioral and electrographic seizure patterns induced by maximal
electroshock in rats. Epilepsia. 1978,19, 625–36.
- Pansani AP, Colugnati DB, Scorza CA et al. Furthering our
understanding of SUDEP: the role of animal models. Expert Rev
Neurother. 2016, 16, 561–72.
- Damasceno DD, Savergnini SQ, Gomes ER, et al. CNS dysfunction in rats
prone to optogenetics. Seizure. 2013, 22, 259–66.
- Schneider J, Thomalske G, Trautmann P et al. The EEG behavior of
humans and animals subjected to the progressive action of sodium
4-hydroxybutyrate. Agressologie 1963; 4: 55–70.
- Monti JM, Altier H, D’Angelo L. The effects of the combined
administration of gamma-hydroxybutyrate and diazepam on sleep
parameters in the rat. J Neural Transm 1979, 45, 177–83.
- Depaulis A, David O, Charpier S, The genetic absence epilepsy rat from
Strasbourg as a model to decipher the neuronal and network mechanisms
of generalized idiopathic epilepsies. J Neurosci Methods, 2016,
260,159–74.
- Sarkisova K, van Luijtelaar G. The WAG/Rij strain: a genetic animal
model of absence epilepsy with comorbidity of depression
[corrected]. Prog Neuropsychopharmacol Biol Psychiatry. 2011, 35,
854-76.
- Kim TY, Maki T, Zhou Y et al. Absence-like seizures and their
pharmacological profile in tottering-6j mice. Biochem Biophys Res
Commun. 2015, 1, 148-53.
- Hartman AL, Lyle M, Rogawski MA et al. Efficacy of the ketogenic diet
in the 6-Hz seizure test. Epilepsia . 2008, 49, 334–39.
- Giordano C, Marchiò M, Timofeeva E, Biagini G. Neuroactive peptides as
putative mediators of antiepileptic ketogenic diets. Front
Neurol . 2014, 10, 15-24
- Giordano C, Vinet J, Curia G, Biagini G. Repeated 6-Hz Corneal
Stimulation Progressively Increases FosB/ΔFosB Levels in the Lateral
Amygdala and Induces Seizure Generalization to the Hippocampus. PLoS
One. 2015,10, 16-25.
- Phelan KD, Shwe UT, Williams DK et al. Pilocarpine-induced status
epilepticus in mice: A comparison of spectral analysis of
electroencephalogram and behavioral grading using the Racine scale.
Epilepsy Res. 2015, 117, 90-6.
- Kryukov K. A., Kim K. K., Magazanik L. G. et al. Status epilepticus
alters hippocampal long-term synaptic potentiation in a rat
pilocarpine model. Neuroreport 27, 1191–95.
- Gurbanova AA, Aker RG, Sirvanci S et al. Intra-amygdaloid injection of
kainic acid in rats with genetic absence epilepsy: the relationship of
typical absence epilepsy and temporal lobe epilepsy. J Neurosci
Off J Soc Neurosci. 2008; 28: 7828–836.
- Swartz B. E., Houser C. R., Tomiyasu U et al. and Delgado-Escueta
A. Hippocampal cell loss in posttraumatic human
epilepsy. Epilepsia 2006, 47: 1373-82.
- Wang Y, Zhou D, Wang B et al. A kindling model of pharmacoresistant
temporal lobe epilepsy in Sprague-Dawley rats induced by Coriaria
lactone and its possible mechanism. Epilepsia. 2003 Apr; 44: 475-88.
- Sherdil A, Chabardès S, Guillemain I et al. An on-demand macaque model
of mesial temporal lobe seizures induced by unilateral intra
hippocampal injection of penicillin. Epilepsy Res. 2018 May; 142:
20-28.
- Jiruska P, Finnerty GT, Powell AD et al. High-frequency network
activity in a model of non-lesional temporal lobe
epilepsy. Brain. 2010; 133: 1380–90.
- Glushakov AV, Glushakova et al. Animal Models of Posttraumatic
Seizures and Epilepsy. Methods Mol Biol, 1462: 481- 519.
- Batot G, Metcalf CS, Bell LA et al. A Model for Epilepsy of Infectious
Etiology using Theiler’s Murine Encephalomyelitis Virus. J Vis Exp.
2022 Jun 23;(184).