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Abstract

In this paper, we investigate the existence and attractivity of mild solutions to

fractional evolution equations with Caputo fractional derivative on an infinite inter-

val. Our methods are based on fractional calculus, semigroup theory, compactness

methods and the measure of noncompactness. Several sufficient conditions for the

existence of solutions to the given problem are proposed. Examples illustrating the

main results are presented.
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1 Introduction

Fractional differential equations have gained much attention in the recent years. Many

applications in science and engineering have indicated that fractional differential equations

can better describe some mathematical models than their integer order counterparts. For

significant developments on fractional derivatives, see the monographs by Kiryakova [14],

Podlubny [18], Kilbas et al. [12], Diethelm [8], Bajlekova [1], Zhou [23] and the refer-

ences therein. One of the branches of fractional differential equations is the fractional

evolution equations, where the standard abstract theory in Banach space can handle frac-

tional partial differential equations, such as the fractional diffusion equations, fractional

Rayleigh-Stokes equations and fractional Navier-Stokes equations and so on, for instance,

see [4, 11, 21, 26, 27] and the references cited therein.

In recent years, the study of fractional evolution equations has mainly focused on

the existence of solutions on a finite interval [0, a], where a ∈ (0,∞) (for instance, see
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[3, 15]). It is well-known that the solutions for a semilinear fractional diffusion equation

will blow-up or just lie on a local time region, for example, see [13, 22], and the problem

will be globally well-posed for small initial data, see for example [6, 11] or the behavior of

solutions is uniformly convergent to zero at infinity [16]. Moreover, the long time behavior

of solutions may depend on the global time region (infinite interval [0,∞)) in order to

ensure that the solution globally exists. One way to overcome this situation is to weight

time in a specific space [24, 25]. For this technique, a useful mathematical tool is the

generalized form of Ascoli-Arzelà theorem or the Kuratowski measure of noncompactness

in the time weighted function space. Based on these methods, several existence results

of solutions on an infinite intervals are established in this paper. We also discuss the

asymptotic behavior of solutions which are attractive.

The purpose of this paper is to study a fractional evolution equation with Caputo

derivative: 
CDα

0+x(t) = Ax(t) + f(t, x(t)), t ∈ [0,∞),

x(0) = x0,
(1.1)

where CDα
0+ is Caputo fractional derivative operator of order 0 < α < 1, A is the in-

finitesimal generator of a C0-semigroup of exponential stable linear operators {Q(t)}t≥0

in Banach space X, f : [0,∞)×X → X is a given continuous function satisfying certain

assumptions and x0 is an element of the Banach space X.

The remaining part of the paper is organized as follows. In Section 2, we recall some

preliminary concepts of fractional calculus. In Section 3, we establish some lemmas that

match with the generalized form of Ascoli-Arzelà theorem. In Section 4, we establish

sufficient conditions for the global existence of mild solutions for (1.1) in the cases when

semigroups are compact or noncompact. In Section 5, we obtain some results concerning

the asymptotic properties of the mild solutions.

2 Preliminaries

In this section, we recall some concepts on fractional integrals and derivatives, and

state some known lemmas. We denote by X a Banach space with norm | · |, while the

notation L(X) stands for the space of all bounded linear operators from X into itself with

norm ∥ · ∥.

Definition 2.1. The Riemann-Liouville fractional integral of order α > 0 for a function

f : [0,+∞) → X is defined as

Iα0+f(t) =
1

Γ(α)

∫ t

0
(t− s)α−1f(s)ds, t > 0,
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provided the right side is point-wise defined on [0,+∞).

Definition 2.2. The Riemann-Liouville fractional derivative of order α ∈ (0, 1) for a

function f : [0,+∞) → X is defined as

RLDα
t f(t) =

d

dt
(Iα0+f)(t), t > 0.

Definition 2.3. The Caputo fractional derivative of order α ∈ (0, 1) for a function f :

[0,+∞) → X is defined as

CDα
t f(t) =

RLDα
t (f(t)− f ′(0)), t > 0.

Definition 2.4. [23] Define a Wright function Mα(θ) by

Mα(θ) =
∞∑
n=1

(−θ)n−1

(n− 1)!Γ(1− αn)
, 0 < α < 1, θ ∈ C,

with the following property

Mα(θ) ≥ 0, for θ > 0;

∫ ∞

0
θδMα(θ)dθ =

Γ(1 + δ)

Γ(1 + αδ)
, for δ > −1.

Definition 2.5. [18] The Mittag-Leffler function Eα,β(·) is defined by

Eα,β(z) =

∞∑
k=0

zk

Γ(αk + β)
, α > 0, β ∈ R, z ∈ C.

If 0 < α < 1, β > 0, then the asymptotic expansion of Eα,β(z) as z → ∞ is given by

Eα,β(z) =


1

α
z(1−β)/α exp(z1/α) + εα,β(z), | arg z| ≤ 1

2
απ,

εα,β(z), | arg(−z)| <
(
1− 1

2
α

)
π,

(2.1)

where

εα,β(z) = −
N−1∑
n=1

z−n

Γ(β − αn)
+O

(
|z|−N

)
, as z → ∞.

For short, we set Eα(·) := Eα,1(·) and eα(·) := Eα,α(·), from the definition of Eα,β and

[20, Lemma 2], for t ≥ 0 and some ω > 0, we have

0 < Eα(−ωtα) ≤ 1, 0 < eα(−ωtα) ≤ 1

Γ(α)
, and Eα(0) = 1, eα(0) =

1

Γ(α)
. (2.2)

Remark 2.1. In particular, from (2.1), for α ∈ (0, 1) and t ∈ R, we have

lim
t→−∞

Eα(t) = lim
t→−∞

eα(t) = 0.
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Throughout this paper, we suppose that A is the infinitesimal generator of a C0-

semigroup {Q(t)}t≥0 of exponential stable linear operators on Banach space X. This

means that there exist M ≥ 1 and some ω > 0 such that

∥Q(t)∥ ≤ Me−ωt, for t ≥ 0.

Lemma 2.1. [23] If the following equation holds:

x(t) = x0 +
1

Γ(α)

∫ t

0
(t− s)α−1(Ax(s) + f(s, x(s)))ds, for t ≥ 0,

then

x(t) = Sα(t)x0 +

∫ t

0
(t− s)α−1Pα(t− s)f(s, x(s))ds, for t ≥ 0,

where

Sα(t) =

∫ ∞

0
Mα(θ)Q(tαθ)dθ, Pα(t) =

∫ ∞

0
αθMα(θ)Q(tαθ)dθ.

By virtue of Lemma 2.1, we give the following definition of the mild solution of (1.1).

Definition 2.6. By a mild solution of the Cauchy problem (1.1), we mean that the function

x ∈ C([0,∞), X) satisfies

x(t) = Sα(t)x0 +

∫ t

0
(t− s)α−1Pα(t− s)f(s, x(s))ds, t ≥ 0.

Similar to the proofs of [23], we have the following lemmas.

Lemma 2.2. For any fixed ω, t > 0, Sα(t) and Pα(t) are linear and bounded operators,

that is, for any x ∈ X, we have

|Sα(t)x| ≤ MEα(−ωtα)|x|, |Pα(t)x| ≤ Meα(−ωtα)|x|.

Lemma 2.3. {Sα(t)}t>0 and {Pα(t)}t>0 are strongly continuous, that is, ∀ x ∈ X and

t′′ > t′ > 0, we have

|Sα(t
′′)x− Sα(t

′)x| → 0, |Pα(t
′′)x− Pα(t

′)x| → 0, as t′′ → t′.

Lemma 2.4. Assume that {Q(t)}t>0 is compact operator. Then {Sα(t)}t>0 and {Pα(t)}t>0

are also compact operators.

Let D be a nonempty subset of X. The Kuratowski measure of noncompactness β is

β(D) = inf

d > 0 : D ⊂
n∪

j=1

Mj and diam(Mj) ≤ d

 ,
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where the diameter of Mj is given by diam(Mj) = sup{|x− y| : x, y ∈ Mj}, j = 1, . . . , n.

Let J = [0,∞) and C(J,X) be the space consisting of all continuous functions from J

into X. Moerover, we set

Ce(J,X) = {x ∈ C(J,X) : lim
t→∞

e−t|x(t)| = 0},

with the norm ∥x∥e = supt∈J e
−t|x(t)| < ∞. It is obvious that (Ce(J,X), ∥·∥e) is a Banach

space.

Lemma 2.5. [25] Let H ⊂ Ce(J,X) be bounded and equicontinuous on [0, b] with b > 0.

If, for any x ∈ H, there exists e−t|x(t)| → 0 uniformly as t → ∞, then

βe(H) = sup
t∈J

β
(
e−tH(t)

)
,

where βe is the Kuratowski measure of noncompactness in Ce(J,X).

For the more details of the definitions, properties and applications of the measure of

noncompactness, we refer to the monographs [2] and [23].

Lemma 2.6. [7]. Let X be a Banach space, D ⊂ X be a bounded closed and convex set,

and γ be a measure of noncompactness. If the operator Q : D → D is condensing (that is,

γ(Q(D)) < γ(D)), then Q has a fixed point in D.

Lemma 2.7. [5, pp.125] Let X be a Banach space and W ⊂ X be bounded, then, for each

ε > 0, there is a sequence {un}∞n=1 ⊂ W , such that

β(W ) ≤ 2β({un}∞n=1) + ε.

Lemma 2.8. [16] Let X be a Banach space and un(t) : [0,∞) → X, (n = 1, 2, . . .) be the

continuous function family. If there exists ρ ∈ L1[0,∞) such that

|un(t)| ≤ ρ(t), t ∈ [0,∞), n = 1, 2, . . . ,

then β({un(t)}∞n=1) is integrable on [0,∞), and

β
({∫ ∞

0
un(t)dt : n = 1, 2, . . .

})
≤ 2

∫ ∞

0
β({un(t) : n = 1, 2, . . .})dt.

In the sequel, we need the following generalized form of Ascoli-Arzelà theorem.

Lemma 2.9. [25] The set H ⊂ Ce(J,X) is relatively compact if and only if the following

conditions hold:

(i) the set U = {y : y(t) = e−tx(t), x ∈ H} is equicontinuous on [0, b] for any b > 0;

(ii) for any t ∈ J , U(t) = e−tH(t) is relatively compact in X;

(iii) limt→∞ e−t|x(t)| = 0 uniformly for x ∈ H.
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3 Some Lemmas

Let us first introduce some assumptions needed for the forthcoming results.

(H0) The operator {Q(t)}t>0 is equicontinuous, that is, the operator Q(t) is continuous

in the uniform operator topology for t > 0.

(H1) The function f(t, x) satisfies the Carahéodory type condition, that is, f(t, ·) is

Lebesgue measurable with respect to all t on (0,∞), f(·, x) is continuous with respect

to each x on X.

(H2) There exists a nonnegative Lebesgue measurable function m : (0,∞) → R+ such

that

|f(t, x)| ≤ m(t)|x|σ, for all x ∈ X, and a.e. t > 0,

where σ ≥ 0 and m(·) satisfies the following condition:

sup
t≥0

η(t) := sup
t≥0

M

Γ(α)
e−t

∫ t

0
(t− s)α−1m(s)eσsds < 1,

with lim
t→0

η(t) = lim
t→∞

η(t) = 0.

Let r0 be such that

r0 ≥ M |x0|+ sup
t≥0

η(t)rσ0 .

and Ωr0 be a subset of Ce(J,X) defined by

Ωr0 = {x : x ∈ Ce(J,X), ∥x∥e ≤ r0}.

It is clear that Ωr0 is nonempty bounded, closed and convex.

For any x ∈ Ωr0 , consider the operator F defined by

(Fx)(t) = Sα(t)x0 +

∫ t

0
(t− s)α−1Pα(t− s)f(s, x(s))ds, for t ∈ J. (3.1)

It is clear that x is a mild solution of (1.1) in Ωr0 if and only if there exists a fixed point

x∗ ∈ Ωr0 , such that x∗ = Fx∗ holds.

Lemma 3.1. Assume that (H0)-(H2) hold. Then U =
{
y : y(t) = e−t(Fx)(t), x ∈ Ωr0

}
is equicontinuous on [0, b] with b > 0 and limt→∞ e−t|(Fx)(t)| = 0 uniformly for x ∈ Ωr0.

Proof. Claim I. U is equicontinuous. By the assumption of m(·) in (H2), there exists a

b > 0 large enough such that

e−t M

Γ(α)
rσ0

∫ t

0
(t− s)α−1m(s)eσsds < ε/2, t > b. (3.2)
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Hence, for t1, t2 > b and t1 < t2, by virtue of (H2) and (3.2), for any x ∈ Ωr0 we get

|y(t2)− y(t1)| ≤
∣∣∣∣e−t2

∫ t2

0
(t2 − s)α−1Pα(t2 − s)f(s, x(s))ds

∣∣∣∣
+

∣∣∣∣e−t1

∫ t1

0
(t1 − s)α−1Pα(t1 − s)f(s, x(s))ds

∣∣∣∣
≤Me−t2

∫ t2

0
(t2 − s)α−1eα(−ω(t2 − s)α)m(s)|x(s)|σds

+Me−t1

∫ t1

0
(t1 − s)α−1eα(−ω(t1 − s)α)m(s)|x(s)|σds

≤ M

Γ(α)
rσ0 e

−t2

∫ t2

0
(t2 − s)α−1m(s)eσsds

+
M

Γ(α)
rσ0 e

−t1

∫ t1

0
(t− s)2q−1m(s)eσsds < ε.

On the other hand, for any x ∈ Ωr0 and t1 = 0, t2 ∈ (0, b], it follows by the Hölder’s

inequality and (2.2) that

|e−t2(Fx)(t2)− (Fx)(0)|

≤|e−t2Sα(t2)x0 − x0|+
∣∣∣e−t2

∫ t2

0
(t2 − s)α−1Pα(t2 − s)f(s, x(s))ds

∣∣∣
≤∥e−t2Sα(t2)− I∥|x0|+Me−t2

∫ t2

0
(t2 − s)α−1eα(−ω(t2 − s)α)m(s)|x(s)|σds

≤∥e−t2Sα(t2)− I∥|x0|+Mη(t2)r
σ
0 .

From the continuity of power function e−t, t ≥ 0, due to Sα(0) = I and the assumption of

f , we get y(t2) → y(0), as t2 → 0.

For 0 < t1 < t2 ≤ b, we have

|y(t2)− y(t1)| ≤|e−t2Sα(t2)x0 − e−t1Sα(t1)x0|

+
∣∣∣e−t2

∫ t2

t1

(t2 − s)α−1Pα(t2 − s)f(s, x(s))ds
∣∣∣

+
∣∣∣e−t2

∫ t1

0

(
(t2 − s)α−1 − (t1 − s)α−1

)
Pα(t2 − s)f(s, x(s))ds

∣∣∣
+

∣∣∣e−t2

∫ t1

0
(t1 − s)α−1

(
Pα(t2 − s)− Pα(t1 − s)

)
f(s, x(s))ds

∣∣∣
+

∣∣∣(e−t2 − e−t1)

∫ t1

0
(t1 − s)α−1Pα(t1 − s)f(s, x(s))ds

∣∣∣
=:I1 + I2 + I3 + I4 + I5.

By Lemma 2.2, we have

I1 ≤(e−t1 − e−t2)|Sα(t2)x0|+ e−t1 |Sα(t2)x0 − Sα(t1)x0|
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≤M(e−t1 − e−t2)|x0|+ |Sα(t2)x0 − Sα(t1)x0|

→0, as t2 → t1.

Now, it can be deduced that I2 → 0 as t2 → t1 directly. Indeed, since η(t) < 1,

I2 ≤Me−t2

∫ t2

t1

(t2 − s)α−1eα(−ω(t2 − s)α)m(s)|x(s)|σds

≤ M

Γ(α)
e−t2rσ0

∫ t2

t1

(t2 − s)α−1m(s)eσsds

→0, as t2 → t1.

From the assumption of function m(·) in (H2) and noting that

((t1 − s)α−1 − (t2 − s)α−1)m(s)eσs ≤ 2

Γ(α)
(t1 − s)α−1m(s)eσs,

for a.e. s ∈ [0, t1], and the right-hand side of the above inequality is integrable in s from 0

to t1, and (t1 − s)α−1 → (t2 − s)α−1 a.e. [0, t1], then the Lebesgue dominated convergence

theorem implies that∫ t1

0

(
(t1 − s)α−1 − (t2 − s)α−1

)
m(s)eσsds → 0, as t2 → t1.

Therefore, we have

I3 ≤Me−t2

∫ t1

0

(
(t1 − s)α−1 − (t2 − s)α−1

)
eα(−ω(t1 − s)α)m(s)|x(s)|σds

→0, as t2 → t1.

For given ε > 0 be small enough, from the assumption (H2), we get

I4 ≤e−t2

∫ t1−ε

0
(t1 − s)α−1

∣∣(Pα(t2 − s)− Pα(t1 − s)
)
f(s, x(s))

∣∣ds
+ e−t2

∫ t1

t1−ε
(t1 − s)α−1

∣∣(Pα(t2 − s)− Pα(t1 − s)
)
f(s, x(s))

∣∣ds
≤e−t2rσ0

∫ t1

0
(t1 − s)α−1m(s)eσsds sup

s∈[0,t1−ε]
∥Pα(t2 − s)− Pα(t1 − s)∥

+
2M

Γ(α)
e−t2

∫ t1

t1−ε
(t1 − s)α−1m(s)|x(s)|σds

≤I41 + I42,

where

I41 =rσ0

∫ t1

0
(t1 − s)α−1m(s)eσsds sup

s∈[0,t1−ε]
∥Pα(t2 − s)− Pα(t1 − s)∥,

I42 =
2M

Γ(α)
e−t1rσ0

∫ t1

t1−ε
(t1 − s)α−1m(s)eσsds.
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One can observe that (H0) implies the continuity ofQ(t)(t > 0) in t in the uniform operator

topology. Then it follows from Lemma 2.3 that I41 → 0 as t2 → t1. In a similar manner,

I2 tends to zero. Thus we get I42 → 0 as ε → 0. In consequence, I4 → 0 as t2 → t1, and

ε → 0 independently of x ∈ Ωr0 . Finally, we get

I5 ≤|(e−t2 − e−t1)et1 |Me−t1

∫ t1

0
(t1 − s)α−1eα(−ω(t1 − s)α)m(s)|x(s)|σds

≤|(e−t2 − e−t1)et1 |rσ0 η(t1) → 0, as t2 → t1.

Consequently, for any t1, t2 ∈ [0, b] with t1 < t2, we have |y(t2)− y(t1)| → 0 as t2 → t1.

To end this proof, for 0 ≤ t1 < b < t2, if t2 → t1, then t2 → b and t1 → b. Therefore,

we obtain

|y(t2)− y(t1)| ≤ |y(t2)− e−b(Fx)(b)|+ |e−b(Fx)(b)− y(t1)| < ε, (3.3)

as t1 → b and t2 > b. Hence, together with the foregoing arguments and (3.3), we have

|y(t2)− y(t1)| → 0, as t2 → t1

independently of x ∈ Ωr0 . Thus U =
{
y : y(t) = e−t(Fx)(t), x ∈ Ωr0

}
is equicontinuous.

Claim II. limt→∞ e−t|(Fx)(t)| = 0 uniformly for x ∈ Ωr0 . For any x ∈ Ωr0 , by (H2)

and Lemma 2.2, we have

|(Fx)(t)| ≤|Sα(t)x0|+
∣∣∣ ∫ t

0
(t− s)α−1Pα(t− s)f(s, x(s))ds

∣∣∣
≤MEα(−ωtα)|x0|+M

∫ t

0
(t− s)α−1eα(−ω(t− s)α)m(s)|x(s)|σds

≤MEα(−ωtα)|x0|+ etη(t)rσ0 ,

(3.4)

which implies that

lim
t→∞

e−t|(Fx)(t)| ≤ M lim
t→∞

e−tEα(−ωtα)|x0|+ lim
t→∞

η(t) = 0.

This means that limt→∞ e−t|(Fx)(t)| = 0 uniformly for x ∈ Ωr0 . The proof is completed.

Lemma 3.2. Assume that (H0)-(H1) hold. Then F maps Ωr0 into itself and F is contin-

uous.

Proof. Claim I. F maps Ωr0 into Ωr0 . In fact, for each r0 > 0 by (2.2) and (3.4), we have

e−t|(Fx)(t)| ≤Me−tEα(−ωtα)|x0|+ e−t

∫ t

0
(t− s)α−1eα(−ω(t− s)α)m(s)|x(s)|σds

≤M |x0|+ sup
t≥0

η(t)rσ0 ≤ r0,
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Thus, we get that FΩr0 ⊂ Ωr0 for t ∈ J .

Claim II. F is continuous. Since limt→∞ η(t) = 0, for ε > 0, there exists a constant

T > 0 such that

η(t)rσ0 <
ε

2
, for t > T.

Let {xm}∞m=1 ⊂ Ωr0 , x ∈ Ωr0 , and let limm→∞ xm = x. Then, by the continuity of f

in (H1) for a.e. t ∈ [0, T ], we have

lim
m→∞

f(t, xm(t)) = f(t, x(t)).

Therefore, for a.e. t ∈ [0, T ],

(t− s)α−1eα(−ω(t− s)α)|f(s, xm(s))− f(s, x(s))| ≤ 2

Γ(α)
rσ0 (t− s)α−1m(s)eσs.

In addition, the function (t − s)α−1m(s)eσs is integrable for a.e. s ∈ [0, t] and t ∈ [0, T ].

Hence, it follows by the Lebesgue dominated convergence theorem that

e−t|(Fxm)(t)− (Fx)(t)|

≤e−t

∫ t

0
(t− s)α−1|Pα(t− s)(f(s, xm(s))− f(s, x(s)))|ds

≤M

∫ t

0
(t− s)α−1eα(−ω(t− s)α)|f(s, xm(s))− f(s, x(s))|ds

→0, as m → ∞.

On the other hand, for t > T , we have

e−t|(Fxm)(t)− (Fx)(t)|

≤Me−t

∫ t

0
(t− s)α−1eα(−ω(t− s)α)(|f(s, xm(s))|+ |f(s, x(s))|)ds

≤2η(t)rσ0 < ε.

(3.5)

Therefore, in view of the above statements, it is obvious that ∥Fxm−Fx∥e → 0 pointwise

on J as m → ∞. By Lemma 3.1, we have that Fxm → Fx uniformly on J as m → ∞,

that is, F is continuous. The proof is completed.

4 Existence

In this section, we show the main existence results for problem (1.1).

Theorem 4.1. Assume that (H0)-(H2) hold. Furthermore, if f satisfies the Lipschitz

condition:

(H3) for any x, y ∈ Ce(J,X), there exists a nonnegative constant L < 1/M such that

|f(t, x(t))− f(t, y(t))| ≤ L|x(t)− y(t)|, t ∈ J.
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Then the problem (1.1) has a unique mild solution.

Proof. By Lemma 3.2, we know that F maps Ωr0 into itself. It remains to prove that F

is contractive by Banach fixed point theorem. Indeed, for any x, y ∈ Ωr0 , we have

∥Fx− Fy∥e ≤M sup
t∈J

e−t

∫ t

0
(t− s)α−1eα(−ω(t− s)α)|f(s, x(s))− f(s, y(s))|ds

≤ ML

Γ(α)
sup
t∈J

e−t

∫ t

0
(t− s)α−1|x(s)− y(s)|ds

≤ ML

Γ(α)
sup
t∈J

∫ t

0
(t− s)α−1e−(t−s)ds∥x− y∥e

=
ML

Γ(α)
sup
t∈J

∫ t

0
sα−1e−sds∥x− y∥e

≤ML∥x− y∥e,

which shows that the operator F is a contraction. Thus the problem (1.1) has a unique

mild solution on Ωr0 .

4.1 The case Q(t)(t > 0) is compact

Theorem 4.2. Assume that Q(t)(t > 0) is compact, and the condition (H1)-(H2) hold.

Then the Cauchy problem (1.1) admits at least one mild solution.

Proof. Obviously, it is sufficient to show that x = Fx has a fixed point in Ωr0 . Since

Q(t)(t > 0) is compact, the condition (H0) holds. By Lemma 3.1, we know that the set

U = {y : y(t) = e−t(Fx)(t), x ∈ Ωr0} is equicontinuous on [0, b] and limt→∞ e−t|(Fx)(t)| =
0 uniformly for x ∈ Ωr0 . It remains to prove that for each t ∈ J , the set U(t) = {y(t) :
y(t) = e−t(Fx)(t), x ∈ Ωr0} is relatively compact inX according to Lemma 2.9. Obviously,

U(0) is relatively compact in X. Let t ∈ (0,∞) be fixed. For every ε ∈ (0, t) and δ > 0,

define an operator Fε,δ as follows

(Fε,δx)(t) =Sα(t)x0

+Q(εαδ)

∫ t−ε

0

∫ ∞

δ
αθ(t− s)α−1Mα(θ)Q((t− s)αθ − εαδ)f(s, x(s))dθds.

Since Q(t) is compact for t > 0, by Proposition 2.4, we know that Sα(t) is compact.

Let Uε,δ = {yε,δ : yε,δ(t) = e−t(Fε,δx)(t), x ∈ Ωr0}. From the compactness of Q(εαδ), we

obtain that the set Uε,δ(t) is relatively compact in X for any ε ∈ (0, t) and for any δ > 0.

Then, for any x ∈ Ωr0 , y ∈ U and yε,δ ∈ Uε,δ, we have

|y(t)− yε,δ(t)| = |e−t(Fx)(t)− e−t(Fε,δx)(t)|

≤
∣∣∣e−t

∫ t−ε

0

∫ δ

0
αθ(t− s)α−1Mα(θ)Q((t− s)αθ)f(s, x(s))dθds

∣∣∣
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+
∣∣∣e−t

∫ t

t−ε

∫ ∞

0
αθ(t− s)α−1Mα(θ)Q((t− s)αθ)f(s, x(s))dθds

∣∣∣
≤αMrσ0 e

−t

∫ t−ε

0
(t− s)α−1m(s)eσsds

∫ δ

0
θe−ω(t−s)αθMα(θ)dθ

+ αMrσ0 e
−t

∫ t

t−ε
(t− s)α−1m(s)eσsds

∫ ∞

0
θe−ω(t−s)αθMα(θ)dθ

≤αΓ(α)η(t)

∫ δ

0
θMα(θ)dθ +Mrσ0 e

−t

∫ t

t−ε
(t− s)α−1eα(−ω(t− s)α)m(s)eσsds.

In view of η(t) < 1 and
∫∞
0 θMα(θ)dθ = 1/Γ(α), we know that

|y(t)− yε,δ(t)| → 0, as ε → 0, δ → 0.

Therefore, the set U(t) is closed to an arbitrary compact set for t ∈ (0,∞). As a result,

the set U(t) = e−t(FΩr0)(t) is relatively compact set in X for t ∈ J . By Lemma 2.9, we

know that FΩr0 is a relatively compact set. On the other hand, by Lemma 3.2, we know

that F maps Ωr0 into itself and F is continuous. Hence, F is a completely continuous

operator. Therefore, according to Schauder’s fixed point theorem, there exists at least one

fixed point x∗ ∈ Ωr0 such that x∗ = Fx∗ is satisfied. Then x∗ is a mild solution of (1.1).

The proof is completed.

4.2 The case Q(t) is noncompact

Theorem 4.3. Assume that Q(t) is noncompact, and the conditions (H0)-(H2) hold and

f satisfies the following condition:

(H4) There exists nonnegative constant l < 1/(4M) such that for any bounded set D ⊂ X,

β(f(t,D)) ≤ lβ(D), t ∈ J.

Then the Cauchy problem (1.1) admits at least one mild solution.

Proof. By Lemma 3.2, we know that F : Ωr0 → Ωr0 is bounded and continuous. Let

H = {y : y(t) = e−t(Fx)(t), x ∈ Ωr0}. Then H ⊂ Ωr0 ⊂ Ce(J,X) and is bounded. From

Lemma 3.1, we have that the set H(t) is equicontinuous on [0, b] for b > 0. In addition,

for any y ∈ H, it follows that limt→∞ e−t|y(t)| = 0 uniformly. Thus it remains to verify

that F is a condensing map according to Lemma 2.6. Let

Fx = F1x+ F2x, for x ∈ Ωr0 ,

where (F1x)(t) = Sα(t)x0 for t ∈ J and

(F2x)(t) =

∫ t

0
(t− s)α−1Pα(t− s)f(s, x(s))ds, for t ∈ J.
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Let H = Ω0
r0 , then Ω0

r0 ⊂ Ωr0 , FΩ0
r0 is bounded, equicontinuous and e−t|(Fx)(t)| → 0

as t → ∞ uniformly for x ∈ Ω0
r0 and hence Lemma 2.5 implies that

βe(FΩ0
r0) = sup

t∈J
β(e−t(FΩ0

r0)(t)). (4.1)

Moreover, by Lemma 2.5, there exists a sequence {xn}∞n=1 ⊂ Ω0
r0 such that

βe
(
F2Ω

0
r0

)
=sup

t∈J
β
(
e−t(F2Ω

0
r0)(t)

)
≤2 sup

t∈J
β
(
e−t({F2xn}∞n=1)(t)

)
+ ε

≤2 sup
t∈J

β
(
e−t

∫ t

0
(t− s)α−1Pα(t− s)f(s, {xn(s)}∞n=1)ds

)
+ ε.

Therefore, for t ∈ J , according to Lemma 2.8, we have

βe
(
F2Ω

0
r0

)
≤4M sup

t∈J
e−t

∫ t

0
(t− s)α−1eα(−ω(t− s)α)β

(
f(s, {xn(s)}∞n=1)

)
ds+ ε

≤4Ml sup
t∈J

e−t

∫ t

0
(t− s)α−1eα(−ω(t− s)α)β

(
{xn(s)}∞n=1)

)
ds+ ε

=4Ml sup
t∈J

e−t

∫ t

0
(t− s)α−1eα(−ω(t− s)α)esβ

(
e−s{xn(s)}∞n=1)

)
ds+ ε

≤
4Mlβe(Ω

0
r0)

Γ(α)
sup
t∈J

e−t

∫ t

0
(t− s)α−1esds+ ε

≤4Mlβe(Ωr0) + ε.

Since F1 is Lipschitz continuous with constant 0, it follows from the definition of

Kuratowski measure of noncompactness that βe(F1(Ω
0
r0)) = 0. By virtue of (4.1) and the

arbitrariness of ε, we have

βe
(
FΩ0

)
≤ βe

(
F1Ω0

)
+ βe

(
F2Ω0

)
≤ 4Mlβe(Ω0).

Thus, from the above arguments, we find that F : Ω0 → Ω0 is a condensing operator.

Thus, we deduce by Lemma 2.6 that F has a fixed point x∗ which is a mild solution of

(1.1). The proof is completed.

Example 4.1. We consider the following fractional diffusion equations
∂
1/2
t u(t, z) = −∂zzu(t, z) + e−t ln(1 + |u(t, z)|), z ∈ [0, π], t > 0,

u(t, 0) = u(t, π) = 0, t ≥ 0,

u(0, z) = u0(z), z ∈ [0, π],

(4.2)

where ∂α
t is the Caputo fractional partial derivative of order α = 1/2.
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We define an operator A by Av = v′′ with the domain

D(A) = {v ∈ L2[0, π], v, v′ absolutely continuous, v′′ ∈ L2[0, π], v(0) = v(π) = 0}.

Then A generates a compact strongly continuous semigroup {Q(t)}t>0. Clearly, the semi-

group is also exponentially stable. In fact, let λk = k2 and ek(z) =
√

2/π sin(kz) for

every k ∈ N. It is clear that {−λk, ek}∞k=1 is the eigensystem of the operator A, where

0 < λ1 ≤ λ2 ≤, · · · , λk → ∞ as k → ∞, and {ek}∞k=1 forms an orthonormal basis of

L2[0, π]. Then

Ax = −
∞∑
k=1

λk(x, ek)ek, x ∈ D(A),

where (·, ·) is the inner product in L2[0, π]. Thus the semigroup is given by

Q(t)x =

∞∑
k=1

e−λkt(x, ek)ek, x ∈ L2[0, π].

Therefore, we have |Q(t)x|L2[0,π] ≤ e−t|x|L2[0,π]. This means that the semigroup is also

exponentially stable. Consequently, the problem (4.2) can be reformulated as an abstract

Cauchy problem (1.1) for x(t) = u(t, ·) and f(t, x) = e−t ln(1+ |x|). Clearly, the function f

satisfies (H1) and (H2). By Theorem 4.2, the problem (4.2) has at least one mild solution.

5 Attractivity

Definition 5.1. The mild solution x(t) of the Cauchy problem (1.1) is attractive if x(t)

tends to zero as t → ∞.

In order to obtain the attractivity of mild solution, we need the following lemmas.

Lemma 5.1. [25] If µ ∈ (0, 1), ν ≥ 1− µ, τ > 0 and t > 0, then∫ t

0
(t− s)µ−1sν−1e−τsds ≤ κ1,

where

κ1 = max
{
B(µ, ν), (µ+ ν − 1)µ+ν−1e−(µ+ν−1)τ−(µ+ν−1)B(µ, 1− µ)

}
> 0,

and B(·, ·) is the Beta function.

Lemma 5.2. [10] If β, µ, ω > 0, then

t1−β

∫ t

0
(t− s)β−1sµ−1e−ωsds ≤ κ2, t > 0,

where κ2 = max{1, 21−β}Γ(µ)(1 + µ(µ+ 1)/β)ω−µ > 0.
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Theorem 5.1. Assume that Q(t)(t > 0) is compact. Let (H1) hold and f satisfies the

following condition

(H5) There exist K ≥ 0, β ≥ 0, δ ≥ 0 and λ > 0 with λ > δ such that |f(t, x)| ≤
Ke−λttβ |x|δ for t ∈ J , and

MKκ1
Γ(α)

< 1, M |x0|+
MKκ1r

δ

Γ(α)
≤ r, for each r > 0.

Then the solution of (1.1) is attractive.

Proof. Considering the operator F defined by (3.1), it is obvious that FΩr ⊂ Ωr for each

r > 0. In fact, by the assumption (H5), for t > 0, we have

|(Fx)(t)| ≤MEα(−ωtα)|x0|+MK

∫ t

0
(t− s)α−1eα(−ω(t− s)α)sβe−λs|x(s)|δds

≤M |x0|+
MKrδ

Γ(α)

∫ t

0
(t− s)α−1sβe−(λ−δ)sds

≤M |x0|+
MKκ1r

δ

Γ(α)
≤ r.

The case of t = 0 is trivial. Hence, we get ∥Fx∥e ≤ r. Let

ζ(t) =
MK

Γ(α)

∫ t

0
(t− s)α−1sβe−(λ−δ)sds.

From Lemma 5.2, we know that ζ(t) → 0 as t → ∞. Since

ζ(t) =
MK

Γ(α)
tα+β

∫ 1

0
(1− s)α−1sβe−(λ−δ)tsds → 0, as t → 0,

similar to the proofs of Lemmas 3.1 and 3.2, we get that
{
y : y(t) = e−t(Fx)(t), x ∈ Ωr

}
is equicontinuous and limt→∞ e−t|(Fx)(t)| = 0 uniformly for x ∈ Ωr. Moreover F maps

Ωr into itself and F is continuous. Then, similar to the arguments used in the proof of

Theorem 4.2, there exists at least one mild solution x so that x = Fx of (1.1). By Lemma

5.2, we have

|x(t)| ≤MEα(−ωtα)|x0|+MK

∫ t

0
(t− s)α−1eα(−ω(t− s)α)sβe−λs|x(s)|δds

≤MEα(−ωtα)|x0|+
MKrδ1
Γ(α)

∫ t

0
(t− s)α−1sβe−(λ−δ)sds

≤MEα(−ωtα)|x0|+
MKκ2r

δ
1

Γ(α)
tα−1

→0, as t → ∞,

which shows that the solution x(t) is attractive.
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Remark 5.1. In particular, if K = 0 in (H5), then the problem (1.1) is the linear Cauchy

problem, and it follows from Theorem 5.1 that (1.1) has at least one mild solution which

is attractive.

Similar to Theorems 4.1 and 5.1, we have the following result.

Theorem 5.2. Assume that (H0)-(H1) and (H4)-(H5) hold. Then the problem (1.1)

admits at least one attractive mild solution. Furthermore, if (H3) holds, then the attractive

solution is unique.

Example 5.1. We can describe the a population of cells, which are distinguished by their

individual size, at time t by the number w(t, s) of cells having size s by the following

fractional evolution equation (see [9, p.349] and references therein)

∂α
t w(t, s) =− ∂sw(t, s)− µ(s)w(t, s)− ν(s)w(t, s)

+


4ν(2s)w(t, 2s), for

β

2
≤ s ≤ 1

2
;

0, for
1

2
< s ≤ 1,

(5.1)

with the boundary condition

w

(
t,
β

2

)
= 0, for t ≥ 0,

and the initial condition

w(0, s) = w0(s), for
β

2
≤ s ≤ 1,

where ∂α
t is Caputo derivative of order α ∈ (0, 1), β > 0 denotes the minimal cell size, µ

is a positive continuous function on [β2 , 1] which is the death rate, and ν is the division

which should be continuous with

ν(s) > 0, for s ∈ (β, 1), and ν(s) = 0, otherwise.

As a natural Banach space we choose X := L1[β2 , 1], in which the norm f of a positive

function is the size of the total cell population represented by f .

Next, we define the operators

A0f := −f − (µ+ ν)f, with D(A0) :=

{
f ∈ W 1,1

[β
2
, 1
]
: f

(β
2

)
= 0

}
,

and

Bf(s) :=


4ν(2s)w(t, 2s), for

β

2
≤ s ≤ 1

2
;

0, for
1

2
< s ≤ 1.
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Set A := A0 + B with D(A) := D(A0). Based on these notations, the equation (5.1)

reduces to an abstract Cauchy problem
CDα

t u(t) = A0u(t) +Bu(t), for t ≥ 0,

u(0) = w0,
(5.2)

for the vector-valued function u : J → X. By [9, Chapter VI, Proposition 1.3], the

operator (A,D(A)) generates a strongly continuous semigroup {Q(t)}t≥0 on X, and by

[9, Chapter VI, Proposition 1.4], the semigroup {Q(t)}t≥0 is eventually continuous and

even eventually compact for t > 1 − β
2 . Moreover, by [9, Chapter VI, Corollary 1.17],

the semigroup {Q(t)}t≥0 is positive on the Banach lattice X and uniformly exponentially

stable if and only if

ξ(0) := −1 +

∫ 1
2

β
2

4ν(2s)e−
∫ 2σ
σ (µ(τ)+ν(τ))dτdσ < 0,

Then, from Remark 5.1, we know that there exists one attractive mild solution of (5.1).

Example 5.2. Let X be a Banach space. Then we consider the following fractional

Cauchy problem 
CD

1/2
t x(t) = Ax(t) + Le−t sin(x(t)), for t ∈ [0,∞),

x(0) = x0,
(5.3)

where A generates an exponentially stable semigroup.

Obviously, let f(t, x) = Le−t sin(x) for any x ∈ X, then for any bounded set D ⊂ X,

(H3)-(H4) hold. In fact, for any x, y ∈ Ω,

|f(t, x(t))− f(t, y(t))| =|Le−t sin(x(t))− Le−t sin(y(t))|

≤L|x(t)− y(t)|, t ∈ J.

According to the definition of Kuratowski measure of noncompactness, we obtain (H4) for

each x ∈ D. Then, choosing L ∈ [0, 1/4), we deduce from Theorem 5.2 that there exists

at least one mild solution of (5.1) which is attractive.

Example 5.3. Let we consider the fractional differential equation
CDα

t x(t) + λx(t) = Ke−t, for t ∈ [0,∞),

x(0) = x0.
(5.4)

where λ is a real number with λ > 0, 0 ≤ K < Γ(α)/κ1.



18 J.W. He, Y. Zhou, B. Ahmad, A. Alsaedi

It is clear that λ generates an exponentially stable C0-semigroup Q(t) = e−λt, for

t ≥ 0. Let f(t, x) = Ke−t. Then f satisfies (H1), (H5) and the unique solution of (5.4) is

in C([0,∞),R) which is given by

x(t) = Eα,1(−λtα)x0 +

∫ t

0
(t− s)α−1eα(−λ(t− s)α)f(s)ds.

Obviously, the solution is attractive. In particular, we observe that the solution possesses

the same attractive behavior as α → 1 for the case of first order differential equation.
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