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Abstract. This paper is to study a Sturm-Liouville equation

Ly := −p(x)y′′ + q(x)y = λy

with discontinuities in the case that eigenparameter appears not on-
ly in the differential equation but also appears in both the boundary
conditions

λ(α′1y(−a) − α′2y
′(−a)) − (α1y(−a) − α2y

′(−a)) = 0,

λ(β′1y(b) − β′2y
′(b)) + (β1y(b) − β2y

′(b)) = 0

and transmission conditions as

−y(0+)

(
λη − ξ −

N∑
i=1

b2i
λ− ci

)
= y′(0+) − y′(0−),

y′(0−)

(
λκ+ ζ −

M∑
j=1

a2j
λ− dj

)
= y(0+) − y(0−).

In particular, in the space L2([−a, b])⊕C⊕C⊕CN′⊕CM′ , the considered
problem can be interpreted as the eigenvalue problem of self-adjoint op-
erator A. Moreover, we construct the Green’s function of the considered
problem and resolvent operator of A.
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1. Introduction

In the present work, we shall investigate the Sturm-Liouville equation

Ly := −p(x)y′′ + q(x)y = λy, x ∈ J, (1.1)

∗Corresponding author.
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where J = [−a, 0)∪(0, b], subject to the eigenparameter-dependent boundary
conditions

L1y := λ(α′1y(−a)− α′2y′(−a))− (α1y(−a)− α2y
′(−a)) = 0, (1.2)

L2y := λ(β′1y(b)− β′2y′(b)) + (β1y(b)− β2y
′(b)) = 0 (1.3)

and transmission conditions at the discontinuous point

y(0+)µ(λ) = ∆′y, (1.4)

y′(0−)ν(λ) = ∆y. (1.5)

Here, p(x) = 1/p2
1 for x ∈ [−a, 0) and p(x) = 1/p2

2 for x ∈ (0, b]; q(x)
is real-valued continuous in [−a, 0) ∪ (0, b]; pi, αi, βi, α

′
i and β′i (i = 1, 2)

are nonzero real numbers; aj , bi > 0 for i = 1, · · ·, N and j = 1, · · ·,M ,
c1 < c2 < · · · < cN , d1 < d2 < · · · < dM . We take η, κ ≥ 0, ξ, ζ ∈ R and N ,
M ∈ N0. ∆y = y(0+)− y(0−), ∆′y = y′(0+)− y′(0−),

µ(λ) = −λη + ξ +

N∑
i=1

b2i
λ− ci

, ν(λ) = λκ+ ζ −
M∑
j=1

a2
j

λ− dj
.

Furthermore, we reconsider

1

µ(λ)
= σ −

N ′∑
i=1

ε2
i

λ− γi
,

1

ν(λ)
= τ +

M ′∑
j=1

ε2j
λ− δj

with σ, τ ∈ R and εi, εj > 0, for i = 1, · · ·, N ′, j = 1, · · ·,M ′; γ1 < γ2 < · · · <
γN ′ , δ1 < δ2 < · · · < δM ′ .

The investigation of the eigenvalue and eigenfunction of Sturm-Liouville
problem is required in many mathematical physics problems. When the eigen-
parameter appears not only in the differential equation but also in the bound-
ary conditions, highly excellent results have been obtained (see [3,4,11–14,24,
26]), such as, the operator-theoretic formulations (see [7, 8]), the expansion
theorems and dependence of the eigenvalues branches in Hilbert space. The
substantial investigation of the spectral theory for Sturm-Liouville problems
of ordinary differential equations with λ-dependent boundary conditions

(akλ+ bk)y(0) = (ckλ+ dk)(py)′(0), (−1)k(akdk − bkck) ≤ 0, k = 0, 1

was undertaken by Binding in [4]. It can be seen that Pruüfer transformation
is an effective method together with simple geometrical arguments in this
article and yields a comprehensive Sturm theory for variable end condition
problems with (−1)k(akdk − bkck) ≤ 0. Meanwhile, Since the Pruüfer trans-
formation does not work well for the version of discrete, Gao et al. overcame
the lack of the Pruüfer transformation by introducing two new functions
and obtained the existence of the eigenvalues, the sign-changing times of the
eigenfunctions and the interlacing results of the eigenvalues in [12, 13]. It is
noteworthy that these works mainly focus on some properties of eigenvalues
and eigenfunctions. Besides, no matter the continuous cases or discrete cas-
es, Sturm-Liouville eigenvalue problem is not equivalent to a linear operator
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spectral problem. Here, our goal is to make some discontinuity restriction-
s for the equation and boundary conditions (Herglotzs transmission) in the
continuous cases. To deal with the discontinuities, some conditions are nec-
essary, such as point interactions, impulsive conditions, transmission condi-
tions, jump conditions or interface conditions. The other is by reducing the
eigenvalue problem to a spectral problem of linear operator in the Hilbert
space to establish some properties of linear operators.

While direct and inverse problem for Sturm-Liouville equation with the
eigenparameter-dependent boundary conditions have been extensively stud-
ied, very little is known about operator spectral theory associated with trans-
mission conditions dependent on eigenparmeter, which arise in many physical
problems, such as, heat and mass transfer problem (see [16]), in vibrating
problem (see [21]) and diffraction problem (see [2]). However, the presence of
discontinuities produces essential qualitative modifications in the investiga-
tion of the operators.

Recall the related problems mentioned in the previous literature, which
have obtained general spectral theory and methods of boundary value prob-
lems with the eigenparameter in the boundary conditions. But the considered
problems in these works only dealt with the continuous coefficient (p(x)) or
the discontinuity of boundary conditions at a certain point. Recently, sim-
ilar problems for differential equation with constant coefficients (p(x) ≡ 1)
were investigated in [5] and [6]. Meanwhile, in [3], the author considered the
Sturm-Liouville equation, for which the coefficient of the highest derivative
may exists discontinuity and two transmission conditions are given in this
discontinuous point.

As a result of this, we are interested in two types of generalization-
s of classical Sturm-Liouville problems. Firstly, we considered more general
Sturm-Liouville equation in which the coefficient of the highest derivative may
have the discontinuity at one point of the considered interval. Moreover, we
allow boundary conditions and transmission conditions (Nevanlinna-Herglotz
functions) dependent on the eigenparameter. In section 2, the operator formu-
lation is established and it is possible to interpret the problem (1.1)-(1.5) as
the eigenvalue problem for a self-adjoint operator. The fundamental solutions
and characteristic determinant are given in Section 3. Based on the operator
formulation in the Hilbert space, the resolvent operator and self-adjointness
of A is constructed in last section.

Remark 1.1. (i) if λ is a pole of µ(λ), then (1.4) becomes y(0+) = 0 and (1.5)
becomes y(0−)ν(λ) = −y(0−), resulting in two separate eigenvalues problem
on the intervals (−a, 0) and (0, b);

(ii) if λ is a zero of µ(λ), then (1.4) becomes ∆′y = 0;

(iii) if λ is a pole of ν(λ), then (1.5) becomes y′(0−) = 0 and (1.4)
becomes y(0+)µ(λ) = y′(0+), again resulting in two separate eigenvalues
problem on the intervals (−a, 0) and (0, b);

(iv) if λ is a zero of ν(λ), then (1.4) becomes ∆y = 0.
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2. An Operator Formulation in the Hilbert Space

In this section, we introduce a special inner product in the Hilbert space

H = L2(−a, b)⊕ C⊕ C⊕ CN
′
⊕ CM

′

and a symmetric linear operator A defined on H. Moreover, the problem
(1.1)-(1.5) can be considered as the eigenvalue problem of the operator A.

Define

ρ1 :=

∣∣∣∣α′1 α1

α′2 α2

∣∣∣∣ > 0, ρ2 :=

∣∣∣∣β′1 β1

β′2 β2

∣∣∣∣ > 0.

For a short exposition, we use the following notations:

f1 := f1
i , f2 := f2

j ;

f1 := α′1f(−a)− α′2f ′(−a), f2 := β′1f(b)− β′2f ′(b),
f1 := α1f(−a)− α2f

′(−a), f2 := β1f(b)− β2f
′(b).

For η, κ > 0, we introduce a new inner product in H by

〈F,G〉 :=p2
1

∫ 0

−a
f(x)ḡ(x)dx+ p2

2

∫ b

0

f(x)ḡ(x)dx

+
1

ρ1
f1ḡ1 +

1

ρ2
f2ḡ2 + 〈f1, g1〉1 + 〈f2, g2〉1

(2.1)

for

F := (f, f1, f2, f
1, f2)T , G := (g, g1, g2, g

1, g2)T ∈ H,

where 〈·, ·〉1 denotes Euclidean inner product.

In the Hilbert space H, we consider the operator A which is defined by

A


f
f1

f2

f1

f2

 =


Lf
f1

−f2

ε∆′f + [γi]f
1

ε∆f + [δj ]f
2

 =


Lf

α1f(−a)− α2f
′(−a)

−(β1f(b)− β2f
′(b))

ε∆′f + [γi]f
1

ε∆f + [δj ]f
2


with the domain

D(A) =
{
F =(f, f1, f2, f

1, f2)T : f ∈ AC[−a, b], f ′ ∈ AC[−a, 0) ∪ (0, b],

Lf ∈ L2(−a, b),− f(0+) + σ∆′f − 〈f1, ε〉1 = 0, f ′(0−)− τ∆f − 〈f2, ε〉1 = 0
}
,

where [γi] := diag(γ1, · · ·, γN ′), [δj ] := diag(δ1, · · ·, γM ′), ε := (εi) and ε :=
(εj).

In the above results, the case of η = 0 can be obtained by replacing ε, γ,
σ, f(0+), ∆′f and N ′ with b, c, −ξ, −∆′f , f(0+) and N , while replacement
of ε, δ, τ , f(0−), ∆f and M ′ by a, d, −ζ, −∆f , f ′(0−) and N yields the
case of κ = 0.

Lemma 2.1. The domain D(A) is dense in H.
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Proof. We only give the proof of the case of η, κ > 0, the other cases are
similar.

Let W = (w, f1, f2, f
1, f2)T ∈ H, where w ∈ C∞[−a, 0) ∪ (0, b] with

w(−a) = w′(−a) = w(b) = w′(b) = 0 and satisfies the condition

w(0−) = σ〈f1, ε〉1 + (1− σ)〈f2, ε〉1, w(0+) = (σ − 1)〈f1, ε〉1 − σ〈f2, ε〉1,

w′(0−) = −τ〈f1, ε〉1 + (τ + 1)〈f2, ε〉1, w′(0+) = (1− τ)〈f1, ε〉1 + τ〈f2, ε〉1.

Meanwhile,

∆w = 〈f2, ε〉1 − 〈f1, ε〉1, ∆′w = 〈f1, ε〉1−〈f2, ε〉1.

Then, it is easy to verify that W ∈ D(A). Next, as long as it is proved that
the elements in H can be approximated by the elements in D(A), the desired
result can be obtained.

Since

(C∞0 (−a, 0)⊕ C∞0 (0, b))⊕ {0} ⊕ {0} ⊕ {0} ⊕ {0} ⊆ D(A)

and

(C∞0 (−a, 0)⊕ C∞0 (0, b)) ⊃ L2(−a, b),
then there exists a sequence {mn} ∈ C∞0 (−a, 0)⊕C∞0 (0, b) with mn → f−w
as n → ∞, where Mn := (mn, 0, 0, 0, 0)T ∈ D(A). Therefore, W + Mn → F

as n→∞ giving that D(A) ⊃ H. The proof the Lemma is complete. �

Theorem 2.2. The operator eigenvalue problem AF = λF and the considered
problem (1.1)-(1.5) is equivalent in the sense of that λ is an eigenvalue of
AF = λF and the eigenfunction is the first components of the corresponding
eigenelements of the operator A. Moreover, for η, κ > 0, we have following
results:

(i) if λ 6= γi for all i = 1, 2, · · ·, N ′, then f1 = (λI − [γi])
−1ε∆′f,

while if λ = γI for some I ∈ {1, · · ·, N ′}, then f1 = −f(0+)
εI

eI ;

(ii) if λ 6= δj for all j = 1, 2, · · ·,M ′, then f2 = (λI − [δi])
−1ε∆f,

while if λ = γJ for some J ∈ {1, · · ·,M ′}, then f2 = f(0−)
εJ

eJ , where en

is the vector in Rn with all entries 0 except the n-th which is 1.

Proof. We just need to show that eigenelement y of the operator A obeys the
boundary conditions (1.2)-(1.3) and transfer conditions (1.4)-(1.5). It is clear
that y satisfies (1.2)-(1.3). The definition of A implies γif

1
i +εi∆

′f = λf1
i for

all i. Meanwhile, the domain of A gives −f(0+) + σ∆′f − 〈f1, ε〉1 = 0. Thus,
if λ 6= γi for all i, then

f(0+) =

(
σ −

N ′∑
i=1

ε2
i

λ− γi

)
∆′f.

If λ = γI for some I ∈ {1, · · ·, N ′}, then −f(0+) − 〈f1
I , εI〉1 = 0. That is,

f1
I = −f(0+)

εI
. Hence, y satisfies (1.4).
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Similarly, if λ 6= δj for all j, then f2
j =

εj
λ−δj ∆f and

f ′(0−) =

(
τ +

M ′∑
j=1

ε2j
λ− δj

)
∆f.

while λ = δJ for some j ∈ {1, ···,M ′} the domain condition forces f2
J = f ′(0−)

εJ
from which (1.5) follows. The proof of the Theorem is complete. �

Theorem 2.3. The linear operator A is symmetric.

Proof. Let F , G ∈ D(A). Then it follows from the equation (1.1) and the
relation (2.1) that

〈AF,G〉 − 〈F,AG〉
=(fḡ′)(0−)− (f ′ḡ)(0−) + (f ′ḡ)(0+)− (fḡ′)(0+)

+(f ′ḡ)(−a)− (fḡ′)(−a) + (fḡ′)(b)− (f ′ḡ)(b)

+
1

ρ1
f1ḡ1 −

1

ρ2
f2ḡ2 + 〈ε∆′f + [γi]f

1, g1〉1 + 〈ε∆f + [δj ]f
2, g2〉1

− 1

ρ1
f1ḡ

1 +
1

ρ2
f2ḡ

2 − 〈f1, ε∆′g + [γi]g
1〉1 − 〈f2, ε∆g + [δj ]g

2〉1.

Moreover, we have

ρ−1
1 (f1ḡ1 − f1ḡ

1) = (fḡ′)(−a)− (ḡf ′)(−a),

ρ−1
2 (f2ḡ2 − f2ḡ

2) = −((fḡ′)(b)− (ḡf ′)(b)).

Meanwhile, the vector components satisfy

〈ε∆′f + [γi]f
1, g1〉1 − 〈f1, ε∆′g + [γi]g

1〉1 = 〈ε∆′f, g1〉1 − 〈f1, ε∆′g〉1,

〈ε∆f + [δj ]f
2, g2〉1 − 〈f2, ε∆g + [δj ]g

2〉1 = 〈ε∆f, g2〉1 − 〈f2, ε∆g〉1,

and the domain conditions D(A) implies

〈ε∆′f, g1〉1 − 〈f1, ε∆′g〉1 = ∆′f [−ḡ(0+) + σ∆′ḡ]−∆′ḡ[−f(0+) + σ∆′f ],

〈ε∆f, g2〉1 − 〈f2, ε∆g〉1 = ∆f [ḡ′(0−)− τ∆ḡ]−∆ḡ[f ′(0−)− τ∆f ].

Therefore,

〈ε∆′f + [γi]f
1, g1〉1 − 〈f1, ε∆′g + [γi]g

1〉1 = ∆′ḡf(0+)−∆′fḡ(0+),

〈ε∆f + [δj ]f
2, g2〉1 − 〈f2, ε∆g + [δj ]g

2〉1 = ∆fḡ′(0−)−∆ḡf ′(0−).

Direct computation yields

− [(f ′ḡ − fḡ′)(0−)− (f ′ḡ − fḡ′)(0+)]

=− f(0+)∆′ḡ + ḡ(0+)∆′f − ḡ′(0−)∆f + f ′(0−)∆ḡ.

Thus, 〈AF,G〉 − 〈F,AG〉 = 0 and so A is symmetric. The proof the
Theorem is complete. �

Corollary 2.4. All eigenvalues of the Sturm-Liouville problem (1.1)-(1.5) are
real.
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Corollary 2.5. Let λ1 and λ2 be two different eigenvalues of the problem
(1.1)-(1.5). Then the corresponding the eigenfunctions u1(x) and u2(x) are
orthogonal in the sense of

p2
1

∫ 0

−a
u1(x)u2(x)dx+ p2

2

∫ b

0

f1(x)f2(x)dx+
1

ρ1
f1(u1)f1(u2)

+
1

ρ2
f2(u1)f2(u2) + 〈f1(u1),g1(u2)〉1 + 〈f2(u1),g2(u2)〉1 = 0.

3. Fundamental Solutions and Characteristic Determinant

Lemma 3.1. ( [5]) All eigenvalues of (1.1)-(1.5) not at poles of µ(λ) or ν(λ)
are geometrically simple. In the case, the transmission conditions (1.4)-(1.5)
can be expressed as(

y(0+)
y′(0+)

)
=

(
1 ν(λ)

µ(λ) 1 + µ(λ)ν(λ)

)(
y(0−)
y′(0−)

)
.

Lemma 3.2. ( [20]) Let the real valued q(x) be continuous in [−a, b], and f(λ)
and g(λ) are given entire functions. Then for any λ ∈ C, the equation

−p(x)u′′ + q(x)u = λu, x ∈ [−a, b]

has a unique solution u = u(x, λ) satisfying the initial conditions

u(a) = f(λ), u′(a) = g(λ) (or u(b) = f(λ), u′(b) = g(λ)).

For each fixed x ∈ [−a, b], u = u(x, λ) is an entire function of λ.

Lemma 3.3. Let u−(x, λ) be the solution of the equation (1.1) in the interval
[−a, 0) satisfying the initial conditions

u−(−a) = −α2 + λα′2, u′−(−a) = −α1 + λα′1 (3.1)

and v(x, λ) denote the solution of the equation (1.1) in the interval (0, b]
satisfying the terminal conditions

v+(b) = −β2 + λβ′2, v′+(b) = −β1 + λβ′1. (3.2)

Then W [u−, v+] is independent of x. Moreover, it is a function of λ.

Proof. Direct computation, we have

∂

∂x
W [u−(x, λ), v+(x, λ)] = u−(x, λ)

∂2

∂x2
v+(x, λ)− v+(x, λ)

∂2

∂x2
u−(x, λ)

=
qv+ − λv+

p
u− −

qu− − λu−
p

v+ = 0.

It follows that W [u−(x, λ), v+(x, λ)] is constant on [−a, 0) ∪ (0, b] and
by virtue of Lemma 3.2, it is a function of λ. The proof of the Lemma is
complete. �



8 Gaofeng Du, Chenghua Gao∗ and Jingjing Wang

Theorem 3.4. The Sturm-Liouville equation (1.1) exists two fundamental so-
lutions on whole [−a, 0)∪ (0, b] satisfying the boundary conditions (1.2)-(1.3)
and transfer conditions (1.4)-(1.5). Moreover, the eigenvalue λ of the problem
(1.1)-(1.5) is consist of the zero of the characteristic determinant.

Proof. First, we extend u−(x, λ) and v+(x, λ) by the zero function to [−a, 0)∪
(0, b], i.e. we define

ũ−(x, λ) =

{
u−(x, λ), x ∈ [−a, 0),

0, x ∈ (0, b]

and

ṽ+(x, λ) =

{
0, x ∈ [−a, 0),

v+(x, λ), x ∈ (0, b].

Furthermore, by Lemma 3.1, we know that the eigenvalue not coinciding
with a pole of µ(λ) or ν(λ). It’s possible to extend u−(x, λ), x ∈ [−a, 0) and
v+(x, λ), x ∈ (0, b] by nontrivial solution u+(x, λ), x ∈ (0, b] and v−(x, λ),
x ∈ [−a, 0) of the equation (1.1) obeying the conditions(

u+(0+)
u′+(0+)

)
=

(
1 ν(λ)

µ(λ) 1 + µ(λ)ν(λ)

)(
u−(0−)
u′−(0−)

)
and (

v−(0−)
v′−(0−)

)
=

(
1 + µ(λ)ν(λ) −ν(λ)
−µ(λ) 1

)(
v+(0+)
v′+(0+)

)
.

Moreover, let us define two linearly independent fundamental solutions
of the equation (1.1) on the whole [−a, 0) ∪ (0, b] as

u(x, λ) =

{
u−(x, λ), x ∈ [−a, 0),

u+(x, λ), x ∈ (0, b],
(3.3)

v(x, λ) =

{
v−(x, λ), x ∈ [−a, 0),

v+(x, λ), x ∈ (0, b].
(3.4)

In fact, the initial value condition implies{
u+(0+) = u−(0−) + ν(λ)u′−(0−),

u′+(0+) = µ(λ)u−(0−) + (1 + µ(λ)ν(λ))u′−(0−)

and {
v−(0−) = (1 + µ(λ)ν(λ))v+(0+)− ν(λ)v′+(0+),

v′−(0−) = −µ(λ)v+(0+) + v′+(0+).

Then easy to verify W [u+, v−]|0 6= 0.
It must note that u(x, λ) and v(x, λ) satisfy boundary conditions (1.2)-

(1.3) and transmission conditions (1.4)-(1.5).
Let

y(x, λ) = ϕ(λ)u(x, λ) + ψ(λ)v(x, λ). (3.5)
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If y(x, λ) satisfy transfer conditions (1.4)-(1.5), then
U1(y, λ) = −(y(0+)(λη − ξ) + ∆′y)

∏N
i=1(λ− ci)

+y(0+)
∑N
i=1 b

2
i

∏
k 6=i(λ− ck),

U2(y, λ) = (y′(0−)(λκ+ ζ) + ∆y)
∏M
j=1(λ− di)

−y′(0−)
∑M
j=1 a

2
j

∏
k 6=j(λ− dk)

(3.6)

and any solution to equation (1.1) on [−a, 0)∪ (0, b] satisfying the boundary
conditions (1.2)-(1.3) must be of the form (3.5).

Next, we prove that the second part. The relation (3.6) implies

Uk(y, λ) = ϕ(λ)Uk(u, λ) + ψ(λ)Uk(v, λ), k = 1, 2. (3.7)

That is, λ is an eigenvalues of (1.1)-(1.5) with the eigenfunction y as defined
in (3.5), if and only if U1(y, λ) = 0 and U2(y, λ) = 0. Moreover, these two
equations exist nontrivial solution ϕ(λ) and ψ(λ) if and only if

ω(λ) = det

(
U1(u, λ) U1(v, λ)
U2(u, λ) U2(v, λ)

)
= 0.

Therefore, it is shown that each eigenvalue is zero of the function ω(λ). The
proof of the Theorem is complete. �

Let W [u(x, λ), v(x, λ)] =: $(λ). In view of Theorem 3.4, we have

Φ(x, λ) :=
v(x, λ)

$(λ)

∫ x

−a
u(t, λ)h(t)dt+

u(x, λ)

$(λ)

∫ b

x

v(t, λ)h(t)dt, h ∈ L2(−a, b).

and the Green’s function of the problem (1.1)-(1.5) is given by

G(x, t;λ) =


u(t, λ)v(x, λ)

$(λ)
, t < x, t ∈ [−a, 0) ∪ (0, b],

v(t, λ)u(x, λ)

$(λ)
, x < t, t ∈ [−a, 0) ∪ (0, b].

Theorem 3.5. Let

g(x, λ) =

∫ b

−a
G(x, t;λ)h(t)dt := Tλh. (3.8)

Then g(x, λ) is a solution of the equation (λ − L)g = ph on [−a, 0) ∪ (0, b].
Moreover, g obeys the boundary conditions (1.2)-(1.3) and transfer conditions
(1.4)-(1.5).

Proof. The relation (3.8) implies

g$(λ) = v(x, λ)

∫ x

−a
u(t, λ)h(t)dt+ u(x, λ)

∫ b

x

v(t, λ)h(t)dt. (3.9)

Furthermore, we have

∂

∂x
g$(λ) =

∂

∂x
v(x, λ)

∫ x

−a
u(t, λ)h(t)dt+

∂

∂x
u(x, λ)

∫ b

x

v(t, λ)h(t)dt

(3.10)
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and

p
∂2

∂x2
g$(λ)

=
∂2

∂x2
v(x, λ)

∫ x

−a
u(t, λ)h(t)dt+

∂2

∂x2
u(x, λ)

∫ b

x

v(t, λ)h(t)dt+ ph(x)$

=(q − λ)g$(λ) + ph$(λ).

(3.11)
Therefore, (λ− L)g = ph holds.

It remains only to show that g satisfies the (1.2)-(1.3) and (1.4)-(1.5).
In view of (3.9) and (3.10), we have

g(−a) =
u(−a, λ)

$(λ)

∫ b

−a
v(t, λ)h(t)dt, g′(−a) =

u′(−a, λ)

$(λ)

∫ b

−a
v(t, λ)h(t)dt,

By the Theorem 3.4, u obeys (1.2). Then, g satisfies (1.2). Similarly, g satisfies
(1.3). Moreover,(
g(0±)
g′(0±)

)
=

1

$(λ)

(
v(0±)
v′(0±)

)∫ 0

−a
u(t)h(t)dt+

1

$(λ)

(
u(0±)
u′(0±)

)∫ b

0

v(t)h(t)dt.

Obviously, (1.4) and (1.5) are obeyed. The proof of the Theorem is complete.
�

4. The Resolvent Operator of A

In this section, we apply the properties of operator A to study the
resolvent operator in the Hilbert space H. We first consider nonhomogeneous
boundary conditions

−ε∆′f + (λI − [γi])f
1 = ph1, (4.1)

−ε∆f + (λI − [δj ])f
2 = ph2. (4.2)

Meanwhile, the domain of the operator A implies

−f(0+) + σ∆′f − 〈f1, ε〉1 = 0, (4.3)

f ′(0−)− τ∆f − 〈f2, ε〉1 = 0. (4.4)

If λ 6= γi for all i, then from (4.1) we have

−f(0+) + σ∆′f − 〈(λI − [γi])
−1(ph1 + ε∆′f), ε〉1.

Using (1.4), we get

−f(0+) +
1

µ(λ)
∆′f = 〈ph1, (λI − [γi])

−1ε〉1.
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If λ = γI for some I ∈ {1, · · ·, N ′}, then from (4.1) we have ∆′f = −ph
1
I

εI
. For

i ∈ {1, · · ·, N ′} \ I, f1
i =

h1
i +εi∆

′f
γI−γi . Thus, from (4.3) we get

−f(0+)− σph
1
I

εI
−
∑
i6=I

εi
εI

εIph
1
i − εiph1

I

γI − γi
= εIf

1
I .

Similarly, if λ 6= δj for all j, then

f ′(0−)− 1

ν(λ)
∆f = 〈ph2, (λI − [δj ])

−1ε〉1.

If λ = δJ for some J ∈ {1, · · ·,M ′}, then the relation

f ′(0−) + τ
ph2

J

εJ
−
∑
j 6=J

εj
εJ

εJph
2
j − εjph2

J

δJ − δj
= εJf

2
J .

holds.

Therefore, the operator equation (λI −A)Y = H,

H = (ph, ph1, ph2, ph
1, ph2)T ∈ L((−a, b))⊕ C⊕ C⊕ CN

′
⊕ CM

′

is equivalent to the discontinuous boundary value problem consisting of the
differential equation

−p(x)y′′ + q(x)y = λy(x)− ph(x), x ∈ J,

together with eigenparameter-dependent boundary conditions

λ(α′1y(−a)− α′2y′(−a))− (α1y(−a)− α2y
′(−a)) = ph1,

λ(β′1y(b)− β′2y′(b)) + (β1y(b)− β2y
′(b)) = ph2

and transfer conditions (the case of λ 6= γi and λ 6= δj)

y(0+)µ(λ)−∆′y = 〈ph1, (λI − [γi])
−1ε〉,

y′(0+)ν(λ)−∆y = 〈ph2, (λI − [δj ])
−1ε〉.

We consider the resolvent set ρ(A) = {λ ∈ C|(λI − A)−1 ∈ D(A)}.
Then, we need to show (λI − A)−1 is the resolvent operator, just prove
(λI −A)−1 ∈ D(A).

Theorem 4.1. Let λ be not an eigenvalue of operator A. Then

(λI −A)−1H =


Tλh

(Tλh)1

(Tλh)2

(λI − [γi])
−1ε∆′Tλh

(λI − [δj ])
−1ε∆′Tλh

 =: G̃h.

Proof. We know from Corollary 2.4 that each λ ∈ C is not an eigenvalue of A.
Thus, the resolvent operator (λI−A)−1 exists. It remains only to show G̃h ∈
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D(A). The definition of Tλh implies that g ∈ AC[−a, b], g′ ∈ AC[−a, 0)∪(0, b]
and obey the boundary condition (1.2)-(1.3). Moreover, the equalities

g(0+) = (Tλh)(0+) =

(
σ −

N ′∑
i=1

ε2
i

λ− γi

)
∆′(Tλh) = σ∆′g − 〈g1, ε〉1, λ 6= γi.

and

g′(0−) = (Tλh)′(0−) =

(
τ +

M ′∑
j=1

ε2j
λ− δj

)
∆(Tλh) = τ∆′g − 〈g2, ε〉1 λ 6= δj .

hold. Meanwhile, Remark 2.1 implies that if λ = γI for some I ∈ {1, · · ·, N ′},
then (∆′Tλh) = 0 and g1 = −y(0+)

εI
eI ; Therefore,

g(0+) = −〈g1, ε〉1 = σ∆′g − 〈g1, ε〉1.

Similarly, we have

g′(0−) = 〈g2, ε〉1 = τ∆g + 〈g1, ε〉1.

Thus, G̃h ∈ D(A) and the desired result holds. The proof of the Theorem is
complete. �

Theorem 4.2. Let R(λ,A) = (λI −A)−1. Then

‖R(λ,A)H‖ ≤ |Imλ|−1‖H‖, H ∈ H

holds for all λ ∈ C such that Imλ 6= 0.

Proof. Let H = (ph, ph1, ph2, ph3, ph4)T be any element of H and Y =
R(λ,A)H. Since (λI −A)Y = H, we have

〈AY, Y 〉 = 〈λY −H,Y 〉 = λ〈Y, Y 〉 − 〈H,Y 〉

and

〈Y,AY 〉 = 〈Y, λY −H〉 = λ̄〈Y, Y 〉 − 〈H,Y 〉,
which imply |Imλ|‖Y ‖2 = |Im(H,Y )|. On the other side, in view of Cauchy-
Schwartz inequality, we have

|Im(H,Y )| ≤ |(H,Y )| ≤ ‖H‖‖Y ‖.

Therefore, the inequality

‖R(λ,A)H‖ = ‖Y ‖ ≤ |Imλ|−1‖H‖, H ∈ H

holds. The proof of the Theorem is complete. �

It should be mentioned that for λ ∈ C such that Im 6= 0, the resolvent
operator exists and for all λ ∈ ρ(A) is regular point of A.

Theorem 4.3. The operator A is self-adjoint in H.
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Proof. We know from Lemma 2,1 and Theorem 2.2 that A is a densely sym-
metric operator in H. To show that A is self-adjoint , it remains only to verify
that D(A∗) = D(A), where A∗ is the adjoint of A.

Since D(A) ⊆ D(A∗), we only show that D(A∗) ⊆ D(A). Let H ∈
D(A∗). Then

〈AH,G〉 = 〈H,A∗G〉 for all G ∈ D(A). (4.5)

It follows from (4.5) that

〈(iI −A)G,H〉 = 〈G, (−iI −A∗)H〉. (4.6)

Note that λ = −i is a regular point. Then, we let

(iI −A)Y = −iH −A∗H, Y ∈ D(A). (4.7)

Substituting (4.7) in (4.6) and taking into account that A is symmetric, we
have

〈(iI −A)G,H〉 = 〈(iI −A)G, Y 〉. (4.8)

Similarly, from λ = i ia a regular point, we let G = R(i, A)(H − Y ). Then
by (4.8), we have H = Y and thus H ∈ D(A). The proof of this Theorem is
complete. �
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