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Abstract

In the field of compressed sensing, `1−2-minimization model can recover the sparse signal well. In
dealing with the `1−2-minimization problem, most of the existing literatures use the DCA algorithm to
solve the unrestricted `1−2-minimization model, i.e. model (2). Although experiments have proved that the
unrestricted `1−2-minimization model can recover the original sparse signal, the theoretical proof has not
been established yet. This paper mainly proves theoretically that the unrestricted `1−2-minimization model
can recover the sparse signal well, and makes an experimental study on the parameter λ in the unrestricted
minimization model. The experimental results show that increasing the size of parameter λ in model (2)
appropriately can improve the recovery success rate. However, when λ is sufficiently large, increasing λ will
not increase the recovery success rate.
Keywords: compressed sensing, `1−2-minimization, DCA algorithm, k-sparse signal

1 Introduction

Compressed sensing is an effective data recovery technology. It mainly recovers high-dimensional unknown
signals from low-dimensional measurement by finding the sparse solution. Its mathematical model can be
expressed as

min
x∈Rn

‖x‖0 s.t. Ax = y,

where A ∈ Rm×n is the measurement matrix, y is the measurement, ‖x‖0 represents the number of non-zero
components in x, and m� n. We call the above mathematical model `0-minimization model.

The `0-minimization problem is NP-hard and thus computationally infeasible in high dimensional sets [1].
In order to solve the `0-minimization problem, a popular method is to replace it with `1-minimization model.
The mathematical expression of `1-minimization model is

min
x∈Rn

‖x‖1 s.t. Ax = y,

where ‖x‖1 =
∑n
i=1 |x|. The existing literature has shown that when the measurement matrix meets certain

properties, such as null space property [1, 2], coherence [8], cumulative coherence [9], restricted orthogonality
constant [7] and restricted isometry property [3–6], `1-minimization model can well solve the `0-minimization
problem.

Although `1-minimization problem has considerable results, it is not exactly equivalent to `0-minimization
problem [10, 11]. Hence, `1−2-minimization problem [12–15] has been put forward to replace `1-minimization
problem in whice case `1-minimization problem does not execute well.

The mathematical expression of `1−2-minimizatiol model is as follows:

argmin
x∈Rn

‖x‖1 − ‖x‖2 subject to Ax = y, (1)

where ‖x‖2 =
√∑n

i=1 |xi|2. Its unrestricted model is as follows:

min
x∈Rn

‖x‖1 − ‖x‖2 +
λ

2
‖Ax− y‖22 (2)

Existing literature has shown that `1−2-minimizatiol model has stronger ability to recover the original data
than `1-minimizatiol model [14,15]. However, because the `1−2-minimizatiol model is a nonconvex optimization
problem, it is not so easy to solve this model. At present, paper [13] uses the DCA algorithm to solve the
unrestricted `1−2-minimizatiol model. Although the experimental results show that their algorithm is very
effective, the theoretical proof that the unrestricted `1−2-minimizatiol model can recover the original data has
not been established yet. Therefore, it is very meaningful to establish a theory to prove that the unrestricted
`1−2-minimizatiol model can recover the original data. The main content of this paper is to establish this result.
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The main contribution of this paper includes two aspects. (i) We theoretically prove that the unrestricted
`1−2-minimizatiol model can effectively restore the original sparse data; (ii) We use DCA algorithm to study
the influence of the size of parameter λ on the experimental results. It is found that increasing the size of
parameter λ in model (2) appropriately can improve the recovery success rate. However, when λ is sufficiently
large, increasing λ will not increase the recovery success rate.

2 Preliminary

In this paper, we denote [n] = {1, 2, · · ·n}, supp(x) = {i|xi 6= 0}. S ⊂ [n] is a subscript set. S is the
complement of S. |S| is the cardinal of S. xS is a vector related to x, meaning (xS)i = xi for i ∈ S, and
otherwise (xS)i = 0. AT is transpose of A.

Definition 1 For S ⊂ [n] and each number s, s-restricted isometry constant of A is the smallest δs ∈ (0, 1)
such that

(1− δs)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δs)‖x‖22
for all subsets S with |S| ≤ s and all ‖x‖0 ≤ s. The matrix A is said to satisfy the s-RIP with δs.

3 main

In this section, we give the theoretical results.

Theorem 1 Suppose x0 is s-sparse vector with S = supp(x0), x∗ is a solution of (2) with y = Ax0 + e, where
‖e‖2 = ε, if matrix A satisfies some s+ s1-RIP with δs+s1 such that

(1− δs+s1)

√
s1 − 1

√
s1 +

√
s
− (1 + δs1)

√
s+ 1

√
s1 +

√
s
> 0

then we have
‖x∗ − x0‖2 ≤ Cε, (3)

where C is a constant.

Proof: Since x∗ is a solution of (2), then we have

‖x∗‖1 − ‖x∗‖2 +
λ

2
‖Ax∗ − y‖22 ≤ ‖x0‖1 − ‖x0‖2 +

λ

2
‖Ax0 − y‖22. (4)

Setting v = x∗ − x0, (4) yields that

‖Ax∗ − y‖22 − ‖Ax0 − y‖22 ≤
2

λ
(‖x0‖1 − ‖x∗‖1 − ‖x0‖2 + ‖x∗‖2)

≤ 2

λ
(‖x0‖1 − ‖x0 + vS + vS‖1 + ‖v‖2) =

2

λ
(‖x0‖1 − ‖x0 + vS‖1 − ‖vS‖1 + ‖v‖2)

≤ 2

λ
(‖vS‖1 − ‖vS‖1 + ‖v‖2).

(5)

On the other hand, for any α ∈ Rn, β ∈ Rn, t > 0, it holds that

−‖α− β‖22 ≤
1

t
(‖α‖22 − ‖β‖22) +

1

t(t+ 1)
‖β‖22. (6)

Taking α = Ax∗ − y, β = Ax0 − y, and by the fact ‖Ax0 − y‖2 = ε and (5), we obtain

−‖Av‖22 ≤
1

t
(‖Ax∗ − y‖22 − ‖Ax0 − y‖22) +

1

t(t+ 1)
‖Ax0 − y‖22

≤ 2

tλ
(‖vS‖1 − ‖vS‖1 + ‖v‖2) +

1

t(t+ 1)
ε2.

(7)

Since |S| ≤ s, Cauchy-Schwarz inequality yields ‖vS‖1 ≤
√
s‖vS‖2. So (7) implies that

‖vS‖1 ≤
√
s‖vS‖2 + ‖v‖2 +

tλ

2
‖Av‖22 +

λ

2(t+ 1)
ε2. (8)
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Since (8) holds for all t > 0, hence by taking t = 0, we can get

‖vS‖1 ≤
√
s‖vS‖2 + ‖v‖2 +

λ

2
ε2. (9)

Now, we estimate ‖Av‖22. Note that for any r > 0, it holds that

‖α− β‖22 ≤ (1 + r)‖α‖22 + (1 +
1

r
)‖β‖22.

We apply above result to Av = Ax∗− y− (Ax0− y) and combine with (5) ant the fact ‖Ax0−y‖2 = ε to obtain

‖Av‖22 ≤ (1 + r)‖Ax∗ − y‖22 + (1 +
1

r
)‖Ax0 − y‖22

= (1 + r)(‖Ax∗ − y‖22 − ‖Ax0 − y‖22) + (2 + r +
1

r
)‖Ax0 − y‖22

≤ (1 + r)
2

λ
(‖vS‖1 − ‖vS‖1 + ‖v‖2) + (2 + r +

1

r
)ε2

≤ (1 + r)
2

λ
(
√
s‖vS‖2 + ‖v‖2) + (2 + r +

1

r
)ε2

≤ 2(1 + r)(
√
s+ 1)

λ
‖v‖2 + (2 + r +

1

r
)ε2.

(10)

Now we divide S into subsets of size s1. Suppose S = {k1, k2 · · · kn−|S|} with |vki | ≥ |vkj | for all 1 ≤ i < j ≤
n − |S|. Let Sj = {kl : (j − 1)s1 + 1 ≤ l ≤ js1}, j = 1, 2, · · · . Then we have ‖vSj+1

‖∞ ≤
‖vSj

‖1
s1

, which yields

‖vSj+1‖22 ≤
‖vSj

‖21
s1

= (
‖vSj

‖1√
s1

)2. Therefore∑
j≥2

‖vSj‖2 ≤
1
√
s1

∑
j≥1

‖vSj‖1 =
1
√
s1
‖vS‖1. (11)

Thus, it follows from (9) that ∑
j≥2

‖vSj
‖2 ≤

1
√
s1

(
√
s‖vS‖2 + ‖v‖2 +

λ

2
ε2). (12)

Detoting S ∪ S1 by S01, then we obtain

‖v‖2 ≤ ‖vS01
‖2 +

∑
j≥2

‖vSj‖2

≤ ‖vS01
‖2 +

1
√
s1

(
√
s‖vS‖2 + ‖v‖2 +

λ

2
ε2)

≤ (1 +

√
s

s1
)‖vS01

‖2 +
1
√
s1
‖v‖2 +

λε2

2
√
s1
.

(13)

Thus, we can get

‖vS01‖2 ≥
√
s1 − 1

√
s1 +

√
s
‖v‖2 −

λε2

2
√
s1 + 2

√
s
. (14)

‖Av‖2 ≥ ‖Av01‖2 −
∑
j≥2

‖AvSj‖2

≥
√

1− δs+s1‖v01‖2 −
√

1 + δs1
∑
j≥2

‖vSj
‖2

≥ (1− δs+s1)‖v01‖2 − (1 + δs1)
∑
j≥2

‖vSj
‖2

≥ (1− δs+s1)‖v01‖2 − (1 + δs1)(
1
√
s1

(
√
s‖vS‖2 + ‖v‖2 +

λ

2
ε2))

≥ (1− δs+s1 − (1 + δs1)

√
s

√
s1

)‖v01‖2 − (1 + δs1)(
1
√
s1

(‖v‖2 +
λ

2
ε2))

≥ (1− δs+s1 − (1 + δs1)

√
s

√
s1

)(

√
s1 − 1

√
s1 +

√
s
‖v‖2 −

λε2

2
√
s1 + 2

√
s

)− (1 + δs1)(
1
√
s1

(‖v‖2 +
λ

2
ε2))

= ((1− δs+s1)

√
s1 − 1

√
s1 +

√
s
− (1 + δs1)

√
s+ 1

√
s1 +

√
s

)‖v‖2 − (
1− δs1+s√
s1 +

√
s

+
(1 + δs1)

√
s1

s1 +
√
s1s

)
λε2

2
.

(15)
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Setting a = (1−δs+s1)
√
s1−1√
s1+
√
s
−(1+δs1)

√
s+1√
s1+
√
s
, b = (

1−δs1+s√
s1+
√
s

+
(1+δs1 )

√
s1

s1+
√
s1s

)λε2 , c = 2(1+r)(
√
s+1)

λε , d = (2+r+ 1
r ),

we know that b, c, d are all positive numbers. In addition, the conditions in the theorem show that a > 0.
Combine (10) and (15), we have

a‖v‖2 ≤
√
cε‖v‖2 + dε2 + bε. (16)

Setting x = ‖v‖2
ε , then (16) is equivalent to

ax− b ≤
√
cx+ d. (17)

Figure 1 shows the images of function ax− b and function
√
cx+ d when a, b, c, d are positive numbers. Figure

1 shows that there is a unique constant x1 such that ax1 − b =
√
cx1 + d and shows that when 0 < x < x1, it

holds that ax− b ≤
√
cx+ d. Therefore we have ‖x∗ − x0‖2 = ‖v‖2 ≤ x1ε. �

Figure 1: Two function images

Remark 1 From the proof of Theorem 1, it is noted that, s1 has not been fixed yet. So we can use this freedom
to pick s1 so that a > 0.

4 Selection of parameter λ

In this section, we will use DCA algorithm to study the influence of the size of parameter λ on the ability
of model (2) to recover the original signal. We first give the specific DCA algorithm for model (2).

4.1 DCA algorithm

Since 0 ∈ ∂‖0‖2, and x
‖x‖2 ∈ ∂‖x‖2 when x 6= 0, we give the following algorithm to solve model (2).

Algorithm 1:

Input: k = 0, A, y, x0 = 0 , ε, Outmaxtimes
1 WHILE(k < Outmaxtimes)

2 If xk = 0
3 v = 0;
4 ELSE

5 v = xk

‖xk‖2
6 ENDIF

7 xk+1 = argmin
{
‖x‖1 − 〈x, v〉+ λ

2 ‖Ax− y‖
2
2

}
;

8 x∗ = xk+1;

9 IF ‖xk+1−xk‖2
max{1,‖xk‖2} > ε

10 k = k + 1;
11 CONTINUE;
12 ENDIF;
13 BREAK;
14 ENDWILE;

Output: x∗
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There is no analytical solution in the seventh step of Algorithm 1. We use the idea of ADMM algorithm to
design a sub algorithm to approximate its solution. The seventh step in algorithm 1 is equivalent to solving the
following problems

min
x,z∈Rn

‖z‖1 − 〈v, x〉+
λ

2
‖Ax− y‖22 s.t. z = x (18)

The extended Lagrange function of (18) is

L(x, z, α) = ‖z‖1 − 〈v, x〉+
λ

2
‖Ax− y‖22 + 〈α, z − x〉+

δ

2
‖z − x‖22. (19)

According to ADMM algorithm, we get the following iterative formula

xk+1 = argmin
x∈Rn

{−〈v, x〉+
λ

2
‖Ax− y‖22 − 〈αk, x〉+

δ

2
‖zk − x‖22}. (20)

zk+1 = argmin
z∈Rn

{‖z‖1 + 〈αk, z〉+
δ

2
‖z − xk+1‖22}. (21)

αk+1 = αk + δ(zk+1 − xk+1). (22)

Next, we give the specific sub algorithm.

Algorithm 2: sub algorithm

Input: k = 0, A, y, z0, α0, λ, δ, v, εrel, εabs, inmaxtime > 0
1 WHILE(k < inmaxtime)

2 xk+1 = (λATA+ δI)−1(v + λAT y + αk + δzk)

3 zk+1 = soft(xk+1 − αk

δ ,
1
δ )

4 αk+1 = αk + δ(zk+1 − xk+1)

5 x∗ = xk+1;

6 Set r = xk+1 − zk+1, s = δ(zk+1 − zk).

7 IF ‖r‖2 6
√
nεabs + εrelmax{‖xk+1‖2, ‖zk+1‖2}&& ‖s‖2 6

√
nεabs + εres‖αk+1‖2

8

9 BREAK;
10 ENDIF;
11 k = k + 1;
12 ENDWHILE;

Output: x*

4.2 Test of the size of parameter λ

In this section, we will test the impact of the size of parameter λ on the ability of model (2) to recover the
original signal. We set other parameters of Algorithm 1 and Algorithm 2 first.

In this paper, two experiments are carried out. In the first experiment, we choose Gaussian matrix A ∈
R64×256 as the measurement matrix, and in the second experiment, we choose Gaussian matrix A ∈ R128×512

as the measurement matrix. The measurement matrices are row linear independent. The other parameters
are the same in the two experiments. In Algorithm 1, we choose ε = 10−4, Outmaxtimes = 31, x0 = 0. We
take random sparse vector x ∈ Rn as analog signals respectively. The position of non-zero elements on the x is
random. We take y = Ax+ e, where e is a Gaussian noise with ‖e‖2 = 10−4. In Algorithm 2, we take α0 = 0,
z0 = 0, δ = 1, εrel = 10−5, εabs = 10−2εrel, inmaxtime = 6000 and the values of v and λ are the same as those

in Algorithm 1. Assuming that x∗ is the result of the algorithm and x is the analog signal, if ‖x
∗−x‖2
‖x‖2 < 10−3,

then the algorithm is considered to have successfully restored the original signal.
Figure 2 is the first experiment. Its analog signal sparsity s is 12, 14, 16, 18, 20. The measurement matrix

A is a 64× 256 order Gaussian matrix, and the test parameters are λ = 10, 20, 30, 40 and 50 respectively. As
can be seen from Figure 2, with the increase of sparsity s, the recovery success rate of the experiment decreases,
and the larger the parameter λ, the higher the recovery success rate.

Figure 3 is the second experiment. Its analog signal sparsity s is 24, 28, 32, 36, 40. The measurement matrix
A is a 128 × 512 order Gaussian matrix, and the test parameters are λ = 20, 40, 60, 80 and 100 respectively.
It can be seen from Figure 3 that the recovery success rate of the experiment decreases with the increase of
sparsity s. However, different from the first experiment, in this experiment, when the parameters λ = 60,
λ = 80 and λ = 100, their recovery success rate is the same, and all three case are higher than when λ = 20 and
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λ = 40. Combined with Figure 2 and Figure 3, we know that increasing the size of parameter λ appropriately
can improve the recovery success rate. However, when λ is sufficiently large, increasing λ will not increase the
recovery success rate.

Figure 2: Measurement matrix A ∈ R64×256 Figure 3: Measurement matrix A ∈ R128×512

5 Conclusion

Using RIP condition, this paper proves that the unrestricted `1−2-minimization model can recover the
original sparse signal. Data experiments show that the unrestricted `1−2-minimization model of the size of the
parameters λ in the model has a great impact on the ability of the model to recover data.
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