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Spatially explicit coalescent models in which the underlying
demographic parameters are informed by the environment
(either past, present, or temporally and spatially changing
environments) provide a framework for hypothesis testing
that incorporates geographic information about genetically
sampled individuals. This general approach - IntegratedDis-
tributional, Demographic and Coalescent (iDDC) modelling
- can be used to explain how heterogeneous, dynamic land-
scapes shape the history and genetic patterns of a species.
However, iDDC approaches involve long and complex tasks
that often require custom-fit simulators, some coding ex-
pertise, and extensive computing resources. Here we in-
troduce several resources that offer improved speed and
generality, as well as expand the feasible parameter space
for conducting iDDC analyses compared to other software
applications. Specifically, QUETZAL-EGGS are C++ iDDC
simulators; QUETZAL-CRUMBS is a complementary set of

*A.B. designed the models, software and computational framework.†L.L.K. supervised the conception, funding and findings of this work.*†All authors provided critical feedback and helped shape the research, resources and analysis. All authors contributed to the final manuscript.
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Python tools for simulating on specific landscapes and con-
ducting Approximate Bayesian Computation (ABC) analy-
ses (e.g., prior sampling, geospatial operations, ENM/SDM,
visualization); DECRYPT is a framework for automated, biology-
informed robustness analysis of themultispecies coalescent
model. All these tools and their dependencies for local use
or remote computations aremade readily available in aDocker
container package called QUETZAL-NEST.
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1 | INTRODUCTION29

Integrating distributional, demographic and coalescence models (iDDCmodeling, He et al., 2013, see also the excellent30

review by Larsson et al. 2021) is a powerful tool to explore how spatial and temporal landscape heterogeneity shapes31

the genetic diversity of modern populations (e.g., Knowles and Alvarado-Serrano, 2010; Brown and Knowles, 2012;32

Pan et al., 2020). In this category of modelling approaches, the landscape is discretized into a very large number of33

demes (e.g., >1000). The demographic history (i.e., the number of individuals in each deme and the number ofmigrants34

across demes) is simulated as a function of the environmental variation over many generations (i.e., thousands, to tens35

of thousands, of generations). Then conditionally on this historical demographic processes, a coalescence process36

tracks the ancestry backward in time of genetically sampled individuals across a landscape.37

When coupled with simulation-based inference methods like Approximate Bayesian Computation, ABC (Beau-38

mont et al., 2002; Estoup et al., 2010), these iDDC models have the interesting property to generate complex ge-39

ographic distributions of genetic variation while maintaining a reduced number of parameters (because parameters40

describe landscape-wide processes as a function of the underlying environment, rather than excessive parameteriza-41

tion of each individual deme). With less than a dozen parameters, the procedure is nevertheless flexible enough to42

represent reasonably complex processes (e.g., shifting species distributions, varied rates of migration across a land-43

scape, population growth, and geographic barriers that vary in their attenuation of gene flow).44

However, overall contributions of iDDC modeling have been rather limited. Few researchers apply the approach45

despite its intriguing potential for hypothesis testing using biologically informed expectations, and even though iDDC46

modeling addresses questions that could not otherwise be addressedwith genericmodels that are not spatially explicit47

(e.g., the contribution of contemporary versus historical landscapes to genetic structure, He et al. 2013; recolonization48

of river routes following deglaciation, Neuenschwander et al. 2008; the geographic position of refugial populations,49

Bemmels et al. 2019; the facilitative versus competitive effects of co-distributed species on colonization of landscapes,50

Ortego and Knowles 2020). We argue that the limited traction of iDDC modeling reflects technical and practical51

challenges of iDDC modeling itself. To increase the accessibility of iDDC modeling to a broad audience, we have52

developed a set of software tools that solve some of the methodological hurdles associated with ease of application53

and computational constraints (Figure 1). Rather than presenting a biological application of these resources in this54

article, we instead direct readers to an example repository with a full data analysis that is accompanied by detailed55
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documentation of the applied software and computational resources https://github.com/Becheler/quetzal_on_56

OSG.57

2 | QUETZAL-EGGS SIMULATORS58

2.1 | Motivations59

With respect to available tools for simulating spatially explicit genetic variation across a landscape, SPLATCHE (Currat60

et al., 2004, 2019) is a user-friendly simulation software that has been supporting the community for two decades,61

but it is closed source and limited in its configuration capabilities. Considering the wide range of systems that can62

potentially be analyzed using iDDC, there is not a one-size-fits-all solution: different systems will inevitably require63

different sets of assumptions/models/simulators. This is exemplified by the many modified versions of the program64

SPLATCHE used across the literature (e.g., White et al., 2013; Mona et al., 2014). Moreover, because the code is65

closed source, modifications are restricted to a limited number of people who work with the program and their ability66

(and availability) to incorporate new implementations.67

To encourage the open-source creation of new simulators and foster the analysis of new biological systems,68

QUETZAL-COATL (Becheler et al., 2019; Becheler and Knowles, 2020) was designed as a C++ library of generic69

components that can be programmed and assembled into versatile simulators. However, its use is by definition re-70

stricted to C++ programmers (although online tutorials may shorten the beginners learning curve). To widen the range71

of models available to non-programmers, and incorporate information about the landscape for informing the spatial72

coalescent, we introduce the open-source QUETZAL-EGGS (https://github.com/Becheler/QUETZAL-EGGS).73

QUETZAL-EGGS contains ready-to-use simulators for implementing different variants of iDDC models. For ex-74

ample, EGG1 has been developed to simulate fine-grain spatial structure in a system of continental islands formed75

by progressive submersion of the continental shelf as a response to sea level change after the LGM, but whose pop-76

ulations remain connected to the mainland by transient trans-oceanic dispersal (e.g., rafting events), whereas EGG277

has been developed to illustrate climate-driven pulses in matrix connectivity among relatively isolated populations,78

such as among montane sky-islands systems (e.g., climate-induced elevational distribution shifts). QUETZAL-EGGS79

programs take as general inputs a configuration file, a geospatial file describing the landscape of interest and its dy-80

namics (generally a suitability raster from an ENM step, or multiple rasters for ENMs from different time periods), and81

a table of sampling locations (latitudinal and longitudinal coordinates). QUETZAL-EGGS complements other spatial82

simulation resources (e.g., slendr Petr et al., 2022) by offering a compromise between model complexity and compu-83

tational efficiency. For example, slendr and its backend SLIM (Haller and Messer, 2019) have features to represent84

spatial interactions between individuals, but the demographic events have to be compiled into a R object, which is85

expected to be computationally challenging when countless migrations events happen across a complex landscape86

during a long period of time, compared with SPLATCHE3 and QUETZAL-EGGS simulators that are compiled in C++,87

and as such, extends the model/parameters space for spatial simulations. We again note that anyone is welcome to88

contribute to discussions, or can update and grow this list of historical scenarios by adding new models using the89

Github Issues or Pull Request systems, or by contacting the authors.90

2.2 | Memory management91

One of the significant improvements with our QUEZTAL pipeline regards the computational expense of iDDC mod-92

eling. For example, SPLATCHE (Currat et al., 2019) keeps the demographic history on RAM, and as such, individual93
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simulations run faster. However, this comes at a cost of constraining the historical duration and landscape resolution94

(i.e., number of demes) to the system RAM capacity. Because RAM is a more limited resource than disk space, this95

constrains the number of nodes one can request on computing grids, slowing down the whole workflow and leading96

to very long run times. In response, researchers try to bypass this problem by re-scaling generation time and/or us-97

ing coarser landscapes (i.e. to reduce the number of generations and/or number of demes in the spatial simulation,98

respectively, see He et al., 2013), but this makes other parameters of the model difficult to interpret (Massatti and99

Knowles, 2016) and prevents the emergence of a fine-grain genetic structure that is often a desirable property for100

hypothesis testing. To mitigate computational constraints, QUETZAL-EGGS offers a compile-time option that imple-101

ments sliding windows that keeps only two active layers (i.e., two generations of the spatially explicit demographic102

history informed by environmental heterogeneity) on RAM at a time, storing unused layers on disk. This allows longer103

histories at higher spatial resolutions to be modelled.104

3 | QUETZAL-CRUMBS: PYTHON COMPONENTS SUPPORTING QUETZAL-105 EGGS106

3.1 | Motivations107

A number of iDDC related procedures are not per se the responsibility of the simulation program and would require108

some coding expertise to implement. Belowwe describe a new python3 library, QUETZAL-CRUMBS, that gathers pro-109

cedures of general interest for iDDC modeling using QUETZAL-EGGS, improving the accessibility of iDDC modelling110

to a broad user base.111

3.2 | Visualization of dynamics landscapes112

An important part of model choice and calibration is to visually investigate the landscape historical dynamics, whether113

it is how the candidate model and its parameters affect the demographic history, or how the suitability landscape114

changes through time. These 2D quantities are represented at each time step by a geospatial regular grid associated115

to a Coordinate Reference System (a raster). The temporal heterogeneity is represented by stacking these rasters (a116

multiband raster), where each layer (or band) represents a landscape at a given time period. To visualize how these117

stacks change through time, the crumbs.animate function converts these stacks into GIF or MP4 animations.118

3.3 | Preparing the landscape and adjusting the spatial grid properties119

In spatial dynamic models, resolution of the landscape is an issue (see e.g., Bocedi et al., 2012): if the resolution is too120

low (i.e., large environmentally heterogeneous geographic areas represented as a single deme), biological processes121

may be misrepresented and biases may result. If the landscape resolution is too high, computational costs may make122

ABC methodology impossible. Likewise, orientation of the spatial grid is a necessary model parameter, but with123

multiple orientations possible, this decision is made arbitrarily. To deal with these uncertainties, a common practice is124

to arbitrarily set aNorth-up orientation for the spatial grid, andmanually guess and adjust the landscape grid resolution125

to fit computational capacities. However, the impact on inference should be carefully assessed and one way to do so126

is to include the spatial resolution and grid orientation as parameters to be estimated (e.g., Baird and Santos, 2010;127

Estoup et al., 2010).128

The crumbs.rotate_and_rescale function allows the rejection of a sample rotation angle/resolution that can129
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not account for the genetic structure of an empirical data set or the simulation walltime is reached. That is, with this130

QUEZTAL-CRUMBS function, the user can avoid too coarse or too fine of spatial landscape grids and identify the131

rotation angle that provides the best fit to the observed geographic distribution of genetic variation.132

3.4 | Beyond the squared spatial grid133

There are many ways to discretize (tesselate) a landscape. There has been a focus on discrete grids for iDDCmodeling134

partly because SPLATCHE relies on ASCII raster format. However, it is expected that different tesselation models135

could affect the inference (Baird and Santos, 2010), and consequently, they should be tested. Moreover, considering136

different tesselations would allow an efficient integration of key data and processes that operate at different scales,137

such as capturing local micro-refugia without paying the cost of a landscape-wide high resolution (see e.g., Larsson138

et al., 2021; Randin et al., 2009; Trivedi et al., 2008). Since QUETZAL-COATL embeds abstract libraries like GDAL,139

the module does not make strong assumptions about tesselation models, requiring only a concept of coordinates,140

vicinity and distance for sampled individuals/populations. Consequently, different functions to discretize space (like141

Voronoi tesselations) can be investigated using QUETZAL-CRUMBS; the shapefiles would then be passed on to the142

QUETZAL-EGGS simulator.143

Rectangular landscapes can have counter-intuitive orientations that are not very convenient to work with, when144

compared to disk (circular) landscapes. To facilitate landscape manipulation and analysis, we implement a function145

circle_mask that fits and cuts a circle with maximal radius around the landscape center coordinate when rotating146

and re-scaling landscapes.147

3.5 | Representation of temporal heterogeneity at fine scales148

Despite appreciable progress in accounting for spatial heterogeneity, iDDC studies have focused on a limited number149

of bands (that is, raster layers) to represent temporal variability (e.g., 1 for static ENM, 2 or 3 for dynamic ENM,150

see He et al., 2013). This in large part reflects limitations with the available tools for spatially explicit modeling across151

temporally varying landscapes (Larsson et al., 2021), without some scripting required (e.g., Brown and Knowles, 2012).152

To ease this step, the crumbs.interpolate function takes a n-bands geoTiff and assigns its first band to genera-153

tion 0 and its last n band to the simulation maximal generation parameter g (that is, the present). The n − 2 remaining154

bands are then assigned to generations in a regular sequence [0...g ], or to a specific sequence provided by the user.155

Using dask (Rocklin, 2015) for parallel computing and larger-than-memory data management, the whole spatial dy-156

namics is reconstructed by interpolating the missing bands (i.e., bands without independent paleoclimatic data; (see157

Brown and Knowles, 2012), and this temporal heterogeneity can be animated using crumbs.animate and passed to158

a QUETZAL-EGGS simulator for simulating g generations of a spatial dynamic across the landscape. Note that recon-159

structing a suitability band for every generation may not scale well to the case of long histories in large landscapes. In160

these cases, the GDAL Virtual Format (VRT driver, .vrt) can be used to build a virtual dataset composed from other161

GDAL datasets with re-positioning; this allows for very large datasets where most of the bands are actually repeated162

and reused, rather than physically represented in memory.163

Rather than interpolating temporal heterogeneity from a few reference paleoclimatic ENMs for iDDC modeling164

(e.g., Knowles and Massitti 2018), the CHELSA-Trace21k database (Karger et al., 2016) offers high resolution spatio-165

temporal reconstructions for bioclimatic and elevational data for every century from the present to the LGM (that166

is, 220 time steps, with a band each 100 years). Using the crumbs.get_chelsa function in QUEZTAL-CRUMBS, the167

database variables are downloaded with a procedure that clips and assembles the the 220 layers into a GeoTiff dataset168
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for the spatial extent of the sampled data points (the user can specify a margin to extend the landscape to the desired169

size). This automation reduces memory usage and the resultant GeoTiff datasets can be processed by other QUETZAL-170

CRUMBSmodules and by the QUETZAL-EGGS simulators. Note that the long download step can easily be distributed171

on cluster grids.172

Together these advances provide a seamless, flexible iDDC workflow that is also open to extensions. Specifically173

ease of the iDDC workflow is made possible by (i) databases with major past climatic reconstructions (e.g., World-174

clim, Fick and Hijmans, 2017; PaleoClim, Brown et al., 2018; CHELSA, Karger et al., 2016), (ii) ENM software tools175

(e.g., SDMToolbox Brown, 2014; the R dismo package, Hijmans et al., 2017), and (iii) the QUETZAL iDDC modeling176

framework (Becheler et al., 2019) that generate and/or accept user provided GeoTIFF files.177

3.6 | Automated High resolution SDM reconstruction178

Using a shapefile of sampling coordinates, the crumbs.sdm module fetches CHELSA-Trace21k layers, crops them to179

the area of interest, and performs a species distribution reconstruction by automatically fetching presence points from180

the GBIF database (or user input files of occurrences) using 4 machine-learning classifiers (namely, Random Forest,181

Extra Trees, XGB and LGBM classifiers) to perform model fitting with a k-fold cross validation for computing accuracy182

scores. The models are then projected to past CHELSA-Trace21k layers and a geotiff is assembled.183

We are aware of the numerous challenges that SDM involves and debate regarding the best way to generate184

SDMs. Here we traded heavily customized approaches for a more general and reproducible workflow. This enables185

non-programmers to produce a suitability layer for every century during the last 21,000 years, and supply these 220186

layers of spatial dynamics to the QUETZAL-EGGS genetic simulation programs. Despite errors with the suitability187

predictions that may result from this more general and simplified automation of modeling landscape suitability, the188

inferred suitability predictions can be transformed by an arbitrary function (whose parameters can be estimated by189

ABC) to improve the generative fit of a model to observed genetic variation. This approach is adopted here because190

for time periods in the more distant past, assumptions for generating highly precise and accurate projections may not191

hold (e.g., niche conservatism and or similar community composition such that the species interactions are stable and192

therefore the relationship between specific environmental variables and a species distributions does not change over193

time). This contrasts with practices for short-term (the present or decadal) predictions where a highly-precise model194

may be desirable.195

3.7 | Genetic simulation and conversion tools196

Because in their current version QUETZAL-EGGS simulate coalescent trees in a Newick format that is stored in a197

SQLITE database along simulation parameters, QUETZAL-CRUMBShandles access to the simulation SQLITE database,198

and includes simulation of independent DNA sequences (using Pyvolve; Spielman and Wilke, 2015), data format con-199

version, and summary statistics computation (using Arlsumstat; Excoffier and Lischer, 2010).200

Note that for parameter estimation, QUETZAL-CRUMBS implements procedures already covered by pre-existing201

libraries (Wegmann et al., 2010; Mertens et al., 2018) to simplify bash scripting and dependency management for202

genetic simulation under specified priors.203

In addition, for spatially explicit simulations, initialization of the simulations has a geographic component. Some-204

times the geographic originmight be specified (e.g., based on the putative location of glacial refugia; see Bemmels et al.,205

2019). However, in other situations the origin is unknown and has to be inferred (He et al., 2017); the crumbs.sample206

function randomly samples candidate origin coordinates among the terrestrial cells of a landscape file in geoTIFF207



Arnaud Becheler and Lacey L. Knowles 7

format.208

3.8 | Sensitivity of inference to sampling of individuals209

Practical constraints may affect the sampling of individuals across a landscape (e.g., costs of genotyping many individ-210

uals or difficulties with being able to collect specimens). However, the sampling scheme itself may impact inferences211

made from genetic data (Mason et al., 2020). For example, limited sampling of geographically widespread taxa may212

generate genetic patterns that deviate from coalescent expectations for a single population, and as a consequence,213

the data might fit better a "multispecies" coalescent, MSC, model (i.e., more than one population lineage). In such214

cases, the sampling (rather than limited gene flow) would drive support for multiple population lineages, which in215

turn, is commonly interpreted as support for multiple cryptic species in the parlance of species delimitation (Barley216

et al., 2018; Sukumaran and Knowles, 2017). Yet, tests for such biased inferences arising from the sampling design217

are not common.218

The programDECRYPT, which usesQUEZTAL-EGGs to simulate a spatial coalescent informed by the environment219

(i.e., habitat suitability using QUEZTAL-CRUMBS), can be used to test for sensitivities due to sampling. Specifically,220

simulated data sets from the posterior of a full iDDC model (i.e., pseudo-observed data sets, PODs) are used to221

assess the robustness of the MSC to possible violation of its assumptions (e.g., restrictions in gene flow arising from222

environmental heterogeneity). That is, for a particular geographic sample design (the actual geographic coordinates223

of empirical samples) the inferred number of lineages can be estimated under the MSC. This provides a test of the224

robustness of the MSC to violations of the models assumptions, such as genetic structure within a species as an225

artifact of the sampling scheme or due to reduced gene flow because of landscape features.226

4 | QUETZAL-NEST227

For a non-programmer and newcomer to iDDC modeling, one the first barrier encountered is the diversity and dis-228

persion of tools and methods: identifying, installing, configuring, calibrating and running the required tools is far from229

trivial, even for simple tests on a local computer, and not to mention runs conducted on a cluster for scalable, repro-230

ducible science. A streamlined software solution that alleviates at least some of the complexity of analyses based on231

a spatial coalescent model is key to broadening the scope of potential users.232

Ideally, we will see the emergence of a framework for reproducible iDDC where the practitioner would only233

have to (i) connect to an HTC grid, (ii) download content from a standardized Github repository of gathered tools234

and methods for analysis, (iii) upload their own input files, (iv) select and run routine analysis workflows, and (v)235

retrieve and interpret outputs. Recent advances make some of this path a bit easier. First, the recent developments236

of ABC-Random Forest (Raynal et al., 2019) now allow scientists to perform ABC inference, bypassing complex and237

time-consuming aspects of the inference, which enables the design of more standard ABC workflows. Second, the238

emergence of containers (e.g., Docker and Singularity Kurtzer et al., 2017) and distributedHigh Throughput Computing239

(e.g., the Open Science Grid, Pordes et al., 2007) now allow packages to be shared and run in reproducible analytical240

environments.241

As a first step in this direction, we developed theQUETZAL-NESTDocker container that comeswith about 65 pre-242

installed dependencies. The container is published on DockerHub and available for local use (e.g., development, tests,243

tutorials) with docker pull arnaudbecheler/quetzal-nest. To allow researchers to perform full iDDC inferences244

with ABC, QUETZAL-NEST has also been submitted to the Open Science Grid CVMFS image repository where it is245
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available for distributed High Throughput Computing. An example repository of a full data analysis workflow built for246

OSG can be found at https://github.com/Becheler/quetzal_on_OSG.247

5 | FUTURE PROSPECTS248

Going forward, landscape types, demographic and historical details, and geographic settings will expand beyond249

the current resources of QUEZTAL, and will be made available as additional QUETZAL-EGGS simulators beyond250

the current list. Such additions are eased by the clear structure and intent of the C++ files that define each exist-251

ing QUETZAL-EGGS: EGG_options.h defines the simulator options, EGG_context.h defines the forward/backward252

model, EGG_database is responsible for storing simulated parameter values and data, and the main.cppp contains the253

main function. All files are relatively short and the code can be modified with minimal C++ knowledge.254

Currently, Quetzal simulates independent loci. Although this assumption is simple, it still matches a large number255

of existing geospatial genetic datasets. However, it also ignores the rich information embedded in recombination pat-256

terns of more complex datasets. Given its open source code and abstract interfaces, Quetzal could be interfaced with257

TSKIT (Kelleher et al., 2018) and/or SLIM for computationally efficient generated spatial history of whole genomes.258

More specifically, we began to implement a C++ version of the Hudson algorithm for enabling the simulation of a259

structured coalescent with recombination.260

With this flexibility in mind, we have developed QUEZTAL so it can continue to evolve to fit future demands of261

spatially explicit genetic studies in an open environment that is available to all researchers.262
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F IGURE 1 Main components, concepts and uses of the QUETZAL framework for open source iDDC modeling.
QUETZAL-NEST is a Docker container that packages all the tools and dependencies; it can be run locally with
Docker or on dHTC clusters with Singularity. QUETZAL-COATL (Becheler et al., 2019; Becheler and Knowles, 2020)
is a C++ library of reusable components and QUETZAL-EGGS are C++ iDDC simulators built with these components.
QUETZAL-CRUMBS is a complementary set of Python tools for hypothesis testing using ABC and common
landscape-ABC problems, including automatic adjustment of the spatial resolution and orientation of the landscape.
DECRYPT is a submodule of CRUMBS for automated, biology-informed robustness analysis of the multispecies
coalescent model.


