
Received xxx; Revised xxx; Accepted xxx
DOI: xxx/xxxx

RESEARCH ARTICLE

Decomposition of the displacements of thin-walled beams with
rectangular cross-section

Georges Griso

1Laboratoire Jacques-Louis Lions (LJLL),
Sorbonne Université, CNRS, Université de
Paris, F-75005 Paris, France
Correspondence
Georges Griso, Email:
griso@ljll.math.upmc.fr

Abstract

The aim of this paper is to decompose the displacements of thin-walled beams with
rectangular cross-section. The decomposition is accompanied by estimates of all its
terms with respect to the norm of the strain tensor. Korn’s inequality is also given.
KEYWORDS:
linear elasticity, elementary displacement, Kirchhoff-Love displacement, Bernoulli-Navier displacement,
residual displacement.
AMS Classification (2020): 35Q74, 74K20, 74B05

1 INTRODUCTION

The first work on thin elastic structures dates back to the 19th century. It was carried out by Euler, Bernoulli, Navier and Kirch-
hoff (among others). This work was continued and completed in the 20th century by physicists such as Timoshenko and Love
(among others). All these authors started from the displacements of a beam or a plate and gave approximations: the Bernoulli-
Navier displacements (below BN displacements) or Kirchhoff-Love displacements (below KL displacements). Then, to solve
elasticity problems, they neglected certain components of the stress tensors.
For several decades, mathematicians have been interested in the elasticity problems of thin structures. They began by transform-
ing the structure (beam or plate) by expanding in the direction(s) of the small dimension(s) in order to work in a fixed domain.
They then treated elasticity problems as minimisation problems or they used PDE techniques for singular variational problems.
They have shown that the asymptotic behavior of the solutions of elasticity problems are BN or KL displacements, and they
have also shown that certain components of the stress tensors vanish.
Both approaches have their limitations.
The mathematical approach cannot easily be extended to structures formed by a large number of beams or plates. The approach
of the early pioneers (mechanicians and physicists) is the most natural. But restricting the displacements of beams or plates to
BN or KL displacements is not enough, so they have added some assumptions about the stress tensors. In their decompositions,
shearing and warping are missing. It should be noted that it is not easy to deal with these last small parts of the displacements.
To deal with them, we need accurate estimates of all the terms of the decomposition. However, we can establish a simple rule for
using the residual displacements (shearing+warping): in the strain and stress tensors, it is sufficient to neglect the partial deriva-
tive(s) of these terms in the direction(s) of the larger dimension(s) of the structures; i.e. we keep only the partial derivative(s)
of these terms in the smallest dimension or dimensions (if there are several of the same order) (see Theorem 2 and15,16).
It’s a truism that a thin-walled beam with a rectangular cross-section is neither a beam nor a plate. But on closer inspection,

this structure looks much more like a plate than a beam. It has thickness 2�, width 2" and length L (0 < 2� < 2" < L), each of
its pieces of length 2" is a small plate. This is why we start by treating this structure as a plate.
We therefore decompose any displacement of the thin-walled beam as the sum of a KL displacement and a residual displacement
(we use the simplified version of the displacement decomposition of a plate obtained in16).
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Any displacement u ∈ W 1,p(Ω",�) is written as

u(x) = U ⋄
KL(x) + ũ

pl(x) =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

 ⋄
1 (x

′) − x3
) ⋄

3

)x1
(x′)

 ⋄
2 (x

′) − x3
) ⋄

3

)x2
(x′)

 ⋄
3 (x

′)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Kirchhoff-Love displacement

+ ũpl(x)
⏟⏟⏟

residual displacement
for a.e. x in Ω",� .

where Ω",� .
= P" × (−�, �), P" .

= (0, L) × (−", ") and  ⋄
1 ,  ⋄

1 ∈ W 1,p(P"),  ⋄
3 ∈ W 2,p(P"), ũpl = ũpl

1 e1 + ũ
pl
2 e2 + ũ

pl
3 e3 ∈

W 1,p(Ω",�)3.
The KL displacement U ⋄

KL can now be considered as a displacement of the 3D beam B" = (0, L) × (−", ")2. As a displacement
of this beam, it could be decompose as the sum of a BN displacement and a residual displacement. Unfortunately, this does not
work. A straightforward calculation shows that the contributions of membrane displacement U ⋄

m =  ⋄
1 e1 + ⋄

2 e2 and bending
 ⋄
3 to the strain tensor are not of the same order. That is whywe take a different approach. First, we considerU ⋄

m as a displacement
of the 2D thin beam P" and we decompose it as the sum of a BN displacement and a residual displacement (see15). This gives
us 1 ∈ W 1,p(0, L), 2 ∈ W 2,p(0, L) and ũm = ũ1e1 + ũ2e2 ∈ W 1,p(P")2 such that

 ⋄
m(x

′) =
⎛

⎜

⎜

⎝

1(x1) − x2
d2

dx1
(x1)

2(x1)

⎞

⎟

⎟

⎠

+ ũm(x′) for a.e. x′ in P".

We continue by dealing with bending  ⋄
3 . As x2 is close to 0 (|x2| < "), we develop it as follows:

 ⋄
3 (x

′) =  ⋄
3 (x1, 0) + x2

) ⋄
3

)x2
(x1, 0) + ̃ ⋄

3 (x
′).

Unfortunately, the functions  ⋄
3 (⋅, 0),

) ⋄
3

)x2
(⋅, 0) and the last one above are not smooth enough to be used in a PDE equation.

That is why we are replacing them with functions that are much better suited to PDE equations. We show that there exist
3 ∈ W 2,p(0, L), Θ ∈ W 2,p(0, L), ũ3 ∈ W 2,p(P") such that

 ⋄
3 (x

′) = 3(x1) + x2Θ(x1) + ũ3(x′) for a.e. x′ ∈ P".
We therefore arrive at the following decomposition of u:

u(x) = UBN (x) + ũtw(x) = UBN (x) − x2x3
dΘ
dx1

(x1)e1 + ũkl(x) + ũpl(x),

UBN (x) =

⎛

⎜

⎜

⎜

⎝

1(x1) − x2
d2

dx1
(x1) − x3

d3

dx1
(x1)

2(x1) − x3Θ(x1)
3(x1) + x2Θ(x1)

⎞

⎟

⎟

⎟

⎠

, ũkl(x) =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

ũ1(x′) − x3
)ũ3
)x1

(x′)

ũ2(x′) − x3
)ũ3
)x2

(x′)

ũ3(x′)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.
(1)

for a.e. x in Ω",� .
The first and main part of the above decomposition is a BN displacement, the second term: the displacement ũtw is the residual
part of the decomposition of u. Displacement ũtw is the sum of 3 terms. First−x2x3 dΘdx1 (x1), whereΘ is the torsion angle, and the
KL displacement ũkl, these two terms give information on shearing and warping of the cross-sections {x1} × !",� , x1 ∈ (0, L).
The last term ũpl represents shearing and warping of the fibers {x′} × (−�, �), x′ ∈ P". These terms are smaller than those in
the main part but we cannot neglect them as they play an important role in the strain and stress tensors. In the end, we can see
that the decomposition of the displacements of a thin-walled beam resembles that of a beam (at least in its main part: the BN
displacement).
Such a decomposition is only of interest if we can give an order of magnitude for the various terms that make it up, which is
done in Theorem 1).
As a general reference on elasticity, we refer the reader to1,3,5. For mathematical modeling of plates we refer to2 and4 for rods.
There is an abundance of literature written by mechanicians on the study of thin-walled beams (see e.g.6,7,8). A mathematical



3

study of the thin-walled beams with rectangular cross-sections using Γ-convergence is given in9. The decomposition of displace-
ments is presented in10,12 for curved beams, in11,15 for straight beams, in16 for plates, the decomposition of the deformations
is presented in13 for beams and14 for shells. In these papers we also find references to the decomposition of displacements or
deformations of structures made up of a large number of rods, plates, or plate and rod(s).
The paper is organized as follows:

• In Section 2 we introduce the main notations.
• In Section 3 we decompose any displacement of the thin-walled beam as the sum of a Kirchhoff-Love displacement and

a residual displacement.
• In Section 4 we detail the (1) writing of a displacement and we give all the estimates (see Theorem 1).
• In Section 5, we choose a sequence of displacements of the thin-walled beam Ω",� whose strain tensor has a Lp norm of

order ("�)1+1∕p. In Theorem 2, besides the limits of the terms of the decomposition, we give the asymptotic behavior of
the strain tensor using the limits of the terms of the decomposition.

• In Subsection 6.1, we give an application of our decomposition. We choose a classical loading of the structure and derive
the limit elasticity problem (see Theorem 3) posed in the rescaled domain Ω = (0, L) × (−1, 1)2 and then the variational
problems satisfied by the limit terms in the Bernoulli-Navier displacement. In Subsection 6.3, the thin-walled beam is
made of a homogeneous and isotropic material, in this case we rewrite the results of the previous subsection.

• Appendix (Section 7) is devoted to some technical results.
In this work, the constants appearing in the estimates will always be independent from ", � and L. As a rule the Latin indices

i, j, k and l take values in {1, 2, 3} while the Greek indices � and � in {1, 2}. We also use the Einstein convention of summation
over repeated indices.

2 NOTATIONS

We denote by | ⋅ | the euclidian norm of ℝ3 and by ⋅ the associated scalar product. The euclidian space ℝ3 is referred to the
orthonormal frame (O; e1, e2, e3

).
In this paper L is a fixed parameter while " and � are two small parameters satisfying 0 < 2� < 2" < L, they will simultane-

ously tend to 0 as well as �
"
.

Denote
• P"

.
= (0, L) × (−", "), Ω",�

.
= P" × (−�, �) the mid-surface and the thin-walled beam,

• !",�
.
= (−", ") × (−�, �) the reference cross-section,

• Γ",�
.
= {0} × !",� the clamped part,

• 
"
.
= {0} × (−", ") the clamped part of the mid-surface,

• Ω
.
= (0, L) × (−1, 1)2 the re-scaled thin-walled beam,

• P
.
= (0, L) × (−1, 1) the re-scaled mid surface,

• !
.
= (−1, 1)2 the re-scaled reference cross-section, Γ .

= {0} × !,
• for every v ∈ W 1,p(Ω",�)3, 1 ≤ p ≤∞, the strain tensor of v is

e(v) = 1
2

(

(∇v)T + ∇v
)

, eij(v) =
1
2

( )vi
)xj

+
)vj
)xi

)

.

e(v) is the 3 × 3 symmetric matrix whose entries are the eij(v)’s,
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3 DECOMPOSITION OF A THIN-WALLED BEAM DISPLACEMENT VIA A
KIRCHHOFF-LOVE DISPLACEMENT

In this section we decompose every displacement as the sum of a Kirchhoff-Love displacement plus a residual displacement.
Below, we use the function �� ∈ W 1,∞(ℝ) defined by

��(x1) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 if 0 ≤ x1 ≤ �,
1
�
(x1 − �) if � ≤ x1 ≤ 2�,

1 if x1 ≥ 2�.
Note that

∀x1 ∈ ℝ, 0 ≤
d��
dx1

(x1) ≤
1
�
.

Proposition 1. For every displacement u belonging to W 1,p(Ω",�)3 there exist a Kirchhoff-Love displacement and a residual
displacement such that

u(x) = U ⋄
KL(x) + ũ

pl(x) =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

 ⋄
1 (x

′) − x3
) ⋄

3

)x1
(x′)

 ⋄
2 (x

′) − x3
) ⋄

3

)x2
(x′)

 ⋄
3 (x

′)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Kirchhoff-Love displacement

+ ũpl(x)
⏟⏟⏟

residual displacement
(2)

for a.e. x in Ω",� .
 ⋄
m =  ⋄

1 e1 + ⋄
2 e2 is the membrane displacement,  ⋄

3 is the bending and ũpl satisfies
�

∫
−�

ũpl
1 (x

′, x3)dx3 =

�

∫
−�

ũpl
2 (x

′, x3)dx3 = 0 for a.e. x′ ∈ P". (3)

We have
 ⋄
m ∈ W

1,p(P")2,  ⋄
3 ∈ W

2,p(P"), ũpl ∈ W 1,p(Ω",�)3

and the following estimates:
‖e��( ⋄

m)‖Lp(P") ≤
C
�1∕p

‖e(u)‖Lp(Ω",�),

‖

‖

‖

)2 ⋄
3

)x�)x�
‖

‖

‖Lp(P")
≤ C
�1+1∕p

‖e(u)‖Lp(Ω",�),

‖ũpl
‖Lp(Ω",�) + �‖∇ũ

pl
‖Lp(Ω",�) ≤ C�‖e(u)‖Lp(Ω",�).

(4)

The constants do not depend on ", � and L.
Moreover, if u = 0 a.e. on Γ",� then

 ⋄ = 0, ∇ ⋄
3 = 0 a.e. on 
", ũpl = 0 a.e. on Γ",� .

Proof. First, we decompose u as the sum of an elementary displacement and a warping (see Theorem 5 in Subsection 7.1). Then,
we extend u to Ω′",� (see Proposition 3 in Subsection 7.2). For simplicity, we still write u the extension of u to the thin-walled
beam Ω′

",� .
This gives

u(x) =  ∗∗(x′) + x3∗∗(x′) + u∗∗(x) for a.e. x = (x′, x3) ∈ Ω′",� (5)
where

 ∗∗ ∈ W 1,p(P ′")
3, ∗∗ ∈ W 1,p(P ′")

2, u∗∗ ∈ W 1,p(Ω′",�)
3.

These terms satisfy the estimates (52).
Case 1: The thin-walled beam Ω",� is not clamped.
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Set Y = (0, 1)2 and
Ξ"

.
=
{

� ∈ ℤ2 | �(� + Y ) ⊂ P ′"
}

, P̂ ′" = interior
(

⋃

�∈Ξ",�

�(� + Ỹ )
)

.

We have
P" ⊂ P̂

′
" ⊂ P

′
" .

Now, we are in position to construct the Kirchhoff-Love displacement associated to u. To do this, we follow the lines of the proof
of Theorem 5.2 and its Corollary 1 in16 (remember that all we have to do is change  ∗∗ and∗∗). This gives the estimates (4)
with constants independent of ", � and L since these estimates are based on those of (52).
Case 2: The thin-walled beam Ω",� is clamped on Γ",� .
In this casee we replace the above decomposition (5) by the following one:

u(x) =  ∗∗∗(x′) + x3∗∗∗(x′) + u∗∗∗(x) for a.e. x = (x′, x3) ∈ Ω′",� (6)
where

 ∗∗∗ =  ∗∗
1 e1 + ∗∗

2 e2 + �� ∗∗
3 e3, ∗∗∗ = ��∗∗ a.e. in P ′"

u∗∗∗(x) = ( ∗∗(x′) − ∗∗∗(x′)) + x3(1 − ��(x′))∗∗(x′) + u∗∗(x) for a.e. x in Ω′",� .
We have only modified  ∗∗

3 and∗∗.
Since in this case  ∗∗

3 and∗∗ vanish on {0} × (−3", 3"). Estimate (52)3 and the Poincaré inequality yield
‖∗∗

‖Lp(C",�) ≤ C�‖∇∗∗
‖L2(P ′" )

≤ C
�1∕p

‖e(u)‖Lp(Ω",�) where C",� = (0, 2�) × (−3", 3"). (7)
Then, the above together with (52)5 lead to

‖∇ ∗∗
3 ‖Lp(C",�) ≤

C
�1∕p

‖e(u)‖Lp(Ω",�) (8)
and then, using the Poincaré inequality

‖ ∗∗
3 ‖Lp(C",�) ≤ C�1−1∕p‖e(u)‖Lp(Ω",�). (9)

A straightforward calculation leads to
‖u∗∗∗‖Lp(Ω′",�) ≤ C�‖e(u)‖Lp(Ω",�), ‖∇u∗∗∗‖Lp(Ω′",�) ≤ C‖e(u)‖Lp(Ω",�),

�‖∇∗∗∗
‖Lp(P ′" )

+ ‖e��( ∗∗∗)‖Lp(P ′" ) +
‖

‖

‖

) ∗∗∗
3

)x�
+∗∗

�
‖

‖

‖Lp(P ′" )
≤ C
�1∕p

‖e(u)‖Lp(Ω",�).

The constants do not depend on ", � and L.
We are now in a position to construct a Kirchhoff-Love displacement vanishing on Γ",� . To do this, we proceed as in Step 1.
For the conditions (3), we refer to16 Section 6.

4 FROM A KIRCHHOFF-LOVE DISPLACEMENT TO A BERNOULLI-NAVIER
DISPLACEMENT OF THE THIN-WALLED BEAM

Theorem 1. Any displacement u ∈ W 1,p(Ω",�)3 is the sum of a Bernoulli-Navier displacementUBN and a residual displacement
ũtw

u(x) = UBN (x) + ũtw(x) = UBN (x) − x2x3
dΘ
dx1

(x1)e1 + ũkl(x) + ũpl(x),

UBN (x) =

⎛

⎜

⎜

⎜

⎝

1(x1) − x2
d2

dx1
(x1) − x3

d3

dx1
(x1)

2(x1) − x3Θ(x1)
3(x1) + x2Θ(x1)

⎞

⎟

⎟

⎟

⎠

, ũkl(x) =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

ũ1(x′) − x3
)ũ3
)x1

(x′)

ũ2(x′) − x3
)ũ3
)x2

(x′)

ũ3(x′)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

(10)

for a.e. x in Ω",� , where 1 ∈ W 1,p(0, L), 2, 3, Θ ∈ W 2,p(0, L) and ũm = ũ1e1 + ũ2e2 ∈ W 1,p(P")2, ũ3 ∈ W 2,p(P"),
ũpl ∈ W 1,p(Ω",�)3.
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We have the following estimates:
‖

‖

‖

d1

dx1
‖

‖

‖Lp(0,L)
≤ C

‖e(u)‖Lp(Ω",�)
("�)1∕p

,

‖

‖

‖

dΘ
dx1

‖

‖

‖Lp(0,L)
+ "‖‖

‖

d2Θ
dx21

‖

‖

‖Lp(0,L)
≤ C
�

‖e(u)‖Lp(Ω",�)
("�)1∕p

,

‖

‖

‖

d22

dx21

‖

‖

‖Lp(0,L)
≤ C
"

‖e(u)‖Lp(Ω",�)
("�)1∕p

, ‖

‖

‖

d23

dx21

‖

‖

‖Lp(0,L)
≤ C
�

‖e(u)‖Lp(Ω",�)
("�)1∕p

,

‖ũ3‖Lp(P") + "‖∇ũ3‖Lp(P") + "
2
‖D2ũ3‖Lp(P") ≤

C"2

�1+1∕p
‖e(u)‖Lp(Ω",�),

‖ũm‖Lp(P") + "‖∇ũm‖Lp(P") ≤ C "
�1∕p

‖e(u)‖Lp(Ω",�),

‖ũpl
‖Lp(Ω",�) + �‖∇ũ

pl
‖Lp(Ω",�) ≤ C�‖e(u)‖Lp(Ω",�).

(11)

The constants do not depend on ", � and L.
Moreover if u = 0 a.e. on Γ",� then

1(0) = Θ(0) = 2(0) = 3(0) =
d2

dx1
(0) =

d3

dx1
(0) = dΘ

dx1
(0) = 0,

and ũkl = 0, ũpl = 0 a.e. on Γ",� .
(12)

Proof. We decompose u ∈ W 1,p(Ω",�)3 as (2).
Step 1. We transform the membrane displacement associated to U ⋄

KL.
The membrane part of the Kirchhoff-Love displacement U ⋄

KL is
 ⋄
m(x

′) =  ⋄
1 (x

′)e1 + ⋄
2 (x

′)e2 for a.e. x′ = (x1, x2) ∈ P".
This is a displacement of the 2D beam P". From (4) we have

‖e( ⋄
m)‖Lp(P") ≤

C
�1∕p

‖e(u)‖Lp(Ω",�). (13)
Now, we want to decompose  ⋄

m as the sum of a 2D Bernoulli-Navier displacement and a residual displacement.
In15 we have dealed with 3D displacements of thin rods. Here, we can consider  ⋄

m as a displacement of the 3D rod B" =
(0, L)×(−", ")2. This displacement does not depend on the third variable x3 and its third component is equal to 0. Before obtaining
a Bernoulli-Navier displacement, in15 we have decomposed any displacement as the sum of an elementary displacement and a
warping (see12,15). Here, this gives

 ⋄
m =  ∗ +∗ ∧ (x2e2 + x3e3) + u

∗ a.e. in B"
where ∗, ∗ ∈ W 1,p(0, L)3 and u∗ ∈ W 1,p(B")3. Component ∗ is the mean value of ⋄

m on the cross-sections, so ∗
3 = 0.Component ∗ is the mean value of certain moments of u on the cross-sections (see12,15), since the third component of  ⋄

m is
equal to 0 we obtain∗

1 = ∗
2 = 0. After this first decomposition, we have

 ⋄
m(x

′) =
(

 ∗
1 (x1) −∗

3(x1)
)

e1 + ∗
2 (x1)e2 + u

∗(x′) for a.e. x′ = (x1, x2) ∈ P".
Then, in15 we have constructed the Bernoulli-Navier displacement by setting 1 =  ∗

1 , 2 is constructed using  ∗
2 and∗

3.
This gives 1 ∈ W 1,p(0, L), 2 ∈ W 2,p(0, L) and ũm = ũ1e1 + ũ2e2 ∈ W 1,p(P")2 such that

 ⋄
m(x

′) =
⎛

⎜

⎜

⎝

1(x1) − x2
d2

dx1
(x1)

2(x1)

⎞

⎟

⎟

⎠

+ ũm(x′) for a.e. x′ in P". (14)

We have the following estimates (see15):
‖

‖

‖

d1

dx1
‖

‖

‖Lp(0,L)
+ "‖‖

‖

d22

dx21

‖

‖

‖Lp(0,L)
≤ C
"1∕p

‖e( ⋄
m)‖Lp(P") ≤

C
("�)1∕p

‖e(u)‖Lp(Ω",�),

‖ũm‖Lp(P") + "‖∇ũm‖Lp(P") ≤ C"‖e( ⋄
m)‖Lp(P") ≤ C "

�1∕p
‖e(u)‖Lp(Ω",�).
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The constants do not depend on ", � and L. The residual displacement ũm satisfies (see15)
"

∫
−"

ũ1(⋅, x2)dx2 = 0 for a.e. x1 ∈ (0, L). (15)

Step 3. We transform the bending  ⋄
3 .

Now, we treat the remaining terms of the Kirchhoff-Love displacement U ⋄
KL.Proposition 5 in Appendix gives 3 ∈ W 2,p(0, L), Θ ∈ W 2,p(0, L) and ũ3 ∈ W 2,p(P") such that

 ⋄
3 = 3 + x2Θ + ũ3

and the estimates
‖

‖

‖

d23

dx21

‖

‖

‖Lp(0,L)
≤ C
"1∕p

‖

‖

‖

)2 ⋄
3

)x21

‖

‖

‖Lp(P")
≤ C
�("�)1∕p

‖e(u)‖Lp(Ω",�),

‖

‖

‖

dΘ
dx1

‖

‖

‖Lp(0,L)
+ "‖‖

‖

d2Θ
dx21

‖

‖

‖Lp(0,L)
≤ C
"1∕p

‖

‖

‖

D2 ⋄
3
‖

‖

‖Lp(P")
≤ C
�("�)1∕p

‖e(u)‖Lp(Ω",�),

‖ũ3‖Lp(P") + "‖∇ũ3‖Lp(P") + "
2
‖D2ũ3‖Lp(P") ≤ C"2‖D2 ⋄

3 ‖Lp(P") ≤
C"2

�1+1∕p
‖e(u)‖Lp(Ω",�).

Component ũ3 satisfies (see Proposition 5)
"

∫
−"

ũ3(⋅, x2)dx2 =

"

∫
−"

ũ3(⋅, x2)x2dx2 = 0 for a.e. x1 ∈ (0, L). (16)

The Kirchhoff-Love displacement U ⋄
KL is then written as follows:

U ⋄
KL(x) =

⎛

⎜

⎜

⎜

⎜

⎝

1(x1) − x2
d2

dx1
(x1) − x3

d3

dx1
(x1)

2(x1) − x3Θ(x1)

3(x1) + x2Θ(x1)

⎞

⎟

⎟

⎟

⎟

⎠

− x2x3
dΘ
dx1

(x1)e1 + ũkl(x)

ũkl(x) =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

ũ1(x′) − x3
)ũ3
)x1

(x′)

ũ2(x′) − x3
)ũ3
)x2

(x′)

ũ3(x′)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

for a.e. x ∈ Ω",� .

If u = 0 on Γ",� then, by Proposition 1, the Kirchhoff-Love displacement U ⋄
KL and the residual displacement ũpl (given by the

decomposition (2)) vanish on Γ",� . By construction of the fields1, 2, 3,
d3

dx1
, Θ, dΘ

dx1
and ũm these functions also vanish

on Γ",� .
Proposition 2 (Korn type inequalities). Let u be a displacement in W 1,p(Ω",�), p ∈ (1,∞). We assume the thin-walled beam
clamped on Γ",� . Then, we have

‖u1‖Lp(Ω",�) ≤ CL‖e(u)‖Lp(Ω",�),

‖u2‖Lp(Ω",�) ≤
CL2

"
‖e(u)‖Lp(Ω",�), ‖u3‖Lp(Ω",�) ≤

CL2

�
‖e(u)‖Lp(Ω",�),

3
∑

i=1

‖

‖

‖

)ui
)xi

‖

‖

‖Lp(Ω",�)
≤ C‖e(u)‖Lp(Ω",�),

‖

‖

‖

)u2
)x1

‖

‖

‖Lp(Ω",�)
+ ‖

‖

‖

)u1
)x2

‖

‖

‖Lp(Ω",�)
≤ CL

"
‖e(u)‖Lp(Ω",�),

‖

‖

‖

)u3
)x1

‖

‖

‖Lp(Ω",�)
+ ‖

‖

‖

)u1
)x3

‖

‖

‖Lp(Ω",�)
≤ CL

�
‖e(u)‖Lp(Ω",�),

‖

‖

‖

)u3
)x2

‖

‖

‖Lp(Ω",�)
+ ‖

‖

‖

)u2
)x3

‖

‖

‖Lp(Ω",�)
≤ CL

"
‖e(u)‖Lp(Ω",�).

The constants do not depend on ", � and L.
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Proof. We decompose u as (10). The estimates of this proposition are the consequences of those in (11). Indeed, the Poincaré
inequality and (11)1,2,4,5 give

‖1‖Lp(0,L) ≤
CL
("�)1∕p

‖e(u)‖Lp(Ω",�), ‖Θ‖Lp(0,L) ≤
CL

�("�)1∕p
‖e(u)‖Lp(Ω",�),

‖

‖

‖

d2

dx1
‖

‖

‖Lp(0,L)
≤ CL
"("�)1∕p

‖e(u)‖Lp(Ω",�),
‖

‖

‖

d3

dx1
‖

‖

‖Lp(0,L)
≤ CL
�("�)1∕p

‖e(u)‖Lp(Ω",�).
(17)

The last two inequalities and again the Poincaré inequality imply that
‖2‖Lp(0,L) ≤

CL2

"("�)1∕p
‖e(u)‖Lp(Ω",�), ‖3‖Lp(0,L) ≤

CL2

�("�)1∕p
‖e(u)‖Lp(Ω",�). (18)

The constants do not depend on ", � and L. The inequalities above and the estimates (11) lead to those in the proposition.

5 ASYMPTOTIC BEHAVIOR OF A SEQUENCE OF DISPLACEMENTS

First, we recall the definition of the dimension reduction operator.
Definition 1. For � measurable function on Ω",� , the dimension reduction operator Π",� is defined as follows:

Π",�(�)(x1, X2, X3) = �(x1, "X2, �X3) for a.e. (x1, X2, X3) ∈ Ω.

Π",�(�) is a measurable function on Ω.
We easily check that
1. for any � ∈ Lp(Ω",�), 1 ≤ p ≤∞

‖Π",�(�)‖Lp(Ω) =
1

("�)1∕p
‖�‖Lp(Ω",�), (19)

2. for any � ∈ W 1,p(Ω",�), 1 ≤ p ≤∞
)Π",�(�)
)x1

= Π",�
( )�
)x1

)

,
)Π",�(�)
)X2

= "Π",�
( )�
)x2

)

,
)Π",�(�)
)X3

= �Π",�
( )�
)x3

)

. (20)

Let u be a displacement belonging toW 1,p(Ω",�)3, decomposed as (10).
The strain tensor of u is given by the sum of 3 × 3 symmetric matrices defined a.e. in Ω",� by

e(u) =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

d1

dx1
− x2

d22

dx21
− x3

d23

dx21
∗ ∗

−x3
dΘ
dx1

0 ∗

0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

+

⎛

⎜

⎜

⎜

⎜

⎜

⎝

−x2x3
d2Θ
dx21

+
)ũ1
)x1

− x3
)2ũ3
)x21

∗ ∗

1
2

( )ũ1
)x2

+
)ũ2
)x1

)

− x3
)2ũ3
)x1)x2

)ũ2
)x2

− x3
)2ũ3
)x22

∗

0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

+ e(ũpl). (21)

Denote for p ∈ (1,∞)
D
.
= W 1,p(0, L) ×W 2,p(0, L)2 ×W 1,p(0, L),

D(p)
W kl

.
=
{

� ∈ W 1,p(−1, 1)2 ×W 2,p(−1, 1) |

1

∫
−1

�(t)dt = 0,

1

∫
−1

�3(t)tdt = 0
}

,

D(p)
W pl

.
=
{

�
pl
∈ W 1,p(−1, 1)3 |

1

∫
−1

�
pl
(t)dt = 0

}

.

(22)

We equip D(p)
W kl and D(p)W pl with the semi-norms

‖�‖kl,p =
‖

‖

‖

d�1
dt

‖

‖

‖Lp(−1,1)
+ ‖

‖

‖

d�2
dt

‖

‖

‖Lp(−1,1)
+ ‖

‖

‖

d2�
dt2

‖

‖

‖Lp(−1,1)
, ∀� ∈ D(p)

W kl ,

‖�
pl
‖pl,p =

‖

‖

‖

d�
pl

dt
‖

‖

‖Lp(−1,1)
, ∀�

pl
∈ D(p)

W pl .
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We easily check that these semi-norms are norms equivalent to the usual norms of these spaces.
For every

(

Φ,Ψ,Φ,Φ
pl)
∈ D × Lp(0, L;D(p)

W kl) × L
p(P ;D(p)

W pl)

where Φ = (Φ1,Φ2,Φ3) we define the 3 × 3 symmetric tensor E(Φ,Ψ,Φ,Φpl) by

E
(

Φ,Ψ,Φ,Φ
pl) .
=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

dΦ1
dx1

−X2
d2Φ2
dx21

−X3
d2Φ3
dx21

∗ ∗

−X3
dΘ
dx1

+ 1
2
)Φ1
)X2

)Φ2
)X2

−X3
)2Φ3
)X2

2

∗

1
2
)Φ

pl
1

)X3

1
2
)Φ

pl
2

)X3

)Φ
pl
3

)X3

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(23)

From now on, we assume that {(", �)} is a sequence of strictly positive real numbers such that

"→ 0, � → 0, �
"
→ 0.

Denote for p ∈ (1,∞)
W 1,p

 (0, L)

.
=
{

� ∈ W 1,p(0, L) | �(0) = 0
}

,

W 2,p

 (0, L)

.
=
{

� ∈ W 2,p(0, L) | �(0) =
d�
dx1

(0) = 0
}

,

D
,p
.
= W 1,p


 (0, L) ×W 2,p

 (0, L)2 ×W 1,p


 (0, L).

(24)

Theorem 2. Let {u",�}",� be a sequence of displacements belonging toW 1,p(Ω",�)3, p ∈ (1,∞), decomposed as (10). Suppose
the thin-walled beam clamped on Γ",� and

‖e(u",�)‖Lp(Ω",�) ≤ C("�)1+1∕p (25)
where the constant does not depend on " and �.
There exist a subsequence of {(", �)}, still denoted {(", �)}, ( , Θ) ∈ D
,p and U ∈ Lp(0, L;D(p)

W kl), U
pl
∈ Lp(P ;D(p)

W pl) suchthat
1
"�

",�,1 ⇀ 1 weakly in W 1,p

 (0, L),

1
�
",�,2 ⇀ 2 weakly in W 2,p


 (0, L),

1
"
",�,3 ⇀ 3 weakly in W 2,p


 (0, L),

1
"
Θ",� ⇀ Θ weakly in W 1,p


 (0, L),

d2Θ",�
dx21

⇀ 0 weakly in Lp(0, L)

(26)

and
1
"�
Π",�

(

e(u",�)
)

⇀ E
(

 ,Θ, U , U
pl) weakly in Lp(Ω)3×3. (27)

Moreover we have
1
"�
Π",�(u",�,1) ←→ 1 −X2

d2

dx1
−X3

d3

dx1
strongly in Lp(Ω),

1
�
Π",�(u",�,2) ←→ 2 strongly in Lp(Ω),

1
"
Π",�(u",�,3) ←→ 3 strongly in Lp(Ω)

(28)

Proof. Convergences (26) are the consequences of the estimates (17)-(18)-(25) and the properties (19)-(20) of the operator Π� .
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Now, from (11)6,7,8,9,10-(25) and the properties (19)-(20) of Π",� we deduce that
‖

‖

‖

Π",�
(

ũ",�,�
)

‖

‖

‖Lp(Ω)
+ ‖

‖

‖

)Π",�
(

ũ",�,�
)

)X2

‖

‖

‖Lp(Ω)
≤ C"2�, ‖

‖

‖

)Π",�
(

ũ",�,�
)

)x1
‖

‖

‖Lp(Ω)
≤ C"�,

‖

‖

‖

Π",�
(

ũ",�,3
)

‖

‖

‖Lp(Ω)
+ ‖

‖

‖

)Π",�
(

ũ",�,3
)

)X2

‖

‖

‖Lp(Ω)
+ ‖

‖

‖

)2Π",�
(

ũ",�,3
)

)X2
2

‖

‖

‖Lp(Ω)
≤ C"3,

‖

‖

‖

)Π",�
(

ũ",�,3
)

)x1
‖

‖

‖Lp(Ω)
≤ C"2, ‖

‖

‖

)2Π",�
(

ũ",�,3
)x21

)

‖

‖

‖Lp(Ω)
≤ C", ‖

‖

‖

)2Π",�
(

ũ",�,3
)

)x1)X2

‖

‖

‖Lp(Ω)
≤ C"2

and
‖

‖

‖

Π",�
(

ũpl
",�

)

‖

‖

‖Lp(Ω)
+ ‖

‖

‖

)Π",�
(

ũpl
",�

)

)X3

‖

‖

‖Lp(Ω)
≤ C"�2,

‖

‖

‖

)Π",�
(

ũpl
",�

)

)x1
‖

‖

‖Lp(Ω)
≤ C"�, ‖

‖

‖

)Π",�
(

ũpl
",�

)

)X2

‖

‖

‖Lp(Ω)
≤ C"2�.

Then, there exist a subsequence of {(", �)}, still denoted {(", �)}, Ũ ∈ Lp(0, L;W 1,p(−1, 1))2⊕Lp(0, L;W 2,p(−1, 1)) such that
1
"2�

Π",�(ũ",�,�)⇀ Ũ� weakly in Lp(0, L;W 1,p(−1, 1)),

1
"�
Π",�

()ũ",�,�
)x1

)

= 1
"�
)Π",�(ũ",�,�)

)x1
⇀ 0 weakly in Lp(Ω),

1
"3
Π",�(ũ",�,3)⇀ Ũ3 weakly in Lp(0, L;W 2,p(−1, 1)),

1
"2
Π",�

()ũ",�,3
)x1

)

, 1
"
Π",�

()2ũ",�,3
)x21

)

, 1
"
Π",�

( )2ũ",�,3
)x1)x2

)

⇀ 0 weakly in Lp(Ω)

(29)

and Ũpl ∈ Lp(P ;W 1,p(−1, 1))3 such that
1
"�2

Π",�(ũ
pl
",�)⇀ Ũpl weakly in Lp(P ;W 1,p(−1, 1))3,

1
"�
Π",�

()ũpl
",�

)x1

)

= 1
"�

)Π",�(ũ
pl
",�)

)x1
⇀ 0 weakly in Lp(Ω)3,

1
"�
Π",�

()ũpl
",�

)x2

)

= 1
"2�

)Π",�(ũ
pl
",�)

)X2
⇀ 0 weakly in Lp(Ω)3.

(30)

The strong convergences (28) are the consequences of the fact that the sequences
{ 1
"�
Π",�(u",�,1)

}

",�
,
{1
�
Π",�(u",�,2)

}

",�
,

{1
"
Π",�(u",�,3)

}

",�
are uniformly bounded inW 1,p(Ω) and the compact embedding ofW 1,p(Ω) in Lp(Ω).

Then, convergence (27) follows from convergences (26)-(29)-(30).
Equalities (3)-(15)-(16) yield

1

∫
−1

Ũ pl
1 (⋅, X3)dX3 =

1

∫
−1

Ũpl
2 (⋅, X3)dX3 = 0 a.e. in P ,

1

∫
−1

Ũ1(⋅, X2)dX2 = 0 a.e. in (0, L),

1

∫
−1

Ũ3(⋅, X2)dX2 =

1

∫
−1

Ũ3(⋅, X2)X2dX2 = 0 a.e. in (0, L).

The conditions
1

∫
−1

Ũ pl
3 (⋅, X3)dX3 = 0 a.e. in P and

1

∫
−1

Ũ2(⋅, X2)dX2 = 0 a.e. in (0, L) are missing to get Ũpl ∈ Lp(P ;D(p)
W pl)

and Ũ ∈ Lp(0, L;D(p)
W kl)

1.
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Despite this absence of conditions, it should be noted that these functions are only involved in the strain tensor via their partial

derivative with respect to their last variable. We can note that Ũpl
3 and Upl

3 = Ũpl
3 −

1
2

1

∫
−1

Ũ pl
3 (⋅, X3)dX3 have the same partial

derivative with respect toX3. That is why in the strain tensor limit we replace Ũpl byUpl withUpl
� = Ũ

pl
� . In the strain tensor limit

we also replace Ũ by U with U i = Ũi, i ∈ {1, 3} and U 2 = Ũ2 −
1
2

1

∫
−1

Ũ2(⋅, X2)dX2. Of course we have U ∈ Lp(0, L;D(p)
W kl)

and Upl
∈ Lp(P ;D(p)

W pl).
As a consequence of the above theorem

Corollary 1. We have

1
"2�

Π",�
(

u",� − UBN,",�
)

⇀ −X2X3
dΘ
dx1

e1 +

⎛

⎜

⎜

⎜

⎜

⎝

Ũ1

Ũ2 −X3
)Ũ3
)X2

0

⎞

⎟

⎟

⎟

⎟

⎠

weakly in Lp(Ω)3.

We equip the space Lp(0, L;D(p)
W kl) (resp. Lp(P ;D(p)W pl)) with the norm

∀Φ ∈ Lp(0, L;D(p)W ), ‖Φ‖W kl,p =
‖

‖

‖

)Φ1
)X2

‖

‖

‖Lp(Ω)
+ ‖

‖

‖

)Φ2
)X2

‖

‖

‖Lp(Ω)
+ ‖

‖

‖

)2Φ3
)X2

2

‖

‖

‖Lp(Ω)
,

(resp. ∀Φ
pl
∈ Lp(P ;D(p)

W pl), ‖Φ
pl
‖W pl,p =

‖

‖

‖

)Φ
pl

)X3

‖

‖

‖Lp(Ω)
).

These norms are equivalent to the usual norms of these spaces.
Lemma 1. For every

(

Φ,Ψ,Φ,Φ
pl)
∈ D × Lp(0, L;D(p)

W kl) × L
p(P ;D(p)

W pl)
we have

‖

‖

‖

dΦ1
dx1

‖

‖

‖Lp(0,L)
+ ‖

‖

‖

d2Φ2
dx21

‖

‖

‖Lp(0,L)
+ ‖

‖

‖

d2Φ3
dx1

‖

‖

‖Lp(0,L)
+ ‖

‖

‖

dΨ
dx1

‖

‖

‖Lp(0,L)

+‖‖
‖

Φ‖‖
‖W kl,p +

‖

‖

‖

Φ
pl
‖

‖

‖W pl,p ≤ C‖‖
‖

E
(

Φ,Ψ,Φ,Φ
pl)

‖

‖

‖Lp(Ω)
.

(31)

Proof. From the expression (23) of E(Φ,Ψ,Φ,Φpl) we first obtain
‖

‖

‖

dΦ1
dx1

‖

‖

‖Lp(0,L)
+ ‖

‖

‖

d2Φ2
dx21

‖

‖

‖Lp(0,L)
+ ‖

‖

‖

d2Φ3
dx1

‖

‖

‖Lp(0,L)
+ ‖

‖

‖

Φ
pl
‖

‖

‖W pl ≤ C‖‖
‖

E
(

Φ,Ψ,Φ,Φ
pl)

‖

‖

‖Lp(Ω)
.

Remind that if �,  are functions in Lp(P ) then
‖�‖Lp(P ) + ‖ ‖Lp(P ) ≤ C‖‖

‖

� +X3 ‖Lp(Ω).

The constant only depends on p.
Hence, we get

‖

‖

‖

dΨ
dx1

‖

‖

‖Lp(0,L)
+ ‖

‖

‖

)Φ1
)X2

‖

‖

‖Lp(P )
≤ C‖‖

‖

E
(

Φ,Ψ,Φ,Φ
pl)

‖

‖

‖Lp(Ω)
,

‖

‖

‖

)Φ2
)X2

‖

‖

‖Lp(P )
+ ‖

‖

‖

)2Φ3
)X2

2

‖

‖

‖Lp(Ω)
≤ C‖‖

‖

E
(

Φ,Ψ,Φ,Φ
pl)

‖

‖

‖Lp(Ω)
.

This completes the proof of (31).

1A more complete decomposition of the displacements of the plates and beams would show that these quantities are in fact equal to 0.
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6 ASYMPTOTIC BEHAVIOR OF THE SOLUTION OF A LINEAR ELASTICITY PROBLEM

6.1 The linear elasticity problem
Denote

H1
Γ",�
(Ω",�)

.
=
{

v ∈ H1(Ω",�) | v = 0 a.e. on Γ",�
}

,

H1
Γ(Ω)

.
=
{

v ∈ H1(Ω) | v = 0 a.e. on Γ
}

,

D

.
= H1


 (0, L) ×
(

H2

 (0, L)

)2 ×H1

 (0, L),

DW
.
= L2(0, L;D(2)

W kl) × L
2(P ;D(2)

W pl).
For 1 ≤ i, j, k, l ≤ 3, let aijkl be in L∞(!) and satisfy the symmetry conditions

aijkl(X2, X3) = ajikl(X2, X3) = aklij(X2, X3) for a.e. (X2, X3) ∈ !

as well as the coercivity condition
aijkl(X2, X3)�ij�kl ≥ c0�ij�ij for a.e. (X2, X3) ∈ Ω (32)

for every 3 × 3 symmetric matrix � = (�ij) (c0 is a given strictly positive number).
The coefficients aijkl,",� of the Hooke tensor are given by

aijkl,",�(x) = aijkl
(x2
"
,
x3
�

)

for a.e. x ∈ Ω",� .
The constitutive law of the materials is the relation between the strain tensor and the stress tensor,

�ij,",�(v) = aijkl,",�ekl(v), ∀v ∈ H1
Γ",�
(Ω",�)3.

For simplify we consider only applied body forces.
The displacement u",� ∈ H1

Γ",�
(Ω",�)3 of the thin-walled beam is the solution of the following elasticity problem:
⎧

⎪

⎨

⎪

⎩

∫
Ω",�

�ij,",�(u",�)eij(v) dx = ∫
Ω",�

f",�(x) ⋅ v(x) dx, f",� ∈ L2(Ω",�)3

∀v ∈ H1
Γ",�
(Ω",�)3.

(33)

Due to the above assumptions on the aijkl,",�’s, the Lax-Milgram theorem applied to problem (33) implies that this problem has
a unique solution.
We make the assumption that the applied body forces f",� are of the form

f",�(x) = "�
[(

f1(x1) +
x2
"
g2(x1) +

x3
�
g3(x1)

)

e1 +
(

"f2(x1) −
x3
�
g1(x1)

)

e2 +
(

�f3(x1) +
x2�
"2
g1(x1)

)

e3
]

,

where f = (f1, f2, f3) and g = (g1, g2, g3) belong to L2(0, L)3.
This allows us to obtain an a priori estimate of u",� . Using the decomposition (10) for a u ∈ H1

Γ",�
(Ω",�)3 and estimates (11)6,7,9,11,

we first have
|

|

| ∫
Ω",�

f",� ⋅
(

u − UBN
)

dx||
|

≤ C"‖f",�‖L2(Ω",�)‖e(u)‖Lp(Ω",�)

≤ C"2("�)3∕2
(

‖f‖L2(0,L) + ‖g‖L2(0,L)
)

‖e(u)‖Lp(Ω",�)

(34)

and then

∫
Ω",�

f",� ⋅ UBN dx = 4("�)2
(

L

∫
0

f11 dx1 +

L

∫
0

"f22 dx1 +

L

∫
0

�f33 dx1
)

+ 4("�)2
(

− "
3

L

∫
0

g2
d2

dx1
dx1 −

�
3

L

∫
0

g3
d3

dx1
dx1 +

2"
3

L

∫
0

g1Θ dx1
)

.
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Hence, from (17)1,2,3,4 and (18)1,2 we deduce that
|

|

| ∫
Ω",�

f",� ⋅ UBN dx
|

|

|

≤ C("�)3∕2
(

‖f‖L2(0,L) + ‖g‖L2(0,L)
)

‖e(u)‖Lp(Ω",�). (35)

The constant does not depend on " and �.
Applying the estimates (34)-(35) for u",� taken as test function in (33), give the estimate

‖e(u",�)‖Lp(Ω",�) ≤ C("�)3∕2
(

‖f‖L2(0,L) + ‖g‖L2(0,L)
)

. (36)

6.2 The rescaled limit problem
Theorem 3. Let u",� be the solution of the elasticity problem (33). Then, there exists ( ,Θ, U , U

pl)
∈ D
 × DW such that for

the whole sequence {(", �)} the convergences (26) and the following hold:
1
"�
Π",�

(

e(u",�)
)

←→ E
(

 ,Θ, U , U
pl) stronglyly in L2(Ω)3×3. (37)

The quadruplet ( ,Θ, U , U
pl) belonging to D
 × DW is the solution of the variational problem

∫
Ω

aijklEij
(

 ,Θ, U , U
pl)
Ekl

(

Φ,Ψ,Φ,Φ
pl)
dx1dX2dX3

=4
(

L

∫
0

f ⋅Φ dx1 −
1
3

L

∫
0

g�
dΦ�

dx1
dx1 +

2
3

L

∫
0

g1Ψ dx1
)

, ∀
(

Φ,Ψ,Φ,Φ
pl)
∈ D
 × DW .

(38)

Proof. The solution to problem (33) satisfies (36). So, there exists a subsequence of {(", �)}, still denoted {(", �)} and
(

 ,Θ, U , U
pl)
∈ D
 × DW such that convergences (26)-(27) hold.

Let (Φ,Ψ) be in D
 , such that Ψ ∈ W 2,p

 (0, L), and (Φ,Φpl)

∈ DW ∩
(

H1
Γ(Ω)

3 ×H1
Γ(Ω)

3).
Now, consider the test displacement

�",�(x) =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

"�Φ1(x1) − x2�
dΦ2
dx1

(x1) − x3"
dΦ3
dx1

(x1)

�Φ2(x1) − x3"Ψ(x1)

"Φ3(x1) + x2"Ψ(x1)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

− x2x3"
dΨ
dx1

(x1)e1

+"2�

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

Φ1
(

x1,
x2
"

)

− x3
"
�
)Φ3
)x1

(

x1,
x2
"

)

Φ2
(

x1,
x2
"

)

−
x3
�
)Φ3
)X2

(

x1,
x2
"

)

"
�
Φ3

(

x1,
x2
"

)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

+ "�2Φ
pl(
x1,

x2
"
,
x3
�

)

for a.e. x in Ω",� .

A straightforward calculation gives
1
"�
Π",�

(

e(�",�)
)

←→ E
(

Φ,Ψ,Φ,Φ
pl) strongly in L2(Ω)3×3.

In (33), we take�",� as test function, we transform the RHS and LHS of this equality thanks toΠ",� , we divide by ("�)3 and finally
we pass to the limit. We obtain (38) with (Φ,Ψ,Φ,Φpl). Then, a density argument gives (38) for all (Φ,Ψ,Φ,Φpl)

∈ D
 ×DW .
Due to (31) and the Lax-Milgram theorem, problem (38) has a unique solution. As a consequence, the whole sequences converge
to their limits. Proceeding as usual we show the strong convergence (37).
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6.3 The system satisfied by ( ,Θ)

Now, we express the displacements U and Upl in terms of  and Θ.
Set

M1 =
⎛

⎜

⎜

⎝

1 0 0
0 0 0
0 0 0

⎞

⎟

⎟

⎠

, M2 =
⎛

⎜

⎜

⎝

−X2 0 0
0 0 0
0 0 0

⎞

⎟

⎟

⎠

, M3 =
⎛

⎜

⎜

⎝

−X3 0 0
0 0 0
0 0 0

⎞

⎟

⎟

⎠

, M4 =
⎛

⎜

⎜

⎝

0 −X3 0
−X3 0 0
0 0 0

⎞

⎟

⎟

⎠

.

The 4 pairs of correctors are the solutions to (m ∈ {1, 2, 3, 4})
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

(

� (m), �pl,(m)) ∈ D(2)
W kl × D(2)

W pl ,

∫
P

aijkl
(

Mm
ij + Eij

(

0, 0, � (m), �pl,(m))
)

Ekl
(

0, 0,Φ,Φ
pl)
dX2dX3 = 0

∀
(

Φ,Φ
pl)
∈ D(2)

W kl × D(2)
W pl .

(39)

So, we get
(

U,U
pl)
=
dU1
dx1

(

� (1), �pl,(1)) +
d2U2
dx21

(

� (2), �pl,(2)) +
d2U3
dx21

(

� (3), �pl,(3)) + dΘ
dx1

(

� (4), �pl,(4)).

Theorem 4. The pair ( ,Θ) ∈ D
 is the unique solution to the variational problem
L

∫
0

A d
dx1

⎛

⎜

⎜

⎜

⎜

⎝

1
2
3
Θ

⎞

⎟

⎟

⎟

⎟

⎠

⋅
d
dx1

⎛

⎜

⎜

⎜

⎜

⎝

Φ1
Φ2
Φ3
Ψ

⎞

⎟

⎟

⎟

⎟

⎠

= 4
(

L

∫
0

f ⋅Φ dx1 −
1
3

L

∫
0

g�
dΦ�

dx1
dx1 +

2
3

L

∫
0

g1Ψ dx1
)

,

∀
(

Φ,Ψ,Φ,Φ
pl)
∈ D


(40)

where the entries of the 4 × 4 symmetric matrix A are given by ((m, n) ∈ {1, 2, 3, 4}2)
Amn = ∫

P

aijkl
(

Mm
ij + Eij

(

0, 0, � (m), �pl,(m)))(Mn
kl + Ekl

(

0, 0, � (n), �pl,(n))) dX2dX3.

This matrix is definite positive.
Proof. Let � be a vector in ℝ4. We have

A� ⋅ � =
4
∑

m,n=1
∫
P

aijkl�m�n
(

Mm
ij + Eij

(

0, 0, � (m), �pl,(m)))(Mn
kl + Ekl

(

0, 0, � (n), �pl,(n))) dX2dX3.

Set
M(�) =

⎛

⎜

⎜

⎝

�1 −X2�2 −X3�3 −X3�4 0
−X3�4 0 0
0 0 0

⎞

⎟

⎟

⎠

,
(

�(�), �pl(�)
)

=
4
∑

m=1
�m
(

� (m), �pl,(m)).

This allows us to rewrite A� ⋅ � as
A� ⋅ � = ∫

P

aijkl�m�n
(

Mij(�) + Eij
(

0, 0, �(�), �pl(�)
))(

Mkl(�) + Ekl
(

0, 0, �(�), �pl(�)
))

dX2dX3.

Thanks to (32), we deduce that
A� ⋅ � ≥ c0 ∫

P

|

|

|

Mij(�) + Eij
(

0, 0, �(�), �pl(�)
)

|

|

|

2
dX2dX3.

Now, proceeding as in Lemma 1 leads to
A� ⋅ � ≥ C

(

|�|2 + ‖�(�)‖2
W kl,2 + ‖�pl(�)‖2

W pl,2
)

where C is a constant strictly positive.
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6.4 The case of a homogeneous and isotropic material
In this subsection, we consider a thin-walled beam made of a homogeneous and isotropic material. So, we have

aijkl
.
= ��ij�kl + �

(

�ik�jl + �il�jk
)

, {i, j, k, l} ∈ {1, 2, 3}4

where �ij is the Kronecker symbol and �, � the Lamé’s constants.
For all � ∈ ℝ4 we consider the problem satisfies by (�(�), �pl(�)

)

∈ D(2)
W kl × D(2)

W pl . We have

∫
!

{[

�
(

�1 −X2�2 −X3�3
)

+ (� + 2�)
( )�2(�)
)X2

−X3
)2�3(�)
)X2

2

)

+ �
)�pl

3 (�)
)X3

]( )Φ2
)X2

−X3
)2Φ3
)X2

2

)

+
[

�
(

�1 −X2�2 −X3�3
)

+ �
( )�2(�)
)X2

−X3
)2�3(�)
)X2

2

)

+ (� + 2�)
)�pl

3 (�)
)X3

] )Φ
pl
3

)X3

}

dX2dX3 = 0,

∀
(

Φ,Φ
pl)

∈ D(2)
W kl × D(2)

W pl

(41)

and

∫
!

)�pl
1 (�)
)X3

)Φ
pl
1

)X3
dX2dX3 = 0, ∫

!

)�pl
2 (�)
)X3

)Φ
pl
2

)X3
dX2dX3 = 0,

∫
!

(

−X3�4 +
)�1(�)
)X2

))Φ1
)X2

dX2dX3 = 0, ∀
(

Φ,Φ
pl)
∈ D(2)

W kl × D(2)
W pl .

(42)

A straightforward calculation leads to

�1(�)(X2) = 0, �2(�)(X2) = −�
(

X2�1 −
(X2

2

2
− 1
6

)

�2
)

, �3(�)(X2) = −�
(X2

2

2
− 1
6

)

�3,

�pl
1 (�)(X2, X3) = �

pl
2 (�)(X2, X3) = 0, �pl

3 (�)(X2, X3) = −�
(

�1X3 −X2X3�2 −
(X2

3

2
− 1
6

)

�3
)

where � = �
2(� + �)

is the Poisson coefficient.
So, we get

U 1 = 0, U 2 = −�
(

X2
dU1
dx1

−
(X2

2

2
− 1
6

)d2U2
dx21

)

, U 3 = −�
(X2

2

2
− 1
6

)d2U3
dx21

,

U
pl
1 = U

pl
2 = 0, U

pl
3 = −�

(

X3
dU1
dx1

−X2X3
d2U2
dx21

−
(X2

3

2
− 1
6

)d2U3
dx21

)

.

Problem (43) becomes

E

L

∫
0

d1

dx1

dΦ1
dx1

dx1 =

L

∫
0

f1Φ1 dx1, �

L

∫
0

dΘ
dx1

dΨ
dx1

dx1 = 2

L

∫
0

g1Ψ dx1,

E
3

L

∫
0

d2�

dx21

d2Φ�

dx21
dx1 =

L

∫
0

f�Φ� dx1 −
1
3

L

∫
0

g�
dΦ�

dx1
dx1, ∀

(

Φ,Ψ
)

∈ D


(43)

where E =
�(3� + 2�)
� + �

is the Young modulus.
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Now, we can reconstruct the solution to problem (33). We obtain

u",�(x) ≈

⎛

⎜

⎜

⎜

⎜

⎜

⎝

"�1(x1) − x2�
d2

dx1
(x1) − x3"

d3

dx1
(x1)

�2(x1) − x3"Θ(x1)

"3(x1) + x2"Θ(x1)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

− x2x3"
dΘ
dx1

(x1)e1

+"2

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−x3"
)U 3

)x1

(

x1,
x2
"

)

�U 2

(

x1,
x2
"

)

− x3
)U 3

)X2

(

x1,
x2
"

)

"U 3

(

x1,
x2
"

)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

+ "�2U
pl
3

(

x1,
x2
"
,
x3
�

)

e3

and for the stress tensor we have

�(u",�)(x) ≈

⎛

⎜

⎜

⎜

⎜

⎜

⎝

E
(d1

dx1
−X2

d2U2
dx21

−X3
d2U3
dx21

)

−2�X3
dΘ
dx1

0

−2�X3
dΘ
dx1

0 0

0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.

7 APPENDIX

7.1 Elementary plate displacement of the thin-walled beam
Definition 2. An elementary displacement of the thin-walled beamΩ",� (considered as a plate of thickness 2�) is a displacement
v ∈ L1(Ω",�)3 written in the form

v(x′, x3) = (x′) + x3(x′) for a.e. x = (x′, x3) ∈ Ω",� .
The component  belongs to L1(P")3 while = 1e1 +2e2 is in L1(P")2.
Here,  gives the mid-surface displacement and x3(x′) represents a ”small rotation” of the fiber {x′} × (−�, �), whose axis is
directed by −2(x′)e1 +1(x′)e2 and whose angle is approximately |(x′)|.
To any displacement u ∈ L1(Ω",�)3 we associate an elementary displacement U ∗

el ∈ L
1(Ω",�)3 and a warping u∗ ∈ L1(Ω",�)3

u(x) = U ∗
el(x) + u

∗(x)
U ∗
el(x) =  ∗(x′) + x3∗(x′)

for a.e. x = (x′, x3) ∈ Ω",� (44)
so that

�

∫
−�

u∗(⋅, x3)dx3 = 0,

�

∫
−�

u∗1(⋅, x3)x3dx3 =

�

∫
−�

u∗2(⋅, x3)x3dx3 = 0 a.e. in P". (45)

The above equalities determine  ∗(x′) and∗(x′) in terms of u and integrals on the fiber {x′} × (−�, �) (see12). We have

 ∗(x′) = 1
2�

�

∫
−�

u(x′, x3)dx3,

∗(x′) = 3
2�3

�

∫
−�

x3
(

u1(x′, x3)e1 + u2(x′, x3)e2
)

dx3,

for a.e. x′ ∈ P".
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Theorem 5 (Theorem 4.1 in12). Let u be a displacement inW 1,p(Ω",�)3, p ∈ (1,∞), decomposed as (44). The terms  ∗, ∗

and u∗ of this decomposition satisfy
 ∗ ∈ W 1,p(P")3, ∗ ∈ W 1,p(P")2, u∗ ∈ W 1,p(Ω",�)3,
‖u∗‖Lp(Ω",�) ≤ C�‖e(u)‖Lp(Ω",�), ‖∇u∗‖Lp(Ω",�) ≤ C‖e(u)‖Lp(Ω",�),

�‖∇∗
‖Lp(P") + ‖e��( ∗)‖Lp(P") +

‖

‖

‖

) ∗
3

)x�
+∗

�
‖

‖

‖Lp(P")
≤ C
�1∕p

‖e(u)‖Lp(Ω",�).

(46)

The constants do not depend on ", � and L.
Proof. In12 Theorem 4.1 we have considered a plate whose mid-surface is a bounded domain in ℝ2 with a Lipschitz boundary.
We have proved that the constants in the estimates given in12 Theorem 4.1 are independent of �. In fact, these constants depend
only on the boundary of the mid surface and on p.
Now, if we revisit the proof of12 Theorem 4.1 bearing in mind that the mid-surface of the thin-walled beam is P", we realize
that what is important is to fill Ω",� with parallelotopes whose dimensions we control.
Set

N",� =
["
�

]

, N� =
[L
�

]

, l",� =
"
N",�

, l� =
L
N�

where [t] is the integer part of t ∈ ℝ. We have
� ≤ l",� ≤ 2�, � ≤ l� ≤ 2�.

Denote Y",� .= (0, l�)× (0, l",�)× (−�, �). Note that Y",� has a diameter less thanR� = 4� and it contains a ball of radius r� = �∕2.
This is important because the estimates in12 Theorem 4.1 are controlled by the ratio R�∕r� ≤ 8.
Observe that Ω",� can be entirely filled with parallelotopes isometric to Y",� , two by two with empty intersections.
It now remains to follow the lines of the proof of12 Theorem 4.1 to obtain the estimates (46) with constants independent of ", �
and L.

7.2 Extension of a thin-walled beam displacement
Denote

P (1)"
.
= (−L,L) × (−", "), P (2)"

.
= (−L, 2L) × (−", "), P (3)"

.
= (−L, 2L) × (−", 3"),

Ω(1)
.
= P (1)" × (−�, �), Ω(2)

.
= P (2)" × (−�, �), Ω(3)

.
= P (3)" × (−�, �),

P ′"
.
= (−L, 2L) × (−3", 3"), !′",�

.
= (−3", 3") × (−�, �), Ω′",�

.
= P ′" × (−�, �).

Proposition 3. There exists an extension operator " fromW 1,p(Ω",�)3 intoW 1,p(Ω′",�)
3, p ∈ (1,∞), satisfying

∀u ∈ W 1,p(Ω",�)3, "(u) ∈ W 1,p(Ω′",�)
3, "(u)|Ω",� = u,

‖

‖

‖

e("(u))
‖

‖

‖Lp(Ω′",�)
≤ C‖e(u)‖Lp(Ω",�).

The constant does not depend on ", � and L.
Moreover, if u = 0 a.e. on Γ",� then "(u) = 0 a.e. in (−L, 0) × !′",� .
Proof. Construction of "(u).
We decompose u as (44).
Step 1. Extension of u to the thin-walled beam Ω(2)",� .
First, if u = 0 a.e. on {0} × !",� then we extend u by 0 in (−L, 0) × !",� . Obviously the terms of the decomposition of u (see
(44)) are also extended by 0 in (−L, 0) × !",� .
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Otherwise, we set
 ∗1(x′) =  ∗(x′) for a.e. x′ ∈ P",
 ∗1(x′) = 4 ∗

(

−
x1
2
, x2

)

− 3 ∗(−x1, x2) for a.e. x′ ∈ (−L, 0) × (−", "),
∗1(x′) = ∗(x′) for a.e. x′ ∈ P",
∗1(x′) = −2∗

(

−
x1
2
, x2

)

+ 3∗(−x1, x2) for a.e. x′ ∈ (−L, 0) × (−", "),
u∗1(x) = u∗(x) for a.e. x ∈ Ω",� ,
u∗1(x) = u∗(−x1, x2, x3) for a.e. x ∈ (−L, 0) × !",� .

We have
 ∗1 ∈ W 1,p(P (1)" )3, ∗1 ∈ W 1,p(P (1)" )2, u∗1 ∈ W 1,p(Ω(1)",�)

3.
Using the estimates (46), we easily check that

‖u∗1‖Lp(Ω(1)",�) ≤ C�‖e(u)‖Lp(Ω",�), ‖∇u∗1‖Lp(Ω(1)",�) ≤ C‖e(u)‖Lp(Ω",�),

�‖∇∗1
‖Lp(P (1)" ) + ‖e��( ∗1)‖Lp(P (1)" ) +

‖

‖

‖

) ∗1
3

)x�
+∗1

�
‖

‖

‖Lp(P (1)" )
≤ C
�1∕p

‖e(u)‖Lp(Ω",�).
(47)

We set
u∗1(x) =  ∗1(x′) + x3∗1(x′) + u∗1(x) for a.e. x ∈ Ω(1)",� .

Thus, we have u∗1 ∈ W 1,p(Ω(1)",�)
3. A straightforward calculation yields

‖e(u∗1)‖Lp(Ω(1)",�) ≤ C‖e(u)‖Lp(Ω",�). (48)
The constants do not depend on ", � and L.
We proceed in a similar way to extend u and the terms of its decomposition in (L, 2L) × !",� . We denote u∗2 the extension of
u to the domain (−L, 2L) × !",� and  ∗2, ∗2, u∗2 the terms of its decomposition. The estimates (47) and (48) are still valid
replacing Ω(1)",� by Ω(2)",� , of course the constants are always independent of ", � and L.
Hence, we have

‖u∗2‖Lp(Ω(2)",�) ≤ C�‖e(u)‖Lp(Ω",�), ‖∇u∗2‖Lp(Ω(2)",�) ≤ C‖e(u)‖Lp(Ω",�),

�‖∇∗2
‖Lp(P (2)" ) + ‖e��( ∗2)‖Lp(P (2)" ) +

‖

‖

‖

) ∗2
3

)x�
+∗2

�
‖

‖

‖Lp(P (2)" )
≤ C
�2∕p

‖e(u)‖Lp(Ω",�).
(49)

So, u∗2 ∈ W 1,p(Ω(2)",�)
3 and is decomposed as

u∗2(x) =  ∗2(x′) + x3∗2(x′) + u∗2(x) for a.e. x ∈ Ω(2)",� .
It satisfies

‖e(u∗2)‖Lp(Ω(2)",�) ≤ C‖e(u)‖Lp(Ω",�). (50)
Step 2. Extension to the thin-walled beam Ω(3)",� .
We set

 ∗3(x′) =  ∗2(x′) for a.e. x′ ∈ P (2)" ,

 ∗3(x′) = 4 ∗2
(

x1,
3" − x2
2

)

− 3 ∗2(x1, 2" − x2) for a.e. x′ ∈ (−L, 2L) × (", 3"),
∗3(x′) = ∗2(x′) for a.e. x′ ∈ P (2)" ,

∗3(x′) = −2∗2
(

x1,
3" − x2
2

)

+ 3∗2(x1, 2" − x2) for a.e. x′ ∈ (−L, 2L) × (", 3"),
u∗3(x) = u∗2(x) for a.e. x ∈ Ω(2)",� ,
u∗3(x) = u∗2(x1, 2" − x2, x3) for a.e. x ∈ (−L, 2L) × (", 3") × (−�, �).
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Here, using the estimates (47), we obtain
 ∗3 ∈ W 1,p(P (3)" )3, ∗3 ∈ W 1,p(P (3)" )2, u∗3 ∈ W 1,p(Ω(3)",�)

3,

‖u∗3‖Lp(Ω(3)",�) ≤ C�‖e(u)‖Lp(Ω",�), ‖∇u∗3‖Lp(Ω(3)",�) ≤ C‖e(u)‖Lp(Ω",�),

�‖∇∗3
‖Lp(P (3)" ) + ‖e��( ∗3)‖Lp(P (3)" ) +

‖

‖

‖

) ∗3
3

)x�
+∗3

�
‖

‖

‖Lp(P (3)" )
≤ C
�1∕p

‖e(u)‖Lp(Ω",�).

(51)

We set
u∗3(x) =  ∗3(x′) + x3∗3(x′) + ũ∗3(x) for a.e. x ∈ Ω(3)",� .

Thus, we have u∗3 ∈ W 1,p(Ω(3)",�)
3 and

‖e(u∗3)‖Lp(Ω(3)",�) ≤ C‖e(u)‖Lp(Ω",�).
The constants do not depend on ", � and L.
Step 3. Extension to the thin-walled beam Ω′",� .
We proceed as in Step 2 to extend u∗3 and the terms of its decomposition inΩ′",� . We denote u∗∗ the extension of u to the domain
Ω′",� and  ∗∗, ∗∗, ũ∗∗ the terms of its decomposition. The estimates (47) and (48) are still valid replacing Ω(1)",� by Ω(2)",� , ofcourse the constants are always independent of ", � and L.
We finally obtain

 ∗∗ ∈ W 1,p(P ′

")
3, ∗∗ ∈ W 1,p(P ′

")
2, u∗∗ ∈ W 1,p(Ω′",�)

3,

‖u∗∗‖Lp(Ω′",�) ≤ C�‖e(u)‖Lp(Ω",�), ‖∇u∗∗‖Lp(Ω′",�) ≤ C‖e(u)‖Lp(Ω",�),

�‖∇∗∗
‖Lp(P ′" )

+ ‖e��( ∗∗)‖Lp(P ′" ) +
‖

‖

‖

) ∗∗
3

)x�
+∗∗

�
‖

‖

‖Lp(P ′" )
≤ C
�1∕p

‖e(u)‖Lp(Ω",�).

(52)

We set
"(u)(x) =  ∗∗(x′) + x3∗∗(x′) + u∗∗(x) for a.e. x ∈ Ω′",� .

We have "(u) ∈ W 1,p(Ω′",�)
3 and

‖e
(

"(u)
)

‖Lp(Ω′",�)
≤ C‖e(u)‖Lp(Ω",�).

The constants do not depend on ", � and L.

7.3 Decomposition of functions defined on P"
Proposition 4. Let � be inW 1,p(P"), p ∈ (1,∞). There exist Φ ∈ W 1,p(0, L) and � ∈ W 1,p(P") such that

� = Φ + � a.e. in P"
with the following estimates

‖

‖

‖

Φ‖‖
‖Lp(0,L)

≤ C
"1∕p

‖

‖

‖

�‖‖
‖Lp(P")

, ‖

‖

‖

dΦ
dx1

‖

‖

‖Lp(0,L)
≤ C
"1∕p

‖

‖

‖

)�
)x1

‖

‖

‖Lp(P")
,

‖

‖

‖

�‖‖
‖Lp(P")

≤ C"‖‖
‖

)�
)x2

‖

‖

‖Lp(P")
,

‖

‖

‖

)�
)x1

‖

‖

‖Lp(P")
≤ C‖‖

‖

)�
)x1

‖

‖

‖Lp(P")
, ‖

‖

‖

)�
)x2

‖

‖

‖Lp(P")
≤ ‖

‖

‖

)�
)x2

‖

‖

‖Lp(P")
.

(53)

Furthermore, if )2�
)x1)x2

belongs to Lp(P") then

‖

‖

‖

)�
)x1

‖

‖

‖Lp(P")
≤ C"‖‖

‖

)2�
)x1)x2

‖

‖

‖Lp(P")
. (54)

The constants only depend on p.
Proof. We set

Φ(x1) =
1
2"

"

∫
−"

�(x1, x2)dx2 for a.e. x1 in (0, L) and � = � − Φ.
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We have Φ ∈ W 1,p(0, L) and � ∈ W 1,p(P"). The derivative of Φ is
dΦ
dx1

(x1) =
1
2"

"

∫
−"

)�
)x1

(x1, x2)dx2 for a.e. in (0, L).

Then, the Hölder inequality yields (53)1,2, from which we obtain (53)4. Since we have )�
)x2

=
)�
)x2

estimate (53)5 follows.

Observe that
"

∫
−"

�(x1, x2)dx2 = 0 for a.e. x1 in (0, L). Thus, the Poincaré-Wirtinger inequality leads to (53)3.

We have also
"

∫
−"

)�
)x1

(x1, x2)dx2 = 0 for a.e. x1 in (0, L). Hence, if )2�
)x1)x2

belongs to Lp(P") then the Poincaré-Wirtinger
inequality leads to (54).

Proposition 5. Let � be inW 2,p(P"), p ∈ (1,∞). There exist Φ, Ψ ∈ W 2,p(0, L) and �̃ ∈ W 2,p(P") such that
� = Φ + x2Ψ + �̃ a.e. in P"

with the following estimates:
‖

‖

‖

Φ‖‖
‖Lp(0,L)

≤ C
"1∕p

‖

‖

‖

�‖‖
‖Lp(P")

, ‖

‖

‖

dΦ
dx1

‖

‖

‖Lp(0,L)
≤ C
"1∕p

‖

‖

‖

)�
)x1

‖

‖

‖Lp(P")
,

‖

‖

‖

d2Φ
dx21

‖

‖

‖Lp(0,L)
≤ C
"1∕p

‖

‖

‖

)2�
)x21

‖

‖

‖Lp(P")
,

‖

‖

‖

Ψ‖‖
‖Lp(0,L)

≤ C
"1∕p

‖

‖

‖

)�
)x2

‖

‖

‖Lp(P")
, ‖

‖

‖

dΨ
dx1

‖

‖

‖Lp(0,L)
≤ C
"1∕p

‖

‖

‖

)2�
)x1)x2

‖

‖

‖Lp(P")
,

‖

‖

‖

d2Ψ
dx21

‖

‖

‖Lp(0,L)
≤ C
"1+1∕p

‖

‖

‖

)2�
)x21

‖

‖

‖Lp(P")
,

‖

‖

‖

�̃‖‖
‖Lp(P")

≤ C"2‖‖
‖

)2�
)x22

‖

‖

‖Lp(P")
, ‖

‖

‖

)�̃
)x2

‖

‖

‖Lp(P")
≤ C"‖‖

‖

)2�
)x22

‖

‖

‖Lp(P")
,

‖

‖

‖

)�̃
)x1

‖

‖

‖Lp(P")
≤ C"‖‖

‖

)2�
)x1)x2

‖

‖

‖Lp(P")
, ‖

‖

‖

)2�̃
)x22

‖

‖

‖Lp(P")
≤ ‖

‖

‖

)2�
)x22

‖

‖

‖Lp(P")
,

‖

‖

‖

)2�̃
)x21

‖

‖

‖Lp(P")
≤ C‖‖

‖

)2�
)x21

‖

‖

‖Lp(P")
, ‖

‖

‖

)2�̃
)x1)x2

‖

‖

‖Lp(P")
≤ C‖‖

‖

)2�
)x1)x2

‖

‖

‖Lp(P")
.

(55)

The constants only depend on p.
Proof. Step 1. We define Φ, Ψ and �̃.
We set

Φ(x1) =
1
2"

"

∫
−"

�(x1, x2)dx2 for a.e. x1 in (0, L),

Ψ(x1) =
3
2"3

"

∫
−"

�(x1, x2)x2dx2 for a.e. x1 in (0, L),

and �̃(x1, x2) = �(x1, x2) − Φ(x1) − x2Ψ(x1) for a.e. (x1, x2) ∈ P".
We have Φ, Ψ ∈ W 2,p(0, L) and �̃ ∈ W 2,p(P") .
Step 2. We prove the estimates (55)1,2,3,4,5,6.
First, as in Proposition 4, we prove (55)1,2,3.
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Now, observe that

Ψ(x1) =
3
2"3

"

∫
−"

�(x1, x2)x2dx2 =
1
2"

"

∫
−"

3
�(x1, x2)

"
x2
"
dx2 for a.e. x1 in (0, L)

where � = � − Φ.
Set

 (x1, x2) = 3
�(x1, x2)

"
x2
"

for a.e. (x1, x2) ∈ P".
Function  belongs toW 2,p(P"). From the estimates in Proposition 4 and a straightforward calculation we deduce that

‖ ‖Lp(P") ≤ C‖‖
‖

)�
)x2

‖

‖

‖Lp(P")
, ‖

‖

‖

) 
)x1

‖

‖

‖Lp(P")
≤ C‖‖

‖

)2�
)x1)x2

‖

‖

‖Lp(P")
,

‖

‖

‖

)2 
)x1)x2

‖

‖

‖Lp(P")
≤ C
"
‖

‖

‖

)2�
)x1)x2

‖

‖

‖Lp(P")
.

Then, again from the estimates in Proposition 4 we obtain (55)4,5,6.
Step 3. We prove the estimates (55)7,8,9.
Observe that "

∫
−"

�̃(x1, x2)dx2 = 0 for a.e. x1 ∈ (0, L),

1
2"

"

∫
−"

)�̃
)x2

(x1, x2)dx2 =
1
2"

"

∫
−"

)�
)x2

(x1, x2)dx2 − Ψ(x1) for a.e. x1 ∈ (0, L).

We have
Ψ(x1) =

3
2"3

"

∫
−"

�(x1, x2)x2dx2 = −
1
2"

"

∫
−"

)�
)x2

(x1, x2)
3(x22 − "

2)
2"2

dx2.

So, since
"

∫
−"

3x22 − "
2

2"2
dx2 = 0

1
2"

"

∫
−"

)�̃
)x2

(x1, x2)dx2 =
1
2"

"

∫
−"

)�
)x2

(x1, x2)
3x22 − "

2

2"2
dx2

= 1
2"

"

∫
−"

)�
)x2

(x1, x2)
3x22 − "

2

2"2
dx2

for a.e. x1 ∈ (0, L). (56)

Estimate (53)3 applied with � replaced by )�
)x2

gives

‖

‖

‖

)�
)x2

‖

‖

‖Lp(P")
≤ C"‖‖

‖

)2�
)x22

‖

‖

‖Lp(P")
.

As a consequence of the above estimate and equality (56) we obtain
‖

‖

‖

1
2"

"

∫
−"

)�̃
)x2

(⋅, x2)dx2
‖

‖

‖Lp(0,L)
≤ C"1−1∕p‖‖

‖

)2�
)x22

‖

‖

‖Lp(P")
. (57)

We can now use the Poincaré-Wirtinger inequality with the function )�
)x2

. Estimate (53)3 yields

‖

‖

‖

)�
)x2

− 1
2"

"

∫
−"

)�
)x2

(⋅, x2)dx2
‖

‖

‖Lp(P")
≤ C"‖‖

‖

)2�
)x22

‖

‖

‖Lp(P")
.



22

The above together with (57) lead to
‖

‖

‖

)�
)x2

− Ψ‖‖
‖Lp(P")

≤ C"‖‖
‖

)2�
)x22

‖

‖

‖Lp(P")
.

Again the Poincaré-Wirtinger inequality
‖

‖

‖

� − Φ − x2Ψ
‖

‖

‖Lp(P")
≤ C"2‖‖

‖

)2�
)x22

‖

‖

‖Lp(P")
.

This proves (55)7,8.
We have )

2�̃
)x22

=
)2�
)x22

. This gives (55)10. Estimate (55)9 is a consequence of (54) and (55)5. Estimate (55)11 comes from (55)3-
(55)6. Estimate (55)12 is a consequence of (55)5.
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