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Abstract. We are concerned with the existence and qualitative properties of travelling

wave solutions for a quasilinear reaction-diffusion equation on the real line. We consider a

non-Lipschitz reaction term of Fisher–KPP type and a discontinuous diffusion coefficient

that allows for degenerations and singularities at equilibrium points. We investigate the

joint influence of the reaction and diffusion terms on the existence and nonexistence of

travelling waves and, assuming these terms are of power-type near equilibria, we provide

classification of solutions based on their asymptotic properties. Our approach provides

a broad theoretical background for the mathematical treatment of rather general models

not only in population dynamics but also in other applied sciences and engineering.
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1 Introduction

This paper is concerned with the quasilinear reaction-diffusion equation

∂u

∂t
=

∂

∂x

(
d(u)

∣∣∣∣∂u∂x
∣∣∣∣p−2 ∂u

∂x

)
+ g(u), (x, t) ∈ R× [0,+∞), p > 1, (1.1)
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and its travelling wave solutions, i.e., bounded non-constant solutions of the form u(x, t) =

U(x− ct), where U is the profile of the travelling wave and c ∈ R denotes the (unknown) speed

of propagation. We consider the reaction term g ∈ C[0, 1] to be of the so-called Fisher-KPP

type, i.e.,

g(0) = g(1) = 0, g > 0 in (0, 1). (1.2)

The diffusion coefficient d = d(s) is a rather general function in the sense that it need not be

continuous in [0, 1] or even in (0, 1). In particular, d may vanish or be singular at one or both

endpoints and it may also have discontinuities of the first kind at a finite number of points in

(0, 1). Its properties will be specified in the next section.

For p = 2 and sufficiently smooth reaction and diffusion terms, equation (1.1) has been widely

studied, starting with the classical papers [12] by Fisher and [13] by Kolmogorov, Petrovsky

and Piskunov, both from 1937. We now mention some basic results and applications concerning

special cases of (1.1). In [13], the authors investigated travelling wave solutions of the semilinear

equation
∂u

∂t
=
∂2u

∂x2
+ g(u) (1.3)

with g ∈ C1[0, 1] satisfying (1.2) together with g′(0) > 0 and g′(u) ≤ g′(0) for all u ∈ (0, 1).

A particular case of (1.3) was also considered by Fisher to model the spread of advantageous

gene in a population uniformly distributed in a one-dimensional habitat. In [12] he suggested

that if an advantageous mutation occurs, a wave of increase in the mutant gene frequency can

be expected at the expense of its parent. Assuming that the gene only occurs in two forms and

that the rate of diffusion per generation is governed by the law

−d ∂u
∂x
, d > 0,

the frequency u of the mutant gene then satisfies the equation

∂u

∂t
= d

∂2u

∂x2
+mu(1− u)

where m > 0 is the intensity of selection in favour of the mutant gene and (1 − u) is the

frequency of the non–mutant gene. Note that the constants d and m in the equation above can

be absorbed by a suitable rescaling. Fisher’s genetical context was also explored in detail in

[2, 3] considering a population of diploid individuals carrying a pair of alleles that occur in two

forms, denoted by a and A. The population is then divided into three classes – homozygotes (aa,

AA) and heterozygotes (aA) – whose linear densities as well as death rates generally differ. The

general assumptions on g = g(s) in this model are g ∈ C1[0, 1], g(0) = g(1) = 0. Other relevant

properties of the function g are specified by distinguishing what genotype is more viable than

the two others. Condition (1.2) with g′(0) > 0 corresponds to the heterozygote intermediate

case, in which the viability of the heterozygotes is between the viabilities of the homozygotes.

Other possible interpretations can be found in [16, 19]. The basic result states that there exists a

number c∗ > 0 such that for each c ≥ c∗ equation (1.3) possesses a monotone decreasing travelling

wave solution u(x, t) = U(x − ct) satisfying boundary conditions U(−∞) = 1, U(+∞) = 0.

Moreover,

2
√
g′(0) ≤ c∗ ≤ 2

√
sup

u∈(0,1)

g(u)

u
,
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see [3].

In many populations, density dependent dispersal has been observed, such as migration to

less inhabited areas as the population gets more crowded. This phenomenon can be incorporated

by considering non-constant diffusion coefficient d = d(s). Certain models also suggest that

besides d(s) > 0 it is also reasonable to assume that d degenerates at 0, i.e., d(0) = 0, cf. [16, 18].

Particular cases for p = 2 were investigated in, e.g., [1, 6, 16, 17]. A systematic treatment of

(1.1) with p = 2 and degenerate diffusion was given in [18]. The authors prove the existence

of monotone travelling wave solutions for c ≥ c∗ > 0 and distinguish front-type and sharp-type

profiles. The latter appears for c = c∗ and, in contrast with front-type solutions, the leading

edge of the wave reaches 0 in a finite time with a negative slope. The assumptions on d and g

were rather strong, such as that both function are of class C2[0, 1] and the second derivative of

d does not vanish in [0, 1]. The results were extended in [14] for g ∈ C[0, 1] and d ∈ C1[0, 1],

d > 0 in (0, 1), d(0) = 0, using upper and lower solutions method. Sharp-type profiles appear if

d′(0) > 0 whereas d′(0) = +∞ leads to front-type solutions only. The authors also discuss the

case of doubly degenerate diffusion when d(0) = d(1) = 0. Even weaker assumptions on d = d(s)

were considered in [9] allowing singularities at both equilibrium points 0 and 1. Existence of

travelling waves is shown, however, information regarding possible “sharpness” is obtained only

by assuming power-type behaviour of the reaction and diffusion terms.

Recently, models with p > 1 also appeared in literature, see for instance [4, 8, 11] and their

references. In our previous work [10] we derived existence and uniqueness results for a continuous

bistable reaction term

g(0) = g(s∗) = g(1) = 0, g < 0 in (0, s∗), g > 0 in (s∗, 1)

and a possibly discontinuous diffusion coefficient d = d(s) with the properties listed in the next

section. To our best knowledge, discontinuous diffusion has not been considered in models with

Fisher-KPP type reaction term. In the bistable case, piecewise constant diffusion coefficient

has appeared in [20], physically motivated by phenomena in which the diffusion constant drops

abruptly.

This paper is organized as follows. In Section 2 we introduce a new definition of solution that

accounts for discontinuities as well as possible degenerations and singularities of the diffusion

coefficient. The sign of wave speed c and basic properties of the travelling wave profile are

discussed at the beginning of Section 3. We then prove the equivalence with a first order problem,

resulting in Proposition 3.3. We study this problem in detail in Section 4 and subsequently

interpret the existence and nonexistence results in terms of the travelling wave profile in Section

5, Theorems 5.1, 5.3. In contrast with the results obtained in [14] for p = 2 and [11] for p > 1,

our existence theorem does not provide information about whether the solution attains values 0

and/or 1. We investigate this phenomenon in the case of power-type behaviour of d = d(s) and

g = g(s) near 0 and 1 in Section 6.

2 Preliminaries

Let g : [0, 1] → R, g ∈ C[0, 1] satisfy (1.2). The diffusion coefficient d : [0, 1] → R is supposed to

be nonnegative lower semicontinuous and d > 0 in (0, 1). There exist 0 = s0 < s1 < s2 < · · · <

3



sn < sn+1 = 1 such that d|(si,si+1)
∈ C(si, si+1), i = 0, . . . , n, and d has discontinuity of the first

kind (finite jump) at si, i = 1, . . . , n.

We use the moving coordinate z = x− ct and write u(x, t) = U(x− ct) = U(z). For the sake

of simplicity we write ( · )′ instead of d
dz ( · ). Then (1.1) transforms into(

d(U(z))
∣∣U ′(z)

∣∣p−2
U ′(z)

)′
+ cU ′(z) + g(U(z)) = 0. (2.1)

Discontinuities of d = d(s) imply that we cannot expect (2.1) to be satisfied in a classical sense.

Therefore, below we introduce the definition of more general solution of (2.1).

A function U ∈ C(R) is piecewise C1 (denoted U ∈ Ĉ1(R)) provided that there is a discrete

set DU ⊂ R, i.e, a set which consists of isolated points, such that U ∈ C1(R \DU ).

Definition 2.1. Let U : R → [0, 1], U ∈ Ĉ1(R). We denote

MU := {z ∈ R : U(z) = si, i = 1, 2, . . . , n}, NU := {z ∈ R : U(z) = 0 or U(z) = 1}.

Then U is called a solution of (2.1) if

(a) ∂MU ∪ ∂NU = DU .

(b) For any z ∈ ∂MU there exist finite one sided derivatives U ′(z−), U ′(z+) and

L(z) :=
∣∣U ′(z−)

∣∣p−2
U ′(z−) lim

ξ→z−
d(U(ξ)) =

∣∣U ′(z+)
∣∣p−2

U ′(z+) lim
ξ→z+

d(U(ξ)).

(c) Function v : R → R defined by

v(z) :=


d(U(z)) |U ′(z)|p−2 U ′(z), z /∈ ∂MU ∪ ∂NU ,

0, z ∈ ∂NU ,

L(z), z ∈ ∂MU

is continuous and for any z, ẑ ∈ R

v(ẑ)− v(z) + c (U(ẑ)− U(z)) +

∫ ẑ

z
g(U(ξ)) dξ = 0. (2.2)

Moreover, lim
z→±∞

v(z) = 0 if either lim
z→−∞

U(z) = 1 and lim
z→+∞

U(z) = 0 or else lim
z→−∞

U(z) =

0 and lim
z→+∞

U(z) = 1.

Remark 2.2. It follows from Definition 2.1 (a) that for any solution U of (2.1) both sets ∂MU

and ∂NU are discrete. The existence of the derivative U ′(z) (or U ′(z−), U ′(z+)) for z ∈ ∂NU

depends on asymptotic behaviour of d near 0 and 1.

Remark 2.3. It follows from g(s) > 0, s ∈ (0, 1), that intMU = ∅. Indeed, let ξ̃ ∈ intMU .

Then there is an open neighbourhood U(ξ̃) of ξ̃ such that U(ξ̃) ⊂ intMU , i.e., there exists

i ∈ {1, 2, . . . , n} such that U(z) = si for all z ∈ U(ξ̃). In particular, U ′(z) = 0 for all z ∈ U(ξ̃).
Choosing z, ẑ ∈ U(ξ̃), z ̸= ẑ in (2.2), we arrive at

∫ ẑ
z g(si) dξ = 0, a contradiction. Therefore,

MU = ∂MU .
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Remark 2.4. Constant functions

U0(z) = 0, U1(z) = 1, z ∈ R,

are solutions of (2.1). Here, MU0 =MU1 = ∅, NU0 = NU1 = R. It follows from the properties of

d and g that those are the only constant solutions of (2.1) and they are called equilibria.

Remark 2.5. Let p = 2, d ≡ 1 and g ∈ C1[0, 1]. Let U = U(z) be a solution of (2.1) in the sense

of Definition 2.1. Then MU = ∅, NU = ∅ and the equation (2.1) holds pointwise. Therefore,

U ∈ C2(R) is a classical solution. For more general d we have to employ the first integral (2.2)

due to the lack of differentiability of the solution U .

Remark 2.6. Let z /∈ MU ∪ NU , ẑ = z + h, h ̸= 0. Since MU and NU are closed sets we can

choose |h| so small that ẑ /∈MU ∪NU . Divide (2.2) by h and let h→ 0. Then, by Definition 2.1

(a), the derivative U ′(z) exists and

v′(z) + cU ′(z) + g(U(z)) = 0. (2.3)

In particular, v is differentiable in z /∈MU ∪NU .

Remark 2.7. Let z ∈ MU , ẑ = z + h, h < 0. Divide (2.2) by h and let h → 0. Then by

Definition 2.1 we get

v′(z−) + cU ′(z−) + g(U(z)) = 0.

In particular, v′(z−) exists and it is finite. Similarly, we derive

v′(z+) + cU ′(z+) + g(U(z)) = 0

and v′(z+) exists and it is finite.

3 Equivalent first order ODE

Let U be a solution of (2.1) satisfying boundary conditions

lim
z→−∞

U(z) = 1 and lim
z→+∞

U(z) = 0. (3.1)

Passing to the limit for z → −∞ in (2.2) and writing z in place of ẑ, we obtain that

v(z) + c (U(z)− 1) +

z∫
−∞

g(U(σ)) dσ = 0 (3.2)

holds for any z ∈ R. On the other hand, passing to the limit for ẑ → +∞ in (2.2), we obtain

that

v(z) + cU(z)−
+∞∫
z

g(U(σ)) dσ = 0 (3.3)

holds for any z ∈ R. Passing to the limit for ẑ → +∞ and z → −∞ in (2.2) yields

−c+
+∞∫

−∞

g(U(σ)) dσ = 0.

Since g > 0 in (0, 1) and U satisfies (3.1), we get c > 0.
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Lemma 3.1. Let U = U(z), z ∈ R, be a solution of (2.1), (3.1) and assume ξ ∈ NU . Then the

following two alternatives occur:

(i) if U(ξ) = 0 then U(z) = 0 for every z ≥ ξ;

(ii) if U(ξ) = 1 then U(z) = 1 for every z ≤ ξ.

Proof. (i) Let U(ξ) = 0 and there exists ξ∗ > ξ such that U(ξ∗) > 0. Taking ξ∗ closer

to ξ if necessary, we may assume that also U(ξ∗) < 1. Then g(U(ξ∗)) > 0 and therefore∫ +∞
ξ g(U(σ)) dσ > 0. From the definition of v we get v(ξ) = 0 and from (3.3) with z = ξ we

deduce
∫ +∞
ξ g(U(σ)) dσ = 0, a contradiction.

(ii) Assume U(ξ) = 1 and there is some ξ∗ < ξ such that U(ξ∗) < 1. Taking ξ∗ closer to ξ if

necessary, we can guarantee also U(ξ∗) > 0. Hence g(U(ξ∗)) > 0 and so
∫ ξ
−∞ g(U(σ)) dσ > 0.

From the definition of v we have v(ξ) = 0 and from (3.2) with z = ξ we deduce
∫ ξ
−∞ g(U(σ)) dσ =

0, a contradiction.

Lemma 3.2. Let U = U(z), z ∈ R, be a solution of (2.1), (3.1). Then U is nonincreasing in

R. Moreover, for z /∈ NU we have U ′(z) < 0 if z /∈MU and U ′(z−) < 0, U ′(z+) < 0 if z ∈MU .

In other words, U is (strictly) decreasing at any point z ∈ R such that 0 < U(z) < 1.

Proof. Let ξ /∈ NU be such that U ′(ξ−) = 0. Then it follows from Remarks 2.6 and 2.7 depending

on whether ξ /∈MU ∪NU or ξ ∈MU , respectively, that

v′(ξ−) = −g(U(ξ)) < 0.

Since v(ξ) = 0, there exists left neighbourhood U−(ξ) of the point ξ such that for all z ∈ U−(ξ)

we have v(z) > 0. Taking U−(ξ) smaller if necessary, we may assume that NU ∩ U−(ξ) = ∅.
Since d(U(z)) > 0, z ∈ U−(ξ), from v(z) > 0 we deduce that for any z ∈ U−(ξ) we have

also U ′(z−) > 0, U ′(z+) > 0. However, this implies that U(z) < U(ξ), z ∈ U−(ξ). Since, by

Definition 2.1, U ′(ξ+) = 0, we deduce similarly as above that there is also a right neighbourhood

U+(ξ) of ξ such that U(z) < U(ξ), z ∈ U+(ξ). Therefore, ξ is the point of strict local maximum

for U . Since U(z) → 1 as z → −∞ and U(ξ) < 1, there is ξ∗ ∈ (−∞, ξ) such that U(ξ) ≤
U(ξ∗) < 1. Let ξ∗ ∈ [ξ∗, ξ] be a global minimizer for U over the compact interval [ξ∗, ξ]. Then

U(ξ∗) < U(ξ) ≤ U(ξ∗) < 1 and therefore ξ∗ ∈ (ξ∗, ξ). In particular, ξ∗ is also a local minimizer

for U . If U(ξ∗) = 0, i.e., ξ∗ ∈ NU , then Lemma 3.1 forces U(ξ) = 0, contradicting ξ /∈ NU .

Therefore, we have ξ∗ /∈ NU . If ξ∗ /∈ MU then U ′(ξ∗) exists and hence U ′(ξ∗) = 0 (ξ∗ is a

local minimizer for U). We can prove as above that ξ∗ is a strict local maximizer for U , a

contradiction. Finally, if ξ∗ ∈ MU then from Definition 2.1 (b) and d(U(ξ∗)) > 0 we conclude

sgnU ′(ξ∗−) = sgnU ′(ξ∗+). But ξ∗ being local minimizer for U implies that U ′(ξ∗−) ≤ 0 and

U ′(ξ∗+) ≥ 0. Hence, U ′(ξ∗−) = U ′(ξ∗+) = 0, i.e., U ′(ξ∗) = 0 and we proceed as above. This

concludes the proof.

It follows from Lemmas 3.1 and 3.2 that function U = U(z), z ∈ R, which solves (2.1), (3.1)

is a nonincreasing function in R and there is an open interval (z0, z1) ⊂ R, −∞ ≤ z0 < z1 ≤ +∞,
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such that U is strictly decreasing in (z0, z1),

lim
z→z0+

U(z) = 1 and U(z) = 1 if −∞ < z ≤ z0,

lim
z→z1−

U(z) = 0 and U(z) = 0 if z1 ≤ z < +∞.

Moreover, MU = {ξ1, ξ2, . . . , ξn} where U(ξi) = si, i = 1, 2, . . . , n. In particular, intMU = ∅
and MU = ∂MU . For all z /∈ MU ∪ NU we have U ′(z) < 0 and for all z ∈ MU we have

U ′(z−) < 0 and U ′(z+) < 0. The function U is continuous and piecewise C1 in the sense

that U |(ξi,ξi+1)
∈ C1(ξi, ξi+1). Therefore, there exists a strictly decreasing inverse function

U−1 : (0, 1) → (z0, z1), z = U−1(U), such that U−1
∣∣
(si,si+1)

∈ C1(si, si+1), i = 0, 1, . . . , n and

the limits

lim
U→si−

dz

dU
=

(
lim

z→ξi+

dU

dz

)−1

, lim
U→si+

dz

dU
=

(
lim

z→ξi−

dU

dz

)−1

exist finite, i = 1, 2, . . . , n. Set

w(U) = v(z(U)), U ∈ (0, 1). (3.4)

Then w = w(U) is a piecewise C1-function in (0, 1),

w|(si,si+1)
∈ C1(si, si+1), i = 0, 1, . . . , n,

with finite limits limU→si−w
′(U), limU→si+w

′(U), i = 1, 2, . . . , n. Therefore, for any z ∈
(ξi, ξi+1) and U ∈ (si, si+1), i = 0, 1, . . . , n, we have

d

dz
v(z) =

d

dz
w(U(z)) =

dw

dU
(U(z))U ′(z). (3.5)

From v(z) = −d(U(z)) |U ′(z)|p−1 we deduce that

U ′(z) = −
∣∣∣∣ v(z)

d(U(z))

∣∣∣∣p′−1

, p′ =
p

p− 1
. (3.6)

From (3.4), (3.5) and (3.6),

dv

dz
= −dw

dU
(U(z))

∣∣∣∣ v(z)

d(U(z))

∣∣∣∣p′−1

= −dw

dU

∣∣∣∣w(U)

d(U)

∣∣∣∣p′−1

.

Therefore, the equation (2.3) for z ∈ (ξi, ξi+1) becomes

−dw

dU

∣∣∣∣w(U)

d(U)

∣∣∣∣p′−1

− c

∣∣∣∣w(U)

d(U)

∣∣∣∣p′−1

+ g(U) = 0, U ∈ (si, si+1),

i = 0, 1, . . . , n. This is equivalent to

|w|p′−1 dw

dU
= −c |w|p′−1 + (d(U))p

′−1 g(U), (3.7)

or
1

p′
d

dU
|w|p′ = c |w|p′−1 − (d(U))p

′−1 g(U). (3.8)
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Set f(U) = (d(U))
1

p−1 g(U) and write t instead of U and y(t) = |w(t)|p′ . Then (3.8) becomes

y′(t) = p′
[
c (y(t))

1
p − f(t)

]
, t ∈ (0, 1) \

n⋃
i=1

{si}. (3.9)

From (3.1) and Definition 2.1 (c) we deduce that v(z) → 0 as z → z0+ or z → z1− which is

equivalent to limU→0+w(U) = limU→1−w(U) = 0. Therefore, y = y(t) satisfies the boundary

conditions

y(0) = y(1) = 0. (3.10)

On the other hand, let us suppose that y = y(t), y ∈ C[0, 1], is a positive solution of (3.9),

(3.10). Set w(s) := −(y(s))
1
p′ . Then w satisfies (3.7) and (3.8). For U ∈ (0, 1) set

z(U) = −
∫ U

1
2

∣∣∣∣ d(s)w(s)

∣∣∣∣ 1
p−1

ds, (3.11)

where w(s) = −(y(s))
1
p′ . Then the function z = z(U) is continuous strictly decreasing in (0, 1),

z(12) = 0 and maps the interval (0, 1) onto (z0, z1), where −∞ ≤ z0 < z1 ≤ +∞. Let us denote

by U : (z0, z1) → (0, 1) the inverse function to z = z(U). Then U(0) = 1
2 , U is continuous

strictly decreasing,

lim
z→z0+

U(z) = 1 and lim
z→z1−

U(z) = 0.

Let z ∈ (ξi, ξi+1), i = 0, 1, . . . , n, where U(ξi) = si, i = 0, 1, . . . , n, n + 1. Then from (3.11) we

deduce
dU

dz
=

1
dz(U)
dU

= −
∣∣∣∣w(U)

d(U)

∣∣∣∣ 1
p−1

, U ∈ (si, si+1), (3.12)

i.e., U ∈ C1(ξi, ξi+1), U
′(z) < 0 and

− d(U(z))

∣∣∣∣dU(z)

dz

∣∣∣∣p−1

= w(U(z)) =: v(z), (3.13)

i.e.,

d

dz

[
d(U(z))

∣∣∣∣dUdz
∣∣∣∣p−2 dU

dz

]
=

d

dz
w(U(z)) =

dw

dU

dU(z)

dz
. (3.14)

From (3.7), (3.13) we deduce

dw

dU
= − |w(U)|−(p′−1)

(
−c |w(U)|p′−1 + (d(U))p

′−1 g(U)
)

= −c+ |w(U)|−(p′−1) (d(U))p
′−1 g(U)

= −c+ (d(U(z)))−(p′−1)

∣∣∣∣dU(z)

dz

∣∣∣∣−(p−1)(p′−1)

(d(U(z)))p
′−1 g(U(z))

= −c+
∣∣∣∣dU(z)

dz

∣∣∣∣−1

g(U(z)).

Let us substitute this into (3.14):

d

dz

[
d(U(z))

∣∣∣∣dUdz
∣∣∣∣p−2 dU

dz

]
=

[
−c+

∣∣∣∣dU(z)

dz

∣∣∣∣−1

g(U(z))

]
dU(z)

dz
= −cdU(z)

dz
− g(U(z)),
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i.e.,

d

dz

[
d(U(z))

∣∣∣∣dUdz
∣∣∣∣p−2 dU

dz

]
+ c

dU(z)

dz
+ g(U(z)) = 0, z ∈ (ξi, ξi+1), i = 0, 1, . . . , n.

It follows from (3.12) that

lim
z→ξi±

U ′(z) = −

∣∣∣∣∣∣ w(si)

lim
s→si±

d(s)

∣∣∣∣∣∣
1

p−1

, i = 1, 2, . . . , n.

From (3.13) and the continuity of U we then have

lim
z→z0+

d(U(z))
∣∣U ′(z)

∣∣p−2
U ′(z) = lim

z→z1−
d(U(z))

∣∣U ′(z)
∣∣p−2

U ′(z) = 0

and the following one sided limits are finite

lim
z→ξi−

d(U(z))
∣∣U ′(z)

∣∣p−2
U ′(z) = lim

z→ξi+
d(U(z))

∣∣U ′(z)
∣∣p−2

U ′(z), i = 1, 2, . . . , n.

Since U is monotone decreasing in (z0, z1), we have

lim
z→ξi−

d(U(z)) = lim
s→si+

d(s) and lim
z→ξi+

d(U(z)) = lim
s→si−

d(s), i = 1, 2, . . . , n.

Therefore, U satisfies the transition condition∣∣U ′(ξi−)
∣∣p−2

U ′(ξi−) lim
s→si+

d(s) =
∣∣U ′(ξi+)

∣∣p−2
U ′(ξi+) lim

s→si−
d(s), i = 1, 2, . . . , n.

We may summarize the above reasoning in the following equivalence.

Proposition 3.3. A function U : R → [0, 1], U ∈ Ĉ1(R) is a solution of (2.1), (3.1) if and only

if y : [0, 1] → R, y ∈ C[0, 1], is a positive solution of (3.9), (3.10). In particular, solution U of

(2.1), (3.1) is uniquely determined (up to translation) by the solution y of (3.9), (3.10) and vice

versa.

Thanks to this proposition we can study the first order problem (3.9), (3.10) in order to

derive the existence and uniqueness of solution for (2.1), (3.1). Let us recall that there are two

“unknowns” in this problem. Indeed, besides the positive solution y = y(t) we also look for

unknown speed of propagation c > 0. Therefore, (3.9), (3.10) is not overdetermined.

4 The first order ODE, existence, uniqueness and nonexistence

In this section we concentrate on the existence and uniqueness result for the boundary value

problem y
′(t) = p′

[
c
(
y+(t)

) 1
p − f(t)

]
, t ∈ (0, 1),

y(0) = y(1) = 0.
(4.1)

Here y+(t) = max{y(t), 0} denotes the positive part of y, p > 1 and p′ > 1 are conjugate

numbers and f ∈ L1(0, 1). We employ the concept of solution of the first order ODE in the

sense of Carathéodory. For (t, y, c) ∈ [0, 1]× R2 we set

h(t, y, c) := p′
[
c
(
y+
) 1

p − f(t)
]

9



and consider the following two initial value problems which depend on a parameter c ∈ R:

y′(t) = h(t, y(t), c), y(0) = 0 (4.2)

and

y′(t) = h(t, y(t), c), y(1) = 0. (4.3)

In both cases we look for a solution y = y(t), t ∈ [0, 1]. Therefore, (4.2) is referred to as a forward

initial value problem, while (4.3) is referred to as a backward initial value problem. Note that

f ∈ L1(0, 1) implies that h = h(t, y, c) satisfies Carathéodory’s conditions, i.e., for almost every

t ∈ [0, 1] fixed, h(t, ·, ·) is continuous with respect to y and c and for every y ∈ R and c ∈ R fixed,

h(·, y, c) is measurable with respect to t. In what follows, for any fixed c ∈ R, yc = yc(t) denotes

the solution in the sense of Carathéodory of the forward and backward initial value problem

(4.2) and (4.3), respectively. In particular, yc is absolutely continuous in [0, 1] and the equation

holds a.e. in [0, 1]. We first mention the following global existence result.

Lemma 4.1. Let f ∈ L1(0, 1), c ∈ R. Then there exists at least one global solution yc = yc(t)

of (4.2) defined on the entire interval [0, 1]. The same holds for (4.3).

Proof. Let c ∈ R and f ∈ L1(0, 1) be fixed. Integrating (4.2) we get

y(σ) = p′
(
c

∫ σ

0

(
y+(τ)

) 1
p dτ −

∫ σ

0
f(τ) dτ

)
, σ ∈ (0, 1). (4.4)

For t ∈ (0, 1) set

ϱ(t) := max
σ∈[0,t]

|y(σ)|.

It follows from (4.4) that for σ ∈ [0, t]

|y(σ)| ≤ p′
(
|c|
∫ σ

0

(
y+(τ)

) 1
p dτ + ∥f∥L1(0,1)

)
and therefore

ϱ(t) ≤ p′
(
|c| max

σ∈[0,t]

∫ σ

0

(
y+(τ)

) 1
p dτ + ∥f∥L1(0,1)

)
≤ p′

(
|c|
∫ 1

0
max
σ∈[0,t]

(
y+(σ)

) 1
p dτ + ∥f∥L1(0,1)

)
≤ p′

(
|c|
(
max
σ∈[0,t]

|y(σ)|
) 1

p

+ ∥f∥L1(0,1)

)
= p′

(
|c| (ϱ(t))

1
p + ∥f∥L1(0,1)

)
.

Since 1
p < 1 the last inequality yields that there is K > 0 such that ϱ(t) ≤ K for all t ∈ [0, 1],

i.e., all solutions of (4.2) are a priori bounded by a constant K > 0. Setting

h̃(t, y, c) =

h(t, y, c) for |y| ≤ K,

p′
(
cK

1
p − f(t)

)
for |y| > K,

the set of solutions of (4.2) coincides with the set of solutions of the modified problem

y′(t) = h̃(t, y(t), c), y(0) = 0. (4.5)

But h̃ satisfies Carathéodory’s conditions and there is a function m ∈ L1(0, 1) such that

|h̃(t, y, c)| ≤ m(t) for (t, y) ∈ [0, 1] × R. Therefore (4.5) (and thus also (4.2)) has a global

solution in [0, 1] according to [21, Theorem 10.XVIII]. Similarly we proceed in case of (4.3).

10



Remark 4.2. The uniqueness of the solution in the above lemma does not hold in general due

to the fact that the function y 7→ c (y+)
1
p , y ∈ R, does not satisfy the Lipschitz condition at 0.

However, it is nondecreasing for c ≥ 0 and nonincreasing for c ≤ 0. Therefore, it satisfies one-

sided Lipschitz condition in either case and we have the following uniqueness results separately

for the forward and backward initial value problems.

Lemma 4.3. Let f ∈ L1(0, 1). If c ≤ 0 then (4.2) has exactly one solution yc = yc(t), t ∈ [0, 1].

If c ≥ 0 then (4.3) has exactly one solution yc = yc(t), t ∈ [0, 1].

Proof. Since the idea of the proof is the same for both alternatives, we only prove the second

part of the statement. Let c ≥ 0 and y1 = y1(t), y2 = y2(t) be two solutions of (4.3) in [0, 1].

Set

δ(t) = (y1(t)− y2(t))
2 .

Then δ(1) = 0, δ(t) ≥ 0 and

δ′(t) = 2
(
y′1(t)− y′2(t)

)
(y1(t)− y2(t))

= 2p′c
[(
y+1 (t)

) 1
p −

(
y+2 (t)

) 1
p

]
(y1(t)− y2(t)) ≥ 0.

Hence δ(t) = 0 for a.e. t ∈ [0, 1] and y1(t) = y2(t), t ∈ [0, 1].

Thanks to the uniqueness result we also have continuous dependence of solutions on the

parameter c.

Lemma 4.4. Let f ∈ L1(0, 1), c0 ≥ 0. Then c → c0 > 0 or c → 0+ if c0 = 0 implies that

solutions yc = yc(t) of the backward initial value problem (4.3) converge uniformly in [0, 1] (i.e.,

in the topology of C[0, 1]) to yc0. Similar result holds for c0 ≤ 0 and the forward initial value

problem (4.2).

Proof. The proof follows from the uniqueness result in Lemma 4.3 and [5, Theorems 4.1 and

4.2].

As we already observed at the beginning of Section 3, the assumption g > 0 in (0, 1) yields

c > 0. For this reason, we further focus on parameters c ≥ 0 and the backward initial value

problem (4.3) rather than on c ≤ 0 and the forward initial value problem (4.2).

Let us introduce the notion of the defect Pcφ of a function φ with respect to the differential

equation y′ = h(t, y, c), see e.g. [21, §9.II]:

Pcφ := φ′(t)− h(t, φ(t), c).

The following comparison argument is one of our basic tools.

Lemma 4.5. Let f ∈ L1(0, 1), c ≥ 0, φ(1) ≤ ψ(1), Pcφ ≥ Pcψ a.e. in [0, 1]. Then φ ≤ ψ in

[0, 1].

Proof. Let w = ψ − φ. Then

w′ = ψ′ − φ′ = Pcψ + p′c(ψ+)
1
p − Pcφ− p′c(φ+)

1
p ≤ p′c

(
(ψ+)

1
p − (φ+)

1
p

)
(4.6)

11



a.e. in [0, 1]. Assume that there is t0 ∈ (0, 1) such that w(t0) < 0. Let t1 ∈ (t0, 1] be such that

w(t) ≤ 0, t ∈ (t0, t1]. It follows from (4.6) that w′ ≤ p′c[(ψ+)
1
p − (φ+)

1
p ] ≤ 0 a.e. in (t0, t1], i.e.,

w(t1) ≤ w(t0) < 0. Using the same argument repeatedly if necessary we conclude that w(1) < 0,

a contradiction with φ(1) ≤ ψ(1).

Corollary 4.6. Let f ∈ L1(0, 1), 0 ≤ c1 ≤ c2. Then

yc1(t) ≥ yc2(t) , t ∈ [0, 1].

In particular, yc1(0) ≥ yc2(0).

Proof. We have

Pc2yc1 = y′c1 − h(t, yc1 , c2) = y′c1 − h(t, yc1 , c1)︸ ︷︷ ︸
=0

+h(t, yc1 , c1)− h(t, yc1 , c2)

= p′(c1 − c2)
(
y+c1
) 1

p ≤ 0 = y′c2 − h(t, yc2 , c2) = Pc2yc2 a.e. in [0, 1].

Then Lemma 4.5 yields that yc1 ≥ yc2 in [0, 1].

Theorem 4.7 (Existence). Let f be lower semicontinuous, f(t) > 0, t ∈ (0, 1),

0 < µ := sup
t∈(0,1)

f(t)

tp′−1
< +∞. (4.7)

Then there exists a number c∗ ∈ (0, (p′)
1
p′ p

1
pµ

1
p′ ] such that the problem (4.1) has a unique positive

solution if and only if c ≥ c∗.

Proof. It follows from (4.7) that f is bounded in (0, 1). In particular, f ∈ L1(0, 1). For a solution

yc = yc(t) of (4.3) with c ≥ 0 we have

Pc0 = 0− h(t, 0, c) = p′f(t) ≥ y′c − h(t, yc, c) = Pcyc a.e. in [0, 1].

Then by Lemma 4.5 we have yc ≥ 0 in [0, 1]. We prove that yc > 0 in (0, 1). Indeed, let

t0 ∈ (0, 1) be such that yc(t0) = 0. Since f > 0 in (0, 1) and f is lower semicontinuous, given

ε > 0 arbitrarily small, there is a constant η > 0 such that f(t) ≥ η > 0 for all t ∈ [t0, 1 − ε].

Integrating (4.3) from t0 to t ∈ (t0, 1− ε] and using yc(t0) = 0 we get

yc(t) = p′
(
c

∫ t

t0

(
y+c (τ)

) 1
p dτ −

∫ t

t0

f(τ) dτ

)
,

yc(t)

t− t0
= p′

c ∫ t
t0
(y+c (τ))

1
p dτ

t− t0
−
∫ t
t0
f(τ) dτ

t− t0

 . (4.8)

We have ∫ t
t0
f(τ) dτ

t− t0
≥ η (4.9)

and since yc is continuous at t0 and yc(t0) = 0,

lim
t→t0+

∫ t
t0
(y+c (τ))

1
p dτ

t− t0
= 0. (4.10)
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From (4.8)–(4.10) we conclude that for t close enough to t0, t > t0,

yc(t)

t− t0
< 0,

a contradiction. Thus yc > 0 in (0, 1).

Next, using the estimates similar to [11, p. 176], we prove that for c large enough equality

yc(0) = 0 must hold. Set ϕc(s) = cs
1
p − s, c > 0, s ∈ (0, cp

′
). Then ϕc > 0 in (0, cp

′
), ϕc(0) =

ϕc(c
p′) = 0, and ϕc attains maximum value Mc := ( cp)

p′(p− 1) at the point k := ( cp)
p′ ∈ (0, cp

′
).

Elementary calculation yields that c ≥ (p′)
1
p′ p

1
pµ

1
p′ if and only if Mc ≥ µ, i.e., ϕc(k) ≥ µ, or

equivalently we have

ck
1
p − µ ≥ k . (4.11)

Let s(t) := ktp
′
. Then s(1) > 0 and thanks to (4.11),

Pcs = s′(t)− h(t, s, c) = kp′tp
′−1 − h(t, s, c) ≤

(
ck

1
p − µ

)
p′tp

′−1 − p′
[
c(s(t))

1
p − f(t)

]
≤
(
ck

1
p − µ

)
p′tp

′−1 − p′
[
c(s(t))

1
p − µtp

′−1
]
= 0 = Pcyc a.e. in [0, 1].

Then again by Lemma 4.5 we have

0 ≤ yc(t) ≤ s(t), t ∈ [0, 1].

In particular,

0 = yc(0) = s(0).

To summarize, we have proved that for any c ≥ (p′)
1
p′ p

1
pµ

1
p′ there exists unique positive solution

yc = yc(t) of the backward initial value problem (4.3) satisfying yc(0) = 0. In particular,

yc = yc(t) is a positive solution of (4.1).

By Corollary 4.6, yc1(t) ≥ yc2(t), t ∈ (0, 1), yci(0) = yci(1) = 0, i = 1, 2, if c1 < c2. Set

c∗ := inf{c > 0 : (4.1) has a unique positive solution}.

Then from above we get c∗ ≤ (p′)
1
p′ p

1
pµ

1
p′ . Let cn → c∗+, ycn = ycn(t), t ∈ [0, 1], be solutions of

(4.1) with c = cn. Then according to Lemma 4.4 solutions ycn converge uniformly to a solution

yc∗ of (4.1) with c = c∗. Since c∗ ≥ 0, we have yc∗(t) > 0, t ∈ (0, 1). Hence (4.1) has a unique

positive solution if and only if c ≥ c∗. For c = 0 we have

y0(t) = p′
∫ 1

t
f(τ) dτ, t ∈ [0, 1].

In particular, y0(0) > 0 and therefore c∗ > 0.

Theorem 4.8 (Nonexistence). Let f(t) > 0, t ∈ (0, 1),

0 < ν := lim inf
t→0+

f(t)

tp′−1
. (4.12)

If

0 < c < (p′)
1
p′ p

1
p ν

1
p′ (4.13)
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then the BVP (4.1) has no positive solution. In particular, if

lim
t→0+

f(t)

tp′−1
= +∞, (4.14)

then (4.1) has no positive solution for any c > 0.

Proof. We proceed by contradiction. Let c be fixed and satisfy (4.13). Assume that (4.1) has

a positive solution yc = yc(t) > 0, t ∈ (0, 1). Since yc is also a solution of the backward initial

value problem (4.3) and c > 0, by Lemma 4.3 function yc is also a unique solution of (4.1). For

v ∈ C[0, 1] fixed let u ∈ C[0, 1] be such that

u(t) = p′
∫ t

0

[
c
(
v+(τ)

) 1
p − f(τ)

]
dτ.

Then u = T (v) defines a monotone increasing operator from C[0, 1] into C[0, 1] with a unique

fixed point yc. Indeed, let v1, v2 ∈ C[0, 1], v1(t) ≤ v2(t), t ∈ [0, 1]. Then

T (v1)(t)− T (v2)(t) = p′
∫ t

0
c
[(
v+1 (τ)

) 1
p −

(
v+2 (τ)

) 1
p

]
dτ ≤ 0.

Set y0(t) = cp
′
tp

′
, t ∈ [0, 1]. Then

T (y0)(t) = y0(t)− p′
∫ t

0
f(τ) dτ ≤ y0(t), t ∈ [0, 1],

i.e., y0 is a supersolution of T (see e.g. [7, Def. 6.3.15]). We consider the following successive

approximations

yn+1 = T (yn), n = 0, 1, 2, . . .

Since T is monotone increasing, we have

y0(t) ≥ y1(t) ≥ · · · ≥ yn(t) ≥ . . . (4.15)

For any n ∈ N,

yn(t) = T (yn−1)(t) ≥ −p′
∫ t

0
f(τ) dτ,

i.e., the sequence {yn}∞n=0 is bounded below in C[0, 1]. By [7, Thm. 6.3.16] this sequence

converges to the greatest fixed point of T . Since the solution yc = yc(t) of (4.1) is a unique fixed

point of T , we get from (4.15) that

y0(t) ≥ y1(t) ≥ · · · ≥ yn(t) ≥ · · · ≥ yc(t) > 0, t ∈ (0, 1). (4.16)

It follows from (4.12), (4.13) that there exists δ ∈ (0, 1] and ν̃ ∈
(

1
p′pp′−1 , 1

)
such that

f(t) ≥ ν̃cp
′
tp

′−1 for all t ∈ (0, δ). (4.17)

Now, using (4.17) we deduce

y1(t) = p′
[
c

∫ t

0

(
y+0 (τ)

) 1
p dτ −

∫ t

0
f(τ) dτ

]
= p′

[
c

∫ t

0
c
p′
p τ

p′
p dτ −

∫ t

0
f(τ) dτ

]
≤ p′cp

′

[
τp

′

p′

]t
0

− p′
∫ t

0
ν̃cp

′
τp

′−1 dτ = cp
′
tp

′ − ν̃cp
′
tp

′
= ctp

′
(1− ν̃), t ∈ (0, δ),
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y2(t) = p′
[
c

∫ t

0

(
y+1 (τ)

) 1
p dτ −

∫ t

0
f(τ) dτ

]
≤ p′c

∫ t

0
c
p′
p τ

p′
p (1− ν̃)

1
p dτ − p′

∫ t

0
ν̃cp

′
τp

′−1 dτ = cp
′
tp

′
(1− ν̃)

1
p − ν̃cp

′
tp

′

= cp
′
tp

′
[
(1− ν̃)

1
p − ν̃

]
, t ∈ (0, δ).

Performing the iterative process, we get for k = 1, 2, . . . that

yk(t) ≤ akc
p′tp

′
for t ∈ (0, δ), (4.18)

a0 = 1, ak = (ak−1)
1
p − ν̃. (4.19)

It follows from (4.16), (4.18) that

0 < yc(t) ≤ · · · ≤ akc
p′tp

′ ≤ ak−1c
p′tp

′ ≤ · · · ≤ a1c
p′tp

′ ≤ cp
′
tp

′
(4.20)

for t ∈ (0, δ). Hence {ak}∞k=1 is bounded and monotone decreasing and therefore there exists

finite limit a∞ := limk→∞ ak. Then obviously a∞ < 1 and due to (4.20) we infer a∞ > 0.

Passing to the limit for k → ∞ in (4.19), we get

a∞ = a
1
p
∞ − ν̃, i.e., ν̃ = a

1
p
∞(1− a

1
p′
∞).

Since the function x 7→ x
1
p (1−x

1
p′ ), x ∈ (0, 1), attains its maximum 1

p′pp′−1 at the point x = 1
pp′

,

we necessarily have ν̃ ≤ 1
p′pp′−1 , a contradiction with the fact ν̃ ∈

(
1

p′pp′−1 , 1
)
. Therefore (4.1)

cannot have a positive solution. In particular, if (4.14) holds then ν = +∞ and (4.13) yields

that (4.1) has no positive solution for any c ∈ R.

Remark 4.9. Let µ and ν be defined as in Theorems 4.7 and 4.8, respectively. Then we conclude

from the existence and nonexistence results above that the minimal value of the “critical” speed

c∗ > 0 must satisfy

(p′)
1
p′ p

1
p ν

1
p′ ≤ c∗ ≤ (p′)

1
p′ p

1
pµ

1
p′ .

5 Existence, uniqueness and nonexistence of the travelling wave

The results from Sections 3 and 4 imply the following existence and uniqueness result for the

second order boundary value problem
(
d(U(z)) |U ′(z)|p−2 U ′(z)

)′
+ cU ′(z) + g(U(z)) = 0, z ∈ R,

lim
z→−∞

U(z) = 1, lim
z→+∞

U(z) = 0.
(5.1)

Theorem 5.1 (Existence). Let d and g be as in Section 2 and

0 < µ := sup
t∈(0,1)

(d(t))
1

p−1 g(t)

tp′−1
< +∞. (5.2)

Then there exists a number c∗ ∈ (0, (p′)
1
p′ p

1
pµ

1
p′ ] such that a unique nonincreasing travelling

wave profile U = U(z), z ∈ R, satisfying (5.1) exists if and only if c ≥ c∗. Moreover, U has the

following properties:
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(i) There exist z0, z1 ∈ R ∪ {±∞} such that −∞ ≤ z0 < 0 < z1 ≤ +∞, U(z) = 1 for

z ∈ (−∞, z0] and U(z) = 0 for z ∈ [z1,+∞).

(ii) U is strictly decreasing in (z0, z1), U(0) = 1
2 .

(iii) For i = 1, 2, . . . , n let ξi ∈ (z0, z1) be such that U(ξi) = si, ξ0 = z0, ξn+1 = z1. Then

U ∈ Ĉ1(R),
U |(ξi,ξi+1)

∈ C1(ξi, ξi+1), i = 0, 1, . . . , n

and the limits U ′(ξi−) = lim
z→ξi−

U ′(z) and U ′(ξi+) = lim
z→ξi+

U ′(z), i = 1, 2, . . . , n, exist and

are finite.

(iv) For any i = 1, 2, . . . , n transition condition∣∣U ′(ξi−)
∣∣p−2

U ′(ξi−) lim
s→si+

d(s) =
∣∣U ′(ξi+)

∣∣p−2
U ′(ξi+) lim

s→si−
d(s)

holds.

(v) U satisfies

lim
z→z0+

d(U(z))
∣∣U ′(z)

∣∣p−2
U ′(z) = lim

z→z1−
d(U(z))

∣∣U ′(z)
∣∣p−2

U ′(z) = 0.

(vi) Equation in (5.1) holds pointwise (in a classical sense) in (ξi, ξi+1), i = 0, 1, . . . , n.

The proof of the above theorem follows from Proposition 3.3 and Theorem 4.7. The prop-

erties of U follow from the reasoning in Section 3. Notice that condition U(0) = 1
2 has just a

normalizing character. Indeed, since the equation (2.1) is autonomous, then if U = U(z) is a

solution of (2.1), given any fixed ξ ∈ R, the function z 7→ U(ξ + z) is also a solution of (2.1).

Remark 5.2. Let lim infs→1− d(s) > 0 (lim infs→0+ d(s) > 0). It follows from Theorem 5.1 (v)

that limz→z0+ U
′(z) = 0 (limz→z1− U

′(z) = 0). In particular, if z0 > −∞ (z1 < +∞), then U is

a C1-function in the neighbourhood of z0 ∈ R (z1 ∈ R).

Theorem 5.3 (Nonexistence). Let d and g be as in Section 2 and

0 < ν := lim inf
t→0+

(d(t))
1

p−1 g(t)

tp′−1
.

If

0 < c < (p′)
1
p′ p

1
p ν

1
p′

then there is no solution U = U(z), z ∈ R, of (5.1). In particular, (5.1) has no solution for any

c > 0 if

lim
t→0+

(d(t))
1

p−1 g(t)

tp′−1
= +∞.

The proof follows from Proposition 3.3 and Theorem 4.8.
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6 Asymptotic analysis of the travelling wave

In this section we focus on the asymptotic behaviour of the travelling wave profile U = U(z) as

z → ±∞. In particular, we are interested in conditions on d and g near 0 and 1 which guarantee

either z0 = −∞ (z1 = +∞) or else z0 ∈ R (z1 ∈ R). Following the classification from [15,

Definition 1.1], a travelling wave profile U is said to be of front-type if z0 = −∞ and z1 = +∞,

sharp of type (I) if z0 = −∞ and z1 ∈ R, sharp of type (II) if z0 ∈ R and z1 = +∞, sharp of

type (III) if z0 ∈ R and z1 ∈ R. In what follows in this section, we assume that the assumptions

of Theorem 5.1 hold.

For technical reasons we restrict ourselves to the power-type behaviour of d and g near

equilibrium points 0 and 1. For the sake of brevity, for t0 ∈ R we write

h1(t) ∼ h2(t) as t→ t0 if and only if lim
t→t0

h1(t)

h2(t)
∈ (0,+∞).

6.1 Asymptotics near 1

Let us assume that g(t) ∼ (1− t)γ and d(t) ∼ (1− t)δ as t→ 1− for some γ > 0 and δ ∈ R. The
assumption (5.2) yields the following necessary condition for parameters γ, δ and p:

γ +
δ

p− 1
≥ 0. (6.1)

In this subsection we assume that c ∈ [c∗,+∞) is arbitrary but fixed.

First, we establish the asymptotic behaviour of yc = yc(t) as t → 1−. Then we get from

(3.11) that

z0 = −
∫ 1

1
2

(d(t))
1

p−1

(yc(t))
1
p

dt (6.2)

and derive either z0 > −∞ or z0 = −∞. The asymptotics of U = U(z) as z → −∞ then follows

applying the inverse point of view to z = z(U) as U → 1−. Namely, we have the following

results.

Theorem 6.1. Let us assume γ > 0,

0 ≤ γ +
δ

p− 1
≤ 1

p− 1
, (6.3)

γ − δ + 1

p
< 1. (6.4)

Then z0 > −∞. If
γ − δ + 1

p
≥ 1 (6.5)

instead of (6.4), then z0 = −∞.

Proof. The assumptions on d and g yield the existence of θ > 0 such that f(t) = (d(t))
1

p−1 g(t)

is continuous in (1 − θ, 1). Hence f(t) ∼ (1 − t)
γ+ δ

p−1 is equivalent to f(t) = η(t)(1 − t)
γ+ δ

p−1 ,

t ∈ (1− θ, 1), where η = η(t) is a continuous function in (1− θ, 1), limt→1− η(t) ∈ (0,+∞).

Let (6.3) hold. For κ > 0 set

yκ(t) = κ(1− t)
γ+ δ

p−1
+1
, t ∈ [1− θ, 1].

17



Let yc = yc(t), t ∈ [0, 1] be a solution of (4.1). Then

Pcyκ = y′κ − p′
[
c (yκ)

1
p − f(t)

]
= (1− t)

γ+ δ
p−1

[
−κ
(
γ +

δ

p− 1
+ 1

)
+ p′η(t)

]
− (1− t)

γ+ δ
p−1+1

p p′cκ
1
p ,

(6.6)

t ∈ (1−θ, 1). It follows from (6.3) that the power (1−t)γ+
δ

p−1 dominates the power (1−t)
γ+ δ

p−1+1

p

near 1. It then follows from (6.6) that we distinguish between two cases:

(i) There exists κ≪ 1 so small that Pcyκ > 0 = Pcyc a.e. in [1− θ, 1].

(ii) There exists κ≫ 1 so large that Pcyκ < 0 = Pcyc a.e. in [1− θ, 1].

Case (i). Let (6.4) hold. Then it follows from Lemma 4.5 with [0, 1] replaced by [1− θ, 1] that

yc(t) ≥ yκ(t) for t ∈ [1− θ, 1].

From here and from (6.2) we conclude that there is a constant c1 > 0 such that

z0 = −
∫ 1

1
2

(d(t))
1

p−1

(yc(t))
1
p

dt ≥ −
∫ 1−θ

1
2

(d(t))
1

p−1

(yc(t))
1
p

dt−
∫ 1

1−θ

(d(t))
1

p−1(
yκ(t)

) 1
p

dt

≥ −
∫ 1−θ

1
2

(d(t))
1

p−1

(yc(t))
1
p

dt− c1

∫ 1

1−θ

dt

(1− t)
γ−δ+1

p

> −∞.

Case (ii). Let (6.5) hold. Then it follows from Lemma 4.5 with [0, 1] replaced by [1− θ, 1] that

yc(t) ≤ yκ(t) for t ∈ [1− θ, 1].

From here and from (6.2) we conclude that there is a constant c2 > 0 such that

z0 = −
∫ 1

1
2

(d(t))
1

p−1

(yc(t))
1
p

dt ≤ −
∫ 1−θ

1
2

(d(t))
1

p−1

(yc(t))
1
p

dt−
∫ 1

1−θ

(d(t))
1

p−1

(yκ(t))
1
p

dt

≤ −
∫ 1−θ

1
2

(d(t))
1

p−1

(yc(t))
1
p

dt− c2

∫ 1

1−θ

dt

(1− t)
γ−δ+1

p

= −∞.

Theorem 6.2. Let us assume γ > 0,

γ +
δ

p− 1
>

1

p− 1
, (6.7)

γ < 1. (6.8)

Then z0 > −∞. If

γ ≥ 1 (6.9)

instead of (6.8), then z0 = −∞.
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Proof. Let (6.7) hold. For κ > 0 set

yκ(t) = κ(1− t)
p
(
γ+ δ

p−1

)
, t ∈ [1− θ, 1].

If yc = yc(t), t ∈ [0, 1], is a solution of (4.1) then

Pcyκ = y′κ − p′
[
c (yκ)

1
p − f(t)

]
= − κp

(
γ +

δ

p− 1

)
(1− t)

p(γ+ δ
p−1

)−1 − p′
(
cκ

1
p − η(t)

)
(1− t)

γ+ δ
p−1 ,

(6.10)

t ∈ (1 − θ, 1). It follows from (6.7) that the power (1 − t)
γ+ δ

p−1 dominates the power (1 −
t)

p(γ+ δ
p−1

)−1
near 1. It then follows from (6.10) that we distinguish between two cases:

(i) There exists κ≪ 1 so small that Pcyκ > 0 = Pcyc a.e. in [1− θ, 1].

(ii) There exists κ≫ 1 so large that Pcyκ < 0 = Pcyc a.e. in [1− θ, 1].

Case (i). Let (6.8) hold. Then it follows from Lemma 4.5 with [0, 1] replaced by [1− θ, 1] that

yc(t) ≥ yκ(t) for t ∈ [1− θ, 1].

From here and from (6.2) we conclude that there is a constant c3 > 0 such that

z0 = −
∫ 1

1
2

(d(t))
1

p−1

(yc(t))
1
p

dt ≥ −
∫ 1−θ

1
2

(d(t))
1

p−1

(yc(t))
1
p

dt− c3

∫ 1

1−θ

dt

(1− t)γ
> −∞.

Case (ii). Let (6.9) hold. Then it follows from Lemma 4.5 with [0, 1] replaced by [1− θ, 1] that

yc(t) ≤ yκ(t) for t ∈ [1− θ, 1].

From here and from (6.2) we conclude that there is a constant c4 > 0 such that

z0 = −
∫ 1

1
2

(d(t))
1

p−1

(yc(t))
1
p

dt ≤ −
∫ 1−θ

1
2

(d(t))
1

p−1

(yc(t))
1
p

dt− c4

∫ 1

1−θ

dt

(1− t)γ
= −∞.

Remark 6.3. To visualize conditions from Theorems 6.1, 6.2, we introduce the following sets:

M1
1 := {(γ, δ) ∈ R2 : γ > 0, 0 ≤ γ +

δ

p− 1
≤ 1

p− 1
, γ − δ + 1 < p},

M2
1 := {(γ, δ) ∈ R2 : γ > 0, 0 ≤ γ +

δ

p− 1
≤ 1

p− 1
, γ − δ + 1 ≥ p},

M3
1 := {(γ, δ) ∈ R2 : γ > 0, γ +

δ

p− 1
>

1

p− 1
, γ < 1},

M4
1 := {(γ, δ) ∈ R2 : γ > 0, γ +

δ

p− 1
>

1

p− 1
, γ ≥ 1}.

Then z0 > −∞ if and only if (γ, δ) ∈ M1
1 ∪M3

1 and z0 = −∞ if and only if (γ, δ) ∈ M2
1 ∪M4

1.

See Figure 6.1 for geometric interpretation.
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γ

δ

1

1

−1

γ
+
δ
=
0

γ
+
δ
=
1

γ
− δ

=
1

M1
1

M2
1

M3
1

M4
1

Figure 6.1: Visualization of the sets M1
1, M2

1, M3
1 and M4

1 for p = 2

Remark 6.4. Let z0 > −∞, i.e., (γ, δ) ∈ M1
1 ∪ M3

1. Then it follows from Remark 5.2 that

for δ ≤ 0 we have limz→z0+ U
′(z) = 0, i.e., the travelling wave profile U is a C1-function in a

neighbourhood of z0 ∈ R. The above estimates in proofs of Theorems 6.1 and 6.2 allows us to

specify this result as follows. Let (γ, δ) ∈ M1
1. Then

yc(t) ≤ κ(1− t)
γ+ δ

p−1
+1
, t ∈ [1− θ, 1],

and, therefore, there is a constant c5 > 0 such that

dz

dU

∣∣∣∣
U=1

= lim
U→1−

dz

dU
= lim

U→1−
− (d(U))

1
p−1

(yc(U))
1
p

≤ −c5 lim
U→1−

(1− U)
δ

p−1

(1− U)
γ+ δ

p−1+1

p

= −c5 lim
U→1−

(1− U)
− γ−δ+1

p = −∞,

i.e., U ′(z0+) = 0 if δ < γ + 1.

Let (γ, δ) ∈ M3
1. Then

yc(t) ≤ κ(1− t)
p(γ+ δ

p−1
)
, t ∈ [1− θ, 1],

and, therefore, there is a constant c6 > 0 such that

dz

dU

∣∣∣∣
U=1

= lim
U→1−

dz

dU
= lim

U→1−
− (d(U))

1
p−1

(yc(U))
1
p

≤ −c6 lim
U→1−

(1− U)
δ

p−1

(1− U)
γ+ δ

p−1

= −c6 lim
U→1−

(1− U)−γ = −∞,

i.e., U ′(z0+) = 0 if γ > 0.

To sum up the above discussion, the travelling wave profile U is a C1-function in a neigh-

bourhood of z0 ∈ R for any (γ, δ) ∈ M1
1 ∪M3

1.
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6.2 Asymptotics near 0

Let us assume that g(t) ∼ tα and d(t) ∼ tβ as t → 0+ for some α > 0 and β ∈ R. It follows

from Theorem 5.3 that

α+
β

p− 1
≥ 1

p− 1
(6.11)

for otherwise there is no solution of (5.1). At first, we use formula

z1 =

∫ 1
2

0

(d(t))
1

p−1

(yc(t))
1
p

dt (6.12)

to prove whether z1 = +∞. In fact, the proof of Theorem 4.7 offers the method how to prove

it. Indeed, inequality

0 < yc(t) ≤ ktp
′
, t ∈ (0, 1)

combined with (6.12) yields that there exists a constant c7 > 0 such that

z1 ≥
∫ 1

2

0

(d(t))
1

p−1

k
1
p t

p′
p

dt ≥ c7

∫ 1
2

0

t
β

p−1

t
1

p−1

dt = c7

∫ 1
2

0
t
β−1
p−1 dt = +∞ (6.13)

if and only if β + p ≤ 2. The values of α, β for which this case occurs are for p = 2 shown

in Figure 6.2. However, the above estimate is far from being optimal. Indeed, we can refine

α

β

1

1

α
+
β
=
1

p = 2

z1 = +∞

Figure 6.2: Visualization of conditions leading to z1 infinite

the asymptotics of yc near 0 in the case of power-type behaviour of g and d near 0 and prove

z1 = +∞ under more general assumptions on α and β.

Notice that (6.11) is equivalent to pα+p′β ≥ p′ and set ω := pα+p′β, yκ(t) := κtω, t ∈ (0, 1),

with κ > 0. Let

f1 := sup
t∈(0,1)

(d(t))
1

p−1 g(t)

t
α+ β

p−1

. (6.14)

It follows from (6.11) and (5.2) that µ ≤ f1 < +∞. In particular, (6.14) yields

f(t) ≤ f1t
α+ β

p−1 = f1t
ω
p , t ∈ [0, 1].
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Therefore, we have

Pcyκ = y′κ(t)− p′
[
c (yκ(t))

1
p − f(t)

]
≤ ωκtω−1 − p′cκ

1
p t

ω
p + p′f1t

ω
p

= t
ω
p

(
ωκtε − p′cκ

1
p + p′f1

)
, t ∈ [0, 1],

with ε = ω − 1− ω
p ≥ 0. Since t ∈ [0, 1], inequality

ωκ− p′cκ
1
p + p′f1 ≤ 0 (6.15)

would imply that Pcyκ ≤ 0 a.e. in [0, 1]. Notice that (6.15) is equivalent to

c ≥ ωκ+ p′f1

p′κ
1
p

=: H(κ), κ > 0. (6.16)

Obviously, H(κ) > 0, κ ∈ (0,+∞) and limκ→0+H(κ) = limκ→+∞H(κ) = +∞. The first

semester calculus yields that the global minimum of H over (0,+∞) is achieved at the value

κmin =

(p′)2

p f1

ω

and, due to ω ≥ p′,

H(κmin) = (p′)
1− 2

p p
1
p f

1
p′
1 ω

1
p ≥ (p′)

1
p′ p

1
p f

1
p′
1 . (6.17)

It follows from (6.15)–(6.17) that for κ = κmin and all c ≥ (p′)
1
p′ p

1
p f

1
p′
1 we have that Pcyκ ≤

0 = Pcyc a.e. in [0, 1] and since yκ(1) > 0, by Lemma 4.5, we get yκ(t) ≥ yc(t) for t ∈ [0, 1]. In

particular, due to (6.12) we have

z1 ≥
∫ 1

2

0

(d(t))
1

p−1

κ
1
p t

ω
p

dt ≥ c8

∫ 1
2

0

t
β

p−1

t
ω
p

dt = +∞

with some c8 > 0 if and only if
β

p− 1
− ω

p
≤ −1

which is equivalent with α ≥ 1.

On the other hand, let c ∈ [c∗,+∞) be fixed. Since d and g are strictly positive in (0, 1) and

f ∼ t
α+ β

p−1 as t→ 0+, there exists 0 < f2 < +∞ such that

f(t) ≥ f2t
α+ β

p−1 = f2t
ω
p , t ∈

[
0,

1

2

]
.

We set yκ(t) = κtω, t ∈ [0, 12 ], where

κ := min

{
2ωyc

(
1

2

)
,

(
f2
c

)p}
.

Then yκ(
1
2) ≤ yc(

1
2) and

Pcyκ = y′κ(t)− p′
[
c
(
yκ(t)

) 1
p − f(t)

]
≥ ωκtω−1 − p′cκ

1
p t

ω
p + p′f2t

ω
p

≥ p′t
ω
p

(
f2 − cκ

1
p

)
≥ 0 = Pcyc in

[
0,

1

2

]
.
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By Lemma 4.5 we conclude yκ(t) ≤ yc(t), t ∈ [0, 12 ]. In particular, thanks to (6.12) we have

z1 ≤
∫ 1

2

0

(d(t))
1

p−1

κ
1
p t

ω
p

dt ≤ c9

∫ 1
2

0

t
β

p−1

t
ω
p

dt < +∞

with some c9 > 0 if and only if
β

p− 1
− ω

p
> −1

which is equivalent with α < 1.

We can summarize the asymptotics of yc near 0 as follows.

Theorem 6.5. Let f1 be as in (6.14),

c ≥ (p′)
1
p′ p

1
p f

1
p′
1 , α+

β

p− 1
≥ 1

p− 1
, α ≥ 1.

Then z1 = +∞.

Let

c ≥ c∗, α+
β

p− 1
≥ 1

p− 1
, 0 < α < 1.

Then z1 < +∞.

Remark 6.6. To visualize conditions from Theorem 6.5, we introduce the following sets

M1
0 := {(α, β) ∈ R2 : 0 < α < 1, α+

β

p− 1
≥ 1

p− 1
},

M2
0 := {(α, β) ∈ R2 : α ≥ 1, α+

β

p− 1
≥ 1

p− 1
}.

see Figure 6.3 for geometric interpretation.

α

β

1

1

α
+
β
=
1

M1
0

M2
0

Figure 6.3: Visualization of the sets M1
0, M2

0 for p = 2

If (α, β) ∈ M1
0 and c ≥ c∗, then z1 < +∞. On the other hand, if (α, β) ∈ M2

0 and

c ≥ (p′)
1
p′ p

1
p f

1
p′
1 , then z1 = +∞. Notice that the last inequality for c is more restrictive due to

the fact f1 ≥ µ.
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Remark 6.7. Let z1 < +∞, i.e., (α, β) ∈ M1
0. Then it follows from Remark 5.2 that for

β ≤ 0 we have limz→z1− U
′(z) = 0, i.e., the travelling wave profile U is a C1-function in a

neighbourhood of z1 ∈ R. However, this result can be specified as follows.

Let c ≥ (p′)
1
p′ p

1
p f

1
p′
1 and yκ(t) = κtω be as above. Then yc(t) ≤ κt

ω
p , t ∈ [0, 1], and there

exists c10 such that

dz

dU

∣∣∣∣
U=0

= lim
U→0+

dz

dU
= lim

U→0+
− (d(U))

1
p−1

(yc(U))
1
p

≤ − lim
U→0+

(d(U))
1

p−1

κ
1
pU

ω
p

≤ −c10 lim
U→0+

U
β

p−1

U
ω
p

= −c10 lim
U→0+

U−α = −∞,

i.e., U ′(z1−) = 0 if α > 0. Therefore, if c is large enough (c ≥ (p′)
1
p′ p

1
p f

1
p′
1 ), the travelling wave

profile U is a C1-function in a neighbourhood of z1 ∈ R for any (α, β) ∈ M1
0.

7 Concluding remarks and open problems

We emphasize that our asymptotic analysis providing the description of M2
0 as well as the

smoothness of travelling wave profile U in the neighbourhood of z1 ∈ R in Remark 6.7 holds

for c large enough, namely, for c satisfying inequality c ≥ (p′)
1
p′ p

1
p f

1
p′
1 . In this respect, for

c ∈ [c∗, (p′)
1
p′ p

1
p f

1
p′
1 ) the type as well as the smoothness of the travelling wave profile U might

be very different. In view of the results in [14, Theorem 2] one should expect that, e.g., for

p = 2, α > 0, β = 1 and c = c∗, we have z1 ∈ R and U ′(z1−) < 0. Since U ′(z1+) = 0, U is not

a C1-function at the point z1 ∈ R.

Combining Remarks 6.3, 6.4, 6.6 and 6.7 we arrive at the following classification:

(a) Let (α, β) ∈ M2
0, (γ, δ) ∈ M2

1 ∪M4
1, c ≥ (p′)

1
p′ p

1
p f

1
p′
1 . Then the travelling wave profile is

of front-type.

(b) Let (α, β) ∈ M1
0, (γ, δ) ∈ M2

1 ∪M4
1, c ≥ c∗. Then the travelling wave profile is sharp of

type (I) and it is smooth at z1 ∈ R if c ≥ (p′)
1
p′ p

1
p f

1
p′
1 .

(c) Let (α, β) ∈ M2
0, (γ, δ) ∈ M1

1 ∪M3
1, c ≥ (p′)

1
p′ p

1
p f

1
p′
1 . Then the travelling wave profile is

sharp of type (II) and it is smooth at z0 ∈ R.

(d) Let (α, β) ∈ M1
0, (γ, δ) ∈ M1

1 ∪M3
1, c ≥ c∗. Then the travelling wave profile is sharp of

type (III) and it is smooth at z1 ∈ R if c ≥ (p′)
1
p′ p

1
p f

1
p′
1 .

Provided that d ∈ C(0, 1), the corresponding smooth profiles for c ≥ (p′)
1
p′ p

1
p f

1
p′
1 are

sketched in Figure 7.1.

It is an interesting open problem to study the type of the travelling wave profile U for “small”

values of c, i.e., for c ∈ [c∗, (p′)
1
p′ p

1
p f

1
p′
1 ) for general p > 1 and (α, β) ∈ M1

0 ∪M2
0. We can ask

the following questions:
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0

1

(a)

0

1

z1
(b)

0

1

z0
(c)

0

1

z1z0
(d)

Figure 7.1: Wave profiles U = U(z): (a) front-type; sharp of type (b) I; (c) II; (d) III

“Let (α, β) ∈ M1
0. For which c ∈ [c∗, (p′)

1
p′ p

1
p f

1
p′
1 ) the travelling wave profile satisfies U ′(z1) = 0

and for which c ∈ [c∗, (p′)
1
p′ p

1
p f

1
p′
1 ) we have U ′(z1−) < 0 (including the case U ′(z1−) = −∞)?”

“Let (α, β) ∈ M2
0. For which c ∈ [c∗, (p′)

1
p′ p

1
p f

1
p′
1 ) we have z1 = +∞ and for which c ∈

[c∗, (p′)
1
p′ p

1
p f

1
p′
1 ) we have z1 ∈ R? If the latter case occurs, do we have U ′(z1) = 0 or U ′(z1−) < 0

(including the case U ′(z1−) = −∞)?”
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