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Abstract This paper is concerned with the Cauchy problem for the nonlinear fourth-order
Schrödinger equation on Rn, with the nonlinearity of Hartree-type (| · |−γ ∗ |u|2)u. It is
shown that a global solution exists for initial data in the spaces Lp(p < 2) under some
suitable conditions on γ, n and p. The solution is established by using a data-decomposition
argument, two kinds of generalized Strichartz estimates and a interpolation theorem.
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1 Introduction and main results

The fourth-order Schrödinger equation has been introduced by Karpman and Shagalov [17]

and Karpman [18] to take into account the role of small fourth-order dispersion terms in the

propagation of intense laser beams in a bulk medium. Such fourth-order Schrödinger equation

has the following form

iut + ∆2u+ ε∆u+ f(|u|2)u = 0, u(0) = u0,

where ε ∈ {0,±1}, and u : R × Rn → C is a complex valued function. In this paper, we will

investigate the Cauchy problem for the fourth-order Hartree equation with ε = 0{
iut + ∆2u+ (| · |−γ ∗ |u|2)u = 0, t > 0, x ∈ Rn,
u(x, 0) = u0(x), x ∈ Rn.

(1.1)

The Hartree type nonlinearity is relevant to describing several physical phenomena, as for

instance, the dynamics of the mean-field limits of many-body quantum systems such as coherent

states and condensates, the quantum transport in semiconductors superlattices, the study of

mesoscopic structures in Chemistry, among others ( cf. [9, 10, 18, 19]).

The works addressing fourth-order Schrödinger equation include [4], Ben-Artzi, Koch and
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Saut discussed the sharp space-time decay properties of fundamental solutions to the linear

equation

iut + ∆2u+ ε∆u = 0, ε ∈ {0,±1}.

Then, thanks to these space-time decay properties, there exist a few literatures treating the

fourth-order Schrödinger equation. In [3], Banquent and Villamizar-Roa considered the follow-

ing problem {
iut + α(t)∆u+ β(t)∆2u+ θ(| · |−γ ∗ |u|2)u = 0, t ∈ R, x ∈ Rn,
u(x, t0) = u0(x), t0 ∈ R x ∈ Rn,

where the coefficients α, β are real-valued functions which represent the variable dispersion

coefficients, and θ 6= 0 is a real coefficient. The main results in [3] is summarized as the

following aspects: For initial data u0 ∈ Hs(Rn), s ≥ max(0, γ/2−2) and 0 < γ < n, they prove

the existence of local in time solution u ∈ C([−T − t0, T + t0];Hs(Rn)). The main ideas of the

proof is based on Strichartz estimates for the linear semigroup propagator eit∆
2

, as well as the

Hardy-Littlewood-Sobolev inequality which allows us to control the Hartree nonlinearity. For

initial data in L2, by using the conserved quantity ‖u(t)‖L2 = ‖u0‖L2 it is able to extend the

local solution globally. They also proved the existence of global solution in H1 by combining the

energy conservation law and the local well-posedness in H1. Moreover, in [21] a sharp threshold

of global well-posedness and scattering of energy solutions versus finite time blow-up dichotomy

were given in the mass-super-critical and energy-critical regimes. For relevant results to the

stationary case, one can see [5].

It is known that from the previous considerations [3, 4, 5], in the study of nonlinear dispersive

equations, initial data is assumed to be in a suitable function space whose norm is characterized

by some kind of quare integrability. Examples of such data spaces are L2-space, L2-based

Sobolev spaces Hs and so on. However, when the initial data u0 are not characterized by any

kind of square integrability, much less is known about the solvability of (1.1), and most popular

examples of such data spaces is Lp spaces (p 6= 2). So, the aim of this paper is to discussing the

existence of the solutions for the Cauchy problem (1.1) with data u0 ∈ Lp(Rn), where p 6= 2.

Zhou [24] made an important breakthrough in this regard. He established a result about

the second-order Schrödinger equation with cubic nonlinearity for Lp initial data. In [24], he

considered the following Cauchy problem{
iut − uxx ± |u|2u = 0, t > 0, x ∈ R,
u(x, 0) = u0(x), u0(x) ∈ Lp(R),

(1.2)

where 1 < p < 2. In fact, after a linear transformation v(x, t) = eit∆u(x, t) and applying to the

integral equation of (1.2)

u(t) = e−it∆u0 ± i
∫ t

0

e−i(t−τ)∆(|u(τ)|2u(τ))dτ,

we can obtain

v(t) = u0 ± i
∫ t

0

eiτ∆[eiτ∆v̄(τ)(e−iτ∆v(τ))2]dτ. (1.3)

Afterwards, by a key factorization formula (see [6]) for eit∆ and e−it∆

eit∆ϕ = MtDtFMtϕ, e−it∆ϕ = M−1
t F−1D−1

t M−1
t ϕ, (1.4)
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where F and F−1 denote the Fourier transformation and its inverse respectively, the operators

Mt and Dt are defined by

Mt : ω 7→ ei
|x|2
4t ω, Dt : ω 7→ (4πit)−

n
2 ω(

x

4πit
), t 6= 0,

then Zhou showed that (1.3) is locally well-posed in Lp for any 1 < p < 2, his work relies on

the following trilinear estimates

‖eiτ∆[eiτ∆v1(τ)e−iτ∆v2(τ)e−iτ∆v3(τ)]‖L1(R) ≤ Cτ−1‖v1(τ)‖L1(R)‖v2(τ)‖L1(R)‖v3(τ)‖L1(R).

Unfortunately, we can’t obtain the factorization formula that is similar to (1.4) about the

semigroup operator eit∆
2

of the linear fouth-order Schrödinger equation. So this idea can’t

directly apply to our Cauchy problem (1.1). From another perspective, Hyakuna and Tsuts-

mi [11, 12, 13, 14, 15, 16], adopted a different method to solve the nonlinear second-order

Schrödinger equation. They split the data φ into the sum of a large L2 function ϕN and a

small remainder function ψN to obtain global solution of the original equation. The method

is motivated by the work of Vargas and Vega [23], which is known as data-decomposition ar-

gument, and this approach can be traced back to Bourgain [2]. In this paper, we adopt this

generalization split technique (see definition 1.1) to prove our results.

Before stating our main results, we firstly introduce several notations and definitions. For

p ∈ [1, 2], denote that

r0 =
4n

2n− γ
, ρ0 =

4n

2n+ γ
,

and let q(p), σ(p) are two functions which be defined by the relation

4

q(p)
+
n

r0
=
n

p
, 4 +

n

p
=

4

σ(p)
+

n

ρ0
.

We also introduce a function space Ap,α(Rn), which is related to the decomposition of initial

values.

Definition 1.1 Let α > 0, 1 ≤ p ≤ 2, then φ(x) ∈ Ap,α(Rn) if and only if these exist two

sequences of functions (ϕN )N>1 ⊂ L2 and (ψN )N>1 ⊂ S ′ satisfying

φ = ϕN + ψN , ∀N > 1, (1.5)

C−1
0 Nα ≤ ‖ϕN‖L2 ≤ C0N

α, (1.6)

‖eit∆
2

ψN‖Lq(p)Lr0 ≤ C0N
−1, (1.7)

for some C0 > 1 independent of N .

In order to prove the generalized Strichartz-type estimates for homogeneous equations, we

need give a definition about the weak Lp-space, noted by Lp∗, 1 ≤ p <∞.

Definition 1.2 (see [1]) For f ∈ L(p,∞), which is the general Lorentz spaces with the norm

‖f‖L(p,∞) = sup
t
t1/pf∗(t) <∞,

where f∗(t) = 1
t

∫ t
0
f(s)ds, we denote f ∈ Lp∗, which means

‖f‖Lp∗ = ‖f‖L(p,∞) <∞.
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Remark 1.1 ‖f‖Lp∗ is not a norm if 1 ≤ p < ∞. Indeed, Lp∗ is a quasi-normed vector

space, because we only conclude that

‖f + g‖Lp∗ ≤ 2(‖f‖Lp∗ + ‖g‖Lp∗).

Moreover, we can see Lp ⊂ Lp∗ by [1].

Now our main result can be stated as follows.

Theorem 1.1 Let 0 < γ < min(4, n), α > 0. And assume that

max(
6n

3n− 2γ + 8
,

4n

2n+ γ
) < p0 < 2.

(i)For any u0 ∈ Ap0,α, and N > 1, there exists a unique local solution u of (1.1) in the form

of

u = v + w ∈ C([0, TN ];L2(Rn))
⋂
Lq(2)([0, TN ];Lr0(Rn)) + Lq(p0)([0, TN ];Lr0(Rn)).

Moreover, TN can be written as

TN = cN1− 4
4−γ [2−n2 (n+4−γ

2n − 1
p0

)]α (1.8)

where c > 0 is a constant independent of N .

(ii) Assume moreover that α, n, γ and p0 satisfy

−∞ <
4

4− γ
[2− n

2
(
n+ 4− γ

2n
− 1

p0
)]α < 1. (1.9)

Then, for any u0 ∈ Ap0,α, the initial value problem (1.1) has a unique global solution u in the

form of

u = v + w ∈ C(R;L2(Rn))
⋂
Lq(2)(R;Lr0(Rn)) + Lq(p0)(R;Lr0(Rn)). (1.10)

For initial data u0 ∈ Lp(Rn), our global well-posedness results are gathered in the following

theorem.

Theorem 1.2 Let 0 < γ < min(4, n), and put p lies in the region

max(
2n(16 + γ)

−γ2 + (n+ 4)γ + 16n
,

2n(16− γ)

γ2 − (n+ 8)γ + 16n+ 16
) < p < 2. (1.11)

Then, for any u0 ∈ Lp(Rn), there exists a unique global solution of (1.1) in the form of

u = v + w ∈ C(R;L2(Rn))
⋂
Lq(2)(R;Lr0(Rn)) + Lq(p0)(R;Lr0(Rn)),

where p0 is a constnat and satisfies

max(
6n

3n− 2γ + 8
,

4n

2n+ γ
) < p0 < p. (1.12)

Finally, we give some notations which are used throughout this paper.

(i) For an arbitrary a ∈ [1,∞], a′ is the conjugate of a, namely

1

a
+

1

a′
= 1.
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(ii) Let I ⊆ R and q, r ∈ [1,∞], we defined the mixed norm

‖u‖LqILrx = ‖u‖Lq(I,Lr) := (

∫
I

(

∫
R
|u(t, x)|rdx)

q
r dt)

1
q .

In particular, we write LqLr = LqRL
r, when I = R.

(iii) We introduce a trilinear form associated with the Hartree-type nonlinearity: for these space

variable functioins f, g, h we define

Hγ(f, g, h) = (| · |−γ ∗ (f × ḡ))× h.

we also write Hγ(f) = Hγ(f, f, f). Using this, the nonlinearity in (1.1) is expressed as Hγ(u(t)).

(iv) We say that a pair (q, r) is biharmonic admissible if it satisfy

4

q
+
n

r
=
n

2
.

and

2 ≤ r


≤ ∞, if n ≤ 3

<∞, if n = 4

≤ 2n
n−4 , if n ≥ 5

(v) Let P,Q ∈ R2, then the segment connecting P,Q is defined by [PQ], ]PQ[, [PQ[, ]PQ],

according as it is closed, open, left closed right open and left open right closed.

(vi) In this paper, C, c are positive constants which may vary from line to line and independent

of N .

2 Preliminaries

In this section, we first introduce some geometric notations. Consider the unit square R in

R2:

R := {(x, y) ∈ R2, 0 ≤ x, y ≤ 1}.

Next, we defined some special points in R:

O = (0, 0), B = (
1

2
, 0), C = (

1

2
− 2

n
,

1

2
), E = (

1

2
− 2

n
, 1), F = (

1

2
− 2

n
, 0),

D = (
n− 4

2(n− 2)
,

n

2(n− 2)
), (C = (0,

n

8
), D = E = (0,

n

4
), F = (0, 0), if n ≤ 3),

O′ = (1, 1), B′ = (
1

2
, 1), C ′ = (

1

2
+

2

n
,

1

2
), E′ = (

1

2
+

2

n
, 0), F ′ = (

1

2
+

2

n
, 1),

(C ′ = (1, 1− n

8
), E′ = (1, 1− n

4
), F ′ = (1, 1), if n ≤ 3).

Note that O,C,D are colinear, D ∈ [BE[, D′ ∈ [B′E′[, and defined the triangles G := 4BEF ,

G′ := 4B′E′F ′ and Ĝ := 4BCD, where Ĝ is supposed to include the side ]CD[ (except for

n=4) but no other boundary points, and G, G′ are open expect that B and B′ are included.

Obviously, we have

BC := {(x, y) ∈ R; (
1

y
,

1

x
) is biharmonic admissible},

B′C ′ := {(x, y) ∈ R; (
1

y′
,

1

x′
) is biharmonic admissible}.
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2.1 Strichartz-type estimates

The classical Strichartz estimates for the free Schrödinger group are inequalities of the form

‖eit∆
2

φ‖LqLr ≤ C‖φ‖L2 .

It is well known (see [20]) that the above estimate holds true if and only if (q, r) is a biharmonic

admissible pair, it’s also to say ( 1
r ,

1
q ) ∈ [BC[. However, in this paper, we need a generalization

of these estimates of the form

‖eit∆
2

φ‖LqLr ≤ C‖φ‖Lp . (2.1)

We say that, by a scaling argument, q, r, p satisfy

4

q
+
n

r
=
n

p
, (2.2)

if (2.2) holds true. For the estimate of type (2.2) we present the following result.

Lemma 2.1 Let 1
2 <

1
p <

n
2(n−2) ( 1

2 <
1
p ≤ 1 if n ≤ 3), ( 1

r ,
1
q ) lie in the closed triangle Ĝ

and satisfy
4

q
+
n

r
=
n

p
.

Then, the estimate (2.1) holds true for φ ∈ Lp(Rn).

Proof For any r satisfies

1

2
− 2

n
<

1

r
<

1

2
(0 ≤ 1

r
<

1

2
if n ≤ 3).

Let Q ∈ [BC[ with x(Q) = 1
r , and denote 1

q1
= y(Q), then

‖eit∆
2

φ‖Lq1Lr ≤ C‖φ‖L2 . (2.3)

On the other hand, we have

‖eit∆
2

φ‖Lr ≤ C|t|−
n
4 (1− 2

r )‖φ‖Lr′

by dispersion estimate (see [8]). Now we define a point R = ( 1
r ,

1
q2

) = ( 1
r ,

n
4 (1 − 2

r )) ∈ [BE[,

thus get the another estimate

‖eit∆
2

φ‖Lq2∗ Lr ≤ C‖φ‖Lr′ . (2.4)

Since Q and R are on the same vertical line x = 1
r , it follows from Marcinkewitz’s interpolation

theorem (see [1]) between (2.3) and (2.4) that if

1

2
<

1

p
<

1

r′
,

1

p
=

1− θ
2

+
θ

r′
,

1

q
=

1− θ
q1

+
θ

q2
,

1

q
≤ 1

p
(2.5)

then

‖eit∆
2

φ‖LqLr ≤ C‖φ‖Lp .

By some easily calculations with (2.5), then

4

q
+
n

r
=
n

p
. (2.6)
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We now only need to seek the conditions of p and ( 1
r ,

1
q ) that satisfy (2.5). From (2.5), we get

1

q
≤ 4

nq
+

1

r
,

when n ≤ 4, it is automatically satisfied. In addition, if n > 4 there will introduces a new

restriction, it requires that 1/q
1/r ≤

n
n−4 , this means that ( 1

r ,
1
q ) must be below the ray extending

[OD[. Thus ( 1
r ,

1
q ) must belong to Ĝ. Moreover put ( 1

r ,
1
q ) = D = ( n−4

2(n−2) ,
n

2(n−2) ) into the

above equality we get
1

p
<

4

nq
+

1

r
=

n

2(n− 2)
.

Summing up, we have proved.

Remark 2.1 Observe that (q(p), r0) satisfies the assumption of lemma 2.1 if

4n

2n+ γ
< p < 2.

Next, we review estimates for the solution of the inhomogenous equation

iut + ∆2u = F, u(x, 0) = 0.

It is konwn that it’s solution u is given by

i

∫ t

0

ei(t−τ)∆2

F (τ)dτ.

Then in this paper we need estimates of the form∥∥∥∥∫ t

0

ei(t−τ)∆2

F (τ)dτ

∥∥∥∥
LqLr

≤ C‖F‖LσLρ . (2.7)

It is well known that (2.7) is valid if both (q, r) and (σ′, ρ′) are biharmonic admissible (see [7]).

However, in this paper we need estimate of type (2.7) under some other suitable conditions on

q, r, σ, ρ.

Lemma 2.2 (see [8]) Suppose that ( 1
r ,

1
q ) ∈ G, ( 1

ρ ,
1
σ ) ∈ G′ and

4

nσ
+

1

ρ
=

4

n
+

4

nq
+

1

r
,

1

r
+

1

ρ
= 1.

Then, the estimate (2.7) is valid for any F ∈ LσLρ.

For the nonlinear term in Cauchy problem (1.1) , we have the following proposition.

Proposition 2.1 Assume that γ < min(4, n) and (q, r) is a biharmonic admissible pair

satisfy {
1
2 −

γ
3n ≤

1
r < min( 1

2 ,
1
2 + 2−γ

3n ), if n ≥ 4,
1
2 −

γ
3n ≤

1
r < min( 1

2 ,
2
3 −

γ
3n ), if n ≤ 3.

(2.8)

Then there exist a constant C, such that∥∥∥∥ ∫ t

0

ei(t−τ)∆2

Hγ(u(τ))dτ

∥∥∥∥
Lq

[0,T ]
Lr
≤ CT 1− γ4 ‖u‖3Lq

[0,T ]
Lr

is vald for any T > 0 and u ∈ Lq[0,T ]L
r.
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Proof Let ( 1
ρ ,

1
σ ) = ( 3

r + γ
n − 1, 3

q −
γ
4 + 1), then we can easily konwn that ( 1

ρ ,
1
σ ) ∈ [B′C ′[

by (2.7). So we have∥∥∥∥ ∫ t

0

ei(t−τ)∆2

Hγ(u(τ))dτ

∥∥∥∥
Lq

[0,T ]
Lr
≤ C‖Hγ(u)‖Lσ

[0,T ]
Lρ .

Moreover, from Hölder’s inequality and Hardy-Littlewood-Sobolev inequality, we can get

‖Hγ(u)‖Lρ ≤‖|x|−γ ∗ |u|2‖LA‖u‖Lr

≤C‖|u|2‖
L
r
2
‖u‖Lr

=C‖u‖3Lr ,

where 1
ρ = 1

A + 1
r and 2

r = 1 + 1
A −

γ
n . Thus, we have

‖Hγ(u)‖Lσ
[0,T ]

Lρ ≤ CTB‖‖u‖3Lr‖
L
q
3
[0,T ]

,

where 1
B = 1

σ −
3
q = 1− γ

4 . Summing up, we have completed the proof.

2.2 Estimates of L2-solutions.

If the initial data u0 ∈ L2, then the Cauchy problem (1.1) exists a unique global solution

u ∈ C(R;L2(Rn))
⋂
Lq(R;Lp(Rn)) by [3], where (p, q) ia a biharmonic admissible pair. Now in

this subsection, we will study the Lq[0,T ]L
p-estimate of the L2-solution for the Cauchy problem

(1.1).

Lemma 2.3 Suppose that γ < min(4, n) and v : R × Rn → C with v(0, x) = ϕ(x) ∈ L2

solves

ivt + ∆2v + (| · |−γ ∗ |v|2)v = 0, t > 0, x ∈ Rn.

Then, there are positive constants K1, K2 depending only on n, γ such that

‖v‖
L
q(2)

[0,δ]
Lr0
≤ K1‖ϕ‖L2

for any δ ∈ [0, (K2‖ϕ‖L2)−
8

4−γ ].

Proof Put δ∗ = (2C1C
1
2 ‖ϕ‖L2)−

8
4−γ , and

I = {δ ∈ [0, δ∗] : ‖v‖
L
q(2)

[0,δ]
Lr0
≤ C1‖ϕ‖L2},

where C is the constant of proposition 2.1, C1 is the constant which makes true for the following

inequality

‖eit∆
2

ϕ‖
L
q(2)

[0,T ]
Lr0
≤ C1

2
‖ϕ‖L2 , T > 0.

Obviously (q(2), r0) is a biharmonic admissible pair, and I 6= ∅ because of 0 ∈ I. So that is to

say I = [0, δ∗] only if I is both open and closed. Since δ 7→ ‖v‖
L
q(2)

[0,δ]
Lr0

is continuous, so I is

closed. Then we only need to show that I is open. For a fixed δ ∈ I with δ < δ∗, take ε > 0

satisfying δ + ε ≤ δ∗, then for the integral equation

v(t) = eit∆
2

ϕ+ i

∫ t

0

ei(t−τ)∆2

Hγ(v(τ))dτ,
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using proposition 2.1, since r0 satisfies the condition of (2.8), then we have

‖v‖
L
q(2)

[0,δ+ε]
Lr0
≤‖eit∆

2

ϕ‖
L
q(2)

[0,δ+ε]
Lr0

+

∥∥∥∥∫ t

0

ei(t−τ)∆2

Hγ(v(τ))dτ

∥∥∥∥
L
q(2)

[0,δ+ε]
Lr0

≤C1

2
‖ϕ‖L2 +

∥∥∥∥ ∫ t

0

ei(t−τ)∆2

Hγ(v(τ))dτ

∥∥∥∥
L
q(2)

[0,δ]
Lr0

+

∥∥∥∥∫ t

0

ei(t−τ)∆2

Hγ(v(τ))dτ

∥∥∥∥
L
q(2)

[δ,δ+ε]
Lr0

≤C1

2
‖ϕ‖L2 + Cδ1− γ4 ‖v‖3

L
q(2)

[0,δ]
Lr0

+ Cε1− γ4 ‖v‖3
L
q(2)

[δ,δ+ε]
Lr0

.

Owing to γ < 4, then if ε is taken sufficiently small, we have

Cε1− γ4 ‖v‖3
L
q(2)

[δ,δ+ε]
Lr0
≤ C1

4
‖ϕ‖L2 .

Since δ ∈ I δ ≤ δ∗, so we have

‖v‖
L
q(2)

[0,δ+ε]
Lr0
≤3C1

4
‖ϕ‖L2 + C(δ∗)1− γ4 (C1‖ϕ‖L2)3

=
3C1

4
‖ϕ‖L2 +

C1

4
‖ϕ‖L2

=C1‖ϕ‖L2 .

So δ + ε ∈ I ⇒ I is open ⇒ I = [0, δ∗]. Then we have completed the proof by let K1 = C1

and K2 = 2C1C
1
2 .

3 Proof of Theorem 1.1

Since u0 ∈ Ap0,α, these exist C0 > 1 and (ϕN ) ⊂ L2, (ψN ) ⊂ S ′ such that

φ = ϕN + ψN

C−1
0 Nα ≤ ‖ϕN‖L2 ≤ C0N

α, (3.1)

‖eit∆
2

ψN‖Lq(p0)Lr0 ≤ C0N
−1, (3.2)

for all N > 1. Now, fixed N > 1 we consider the following two Cauchy problem:{
ivt + ∆2v +Hγ(v) = 0,

v(x, 0) = ϕN (x),
(3.3)

{
iwt + ∆2w +Hγ(w + v)−Hγ(v) = 0,

w(x, 0) = ψN (x).
(3.4)

Then, the solution u(t) of (1.1) can be present in the form of u(t) = v(t) + w(t).

3.1 Existence of local solutions

In this subsection we will construct a local solution on a small interval [0, δN ] using a fixed

point argument, where δN > 0 will be defined below. For later use in the next subsection (see

(3.18) below), it is convenient to construct a solution under the weaker assumption

(2C0)−1Nα ≤ ‖ϕN‖L2 ≤ 2C0N
α (3.5)
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instead of (3.1). Let us introduce a positive real number

δN := (M(2C0N
α))−

8
4−γ ,

where M is a sufficiently large constant independent of N .

We first discuss the solution of (3.3), since ϕN ∈ L2,we see there exists a unique global

solution v(t) with the L2-conservation law (see [3]):

‖v(t, ·)‖L2 = ‖ϕN‖L2 , ∀t ∈ R. (3.6)

Moreover, we observe that, by lemma 2.3, and (3.5)

‖v‖
L
q(2)

[0,δN ]
Lr0
≤ K1‖ϕN‖L2 , (3.7)

if M > K2.

We use a fixed point argument to obtain a solution of (3.4), consider the corresponding

integral equation

w(t) = eit∆
2

ψN + i

∫ t

0

ei(t−τ)∆2

(Hγ(v + w)−Hγ(v))dτ (3.8)

in the complete metric space

VδN := {w ∈ Lq(p0)
[0,δN ]L

r0 : ‖w‖
L
q(p0)

[0,δN ]
Lr0
≤ 8C0

N
},

we will show that the operator given by

(Tw)(t) := eit∆
2

ψN + i

∫ t

0

ei(t−τ)∆2

(Hγ(v + w)−Hγ(v))dτ

is well defined and is a contraction mapping from VδN → VδN . For any w ∈ VδN , note that

(q(p0), r0, σ(p0), ρ0) will satisfy the assumption of lemma 2.2 if p0 >
4n

2n+γ , so by lemma 2.2 and

(3.2), we have

‖Tw‖
L
q(p0)

[0,δN ]
Lr0
≤‖eit∆

2

ψN‖Lq(p0)

[0,δN ]
Lr0

+

∥∥∥∥∫ t

0

ei(t−τ)∆2

(Hγ(v + w)−Hγ(v))dτ

∥∥∥∥
L
q(p0)

[0,δN ]
Lr0

≤C0

N
+ C‖Hγ(v + w)−Hγ(v)‖

L
σ(p0)

[0,δN ]
Lρ0

Note that ‖Hγ(v + w)−Hγ(v)‖
L
σ(p0)

[0,δN ]
Lρ0

is only associated with the norm of terms such as

Hγ(v, v, w), Hγ(v, w,w), Hγ(w),

this is owing to

Hγ(v + w)−Hγ(v) =Hγ(v, v, w) +Hγ(v, w, v) +Hγ(w, v, v)

+Hγ(w,w, v) +Hγ(v, w,w) +Hγ(w, v, w)

+Hγ(w).
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By Hölder’s inequality and Hardy-Littlewood-Sobolev inequality, we have

‖Hγ(v, v, w)‖
L
σ(p0)

[0,δN ]
Lρ0

=‖(|x|−γ ∗ |v|2)w‖
L
σ(p0)

[0,δN ]
Lρ0

≤
∥∥‖|x|−γ ∗ |v|2‖LAx · ‖w‖Lr0x ∥∥Lσ(p0)

t

≤C
∥∥‖|v|2‖

L
r0
2
x

· ‖w‖Lr0x
∥∥
L
σ(p0)
t

≤C‖1‖LB
[0,δN ]

· ‖v‖2
L
q(2)

[0,δN ]
Lr0
‖w‖

L
q(p0)

[0,δN ]
Lr0

,

(3.9)

where A and B satisfy

1

ρ0
=

1

A
+

1

r0
,

2

r0
= 1 +

1

A
− γ

n
,

1

σ(p0)
=

1

B
+

2

q(2)
+

1

q(p0)
.

And 1
B = 1− γ

4 by calculation combining with the definition 1.1. Then

‖Hγ(v, v, w)‖
L
σ(p0)

[0,δN ]
Lρ0
≤ C(δN )1− γ4 ‖v‖2

L
q(2)

[0,δN ]
Lr0
‖w‖

L
q(p0)

[0,δN ]
Lr0

= I1.

In a similar way, we can get

‖Hγ(v, w,w)‖
L
σ(p0)

[0,δN ]
Lρ0
≤ C(δN )1− γ4−

n
4 ( 1

p0
− 1

2 )‖v‖
L
q(2)

[0,δN ]
Lr0
‖w‖2

L
q(p0)

[0,δN ]
Lr0

= I2,

‖Hγ(w)‖
L
σ(p0)

[0,δN ]
Lρ0
≤ C(δN )1− γ4−

n
2 ( 1

p0
− 1

2 )‖w‖3
L
q(p0)

[0,δN ]
Lr0

= I3,

where we have used the inequality

1− γ

4
− n

2
(

1

p0
− 1

2
) > 0, (3.10)

which follows from the assumption

p0 >
6n

3n− 2γ + 8
>

2n

n− γ + 4
.

For I1 we have

I1 ≤C(M2C0N
α)−

8
4−γ ·(1−

γ
4 ) · (K12C0N

α)2 × 8C0

N

=CM−2K2
1

C0

N
.

Since (− 8
4−γ )× (−n4 ( 1

p0
− 1

2 )) = 2n
4−γ ( 1

p0
− 1

2 ) < 1 by (3.10) and N > 1, by the same way

I2 ≤ CM−1K1C0
C0

N2
≤ CM−1K1C0

C0

N
,

I3 ≤ CM−2+ 4n
4−γ ( 1

p0
− 1

2 )C2
0

C0

N
.

Obviously, it holds that

Ij ≤
C0

N
, j = 1, 2, 3,
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if M is sufficiently large. Collecting these estimates, we get

‖Tw‖
L
q(p0)

[0,δN ]
Lr0
≤ C0

N
+ 3I1 + 3I2 + I3 ≤

8C0

N
.

Next, we check that T is a contraction mapping. Assume that w1, w2 ∈ VδN , then arguing

similarly as above, we have

‖Tw1 − Tw2‖Lq(p0)

[0,δN ]
Lr0
≤ C‖Hγ(v + w1)−Hγ(v + w2)‖

L
σ(p0)

[0,δN ]
Lρ0

.

Note that

Hγ(v + w1)−Hγ(v + w2) =Hγ(w1 − w2, v, v) +Hγ(v, w1 − w2, v) +Hγ(v, v, w1 − w2)

+Hγ(w1, w1, v) +Hγ(w1, v, w1) +Hγ(v, w1, w1)

−Hγ(w2, w2, v)−Hγ(w2, v, w2)−Hγ(v, w2, w2)

+Hγ(w1)−Hγ(w2),

and

Hγ(v, w1, w1)−Hγ(v, w2, w2) =Hγ(v, w1, w1)−Hγ(v, w1, w2) +Hγ(v, w1, w2)−Hγ(v, w2, w2)

=Hγ(v, w1, w1 − w2) +Hγ(v, w2, w1 − w2)

=Hγ(v, wj , w1 − w2), j ∈ {1, 2},

Hγ(w1)−Hγ(w2) =Hγ(w1, w1, w1)−Hγ(w1, w1, w2) +Hγ(w1, w1, w2)−Hγ(w1, w2, w2)

+Hγ(w1, w2, w2)−Hγ(w2, w2, w2)

=Hγ(w1, w1, w1 − w2) +Hγ(w1, w2, w1 − w2) +Hγ(w2, w2, w1 − w2)

=Hγ(wk, wj , w1 − w2), j, k ∈ {1, 2}.

Then it is enough to estimate the norm of the following terms by remark 3.1:

Hγ(v, v, w1 − w2), Hγ(v, wj , w1 − w2), Hγ(wj , wk, w1 − w2), j, k ∈ {1, 2}

Arguing similarly as the above, we have

‖Hγ(v, v, w1 − w2)‖
L
σ(p0)

[0,δN ]
Lρ0
≤C(δN )1− γ4 ‖v‖2

L
q(2)

[0,δN ]
Lr0
‖w1 − w2‖Lq(p0)

[0,δN ]
Lr0

≤CM−2K2
1‖w1 − w2‖Lq(p0)

[0,δN ]
Lr0

= I4,

‖Hγ(v, wj , w1 − w2)‖
L
σ(p0)

[0,δN ]
Lρ0
≤C(δN )1− γ4−

n
4 ( 1

p0
− 1

2 )‖v‖
L
q(2)

[0,δN ]
Lr0
‖wj‖Lq(p0)

[0,δN ]
Lr0
‖w1 − w2‖Lq(p0)

[0,δN ]
Lr0

≤CM−1K1
C0

N
‖w1 − w2‖Lq(p0)

[0,δN ]
Lr0

≤CM−1K1C0‖w1 − w2‖Lq(p0)

[0,δN ]
Lr0

= I5,

‖Hγ(wj , wk, w1 − w2)‖
L
σ(p0)

[0,δN ]
Lρ0
≤C(δN )1− γ4−

n
2 ( 1

p0
− 1

2 )‖wj‖Lq(p0)

[0,δN ]
Lr0
‖wk‖Lq(p0)

[0,δN ]
Lr0
‖w1 − w2‖Lq(p0)

[0,δN ]
Lr0

≤CM−2+ 4n
4−γ ( 1

p0
− 1

2 ) C
2
0

N2
‖w1 − w2‖Lq(p0)

[0,δN ]
Lr0

≤CM−2+ 4n
4−γ ( 1

p0
− 1

2 )C2
0‖w1 − w2‖Lq(p0)

[0,δN ]
Lr0

= I6.
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Then we will get

Ij ≤
1

12
‖w1 − w2‖Lq(p0)

[0,δN ]
Lr0

, j = 4, 5, 6,

if M is sufficiently large. Collecting these estimates, we get

‖Tw1 − Tw2‖Lq(p0)

[0,δN ]
Lr0
≤ 3I4 + 6I5 + 3I6 ≤ ‖w1 − w2‖Lq(p0)

[0,δN ]
Lr0

.

Thus, we get a unique local solution of the original Cauchy problem (1.1) of the form

u(t) =v(t) + w(t)

=v(t) + eit∆
2

ψN + i

∫ t

0

ei(t−τ)∆2

[Hγ(v + w)−Hγ(v)]dτ
(3.11)

on the time interval [0,δN ].

3.2 Continuation of local solution

In this subsection, we try to extend the local solution to the time TN . We first observe that

the third term in the righthand side of (3.11) is in L2. To see this, we use the inhomogenous

Strichartz estimate for the biharmonic admissible pair to obtain

sup
t∈[0,δN ]

∥∥∥∥∫ t

0

ei(t−τ)∆2

[Hγ(v + w)−Hγ(v)]dτ

∥∥∥∥
L2

≤ C‖Hγ(v + w)−Hγ(v)‖
L
σ(2)

[0,δN ]
Lρ0

.

Taking the same process as in the previous subsection, it is enough to consider the norm of

three particular terms, and they are estimated as follows:

‖Hγ(v, v, w)‖
L
σ(2)

[0,δN ]
Lρ0
≤(δN )1− γ4−

n
4 ( 1

p0
− 1

2 )‖v‖2
L
q(2)

[0,δN ]
Lr0
‖w‖

L
q(p0)

[0,δN ]
Lr0

≤CN−1+ 2n
4−γ ( 1

p0
− 1

2 )α.

(3.12)

‖Hγ(v, w,w)‖
L
σ(2)

[0,δN ]
Lρ0
≤(δN )1− γ4−

n
2 ( 1

p0
− 1

2 )‖v‖
L
q(2)

[0,δN ]
Lr0
‖w‖2

L
q(p0)

[0,δN ]
Lr0

≤CN−2+ 4n
4−γ ( 1

p0
− 1

2 )α−α.

(3.13)

‖Hγ(w)‖
L
σ(2)

[0,δN ]
Lρ0
≤(δN )1− γ4−

3n
4 ( 1

p0
− 1

2 )‖w‖3
L
q(p0)

[0,δN ]
Lr0

≤CN−3+ 6n
4−γ ( 1

p0
− 1

2 )α−2α,

(3.14)

where we also have used the inequality

1− γ

4
− 3n

4
(

1

p0
− 1

2
) > 0, (3.15)

which follows from the assumption

p0 >
6n

3n− 2γ + 8
.

Put a = 2n
4−γ ( 1

p0
− 1

2 ), then a < 1 by (3.10), and we have

−1 +
2n

4− γ
(

1

p0
− 1

2
)α = −1 + aα,

−2 +
4n

4− γ
(

1

p0
− 1

2
)α− α = −1 + aα+ aα− 1− α,

−3 +
6n

4− γ
(

1

p0
− 1

2
)α− 2α = −1 + aα+ 2(aα− 1− α).



14 J. Xie D. Wang and H. Yang

Note that aα− 1− α = −1− (1− a)α < −1 < 0, so when N > 1, we have

sup
t∈[0,δN ]

∥∥∥∥∫ t

0

ei(t−τ)∆2

[Hγ(v + w)−Hγ(v)]dτ

∥∥∥∥
L2

≤ CN−1+ 2n
4−γ ( 1

p0
− 1

2 )α. (3.16)

By (3.11) we write

u(δN , x) = ϕ1
N (x) + ψ1

N (x)

with

ϕ1
N (x) := v(δN , x) + i

∫ δN

0

ei(δN−τ)∆2

[Hγ(v + w)−Hγ(w)]dτ

and

ψ1
N := eiδN∆2

ψN .

Obviously, we have ϕ1
N (x) ∈ L2 and

‖eit∆
2

ψ1
N‖Lq(p0)Lr0 = ‖ei(t+δN )∆2

ψN‖Lq(p0)Lr0 ≤
C0

N
.

Therefore, if the estimate

(2C0)−1Nα ≤ ‖ϕ1
N (x)‖L2 ≤ 2C0N

α

is valid, that is to say u(δN ) ∈ Ap0,α, then we obtain the solution of{
iut + ∆2u+ (| · |−γ ∗ |u|2)u = 0, t > δN ,

u(x, δN ) = ϕ1
N (x) + ψ1

N , x ∈ Rn,

on [δN , 2δN ], repeating the calculation of subsection 3.1. In this way, we can construct a solution

of (1.1) to the time 2δN , 3δN , · · · , k0δN inductively as

(2C0)−1Nα ≤ ‖ϕkN (x)‖L2 ≤ 2C0N
α, ∀k ≤ k0, (3.17)

where

ϕkN (x) := v(kδN , x) + i

∫ kδN

o

ei(kδN−τ)∆2

[Hγ(v + w)−Hγ(v)]dτ

and

ψkN := eikδN∆2

ψN .

We seek the largest k0 for which (3.17) holds. By (3.16) and the conservation law (3.6), if{
C0N

α + Ck0N
−1+ 2n

4−γ ( 1
p0
− 1

2 )α ≤ 2C0N
α,

C−1
0 Nα − Ck0N

−1+ 2n
4−γ ( 1

p0
− 1

2 )α ≥ (2C0)−1Nα,
(3.18)

we obtain (3.17). Solving (3.18), we have

k0 ≤ CN1+[1− 2n
4−γ ( 1

p0
− 1

2 )]α.

So, we can extend the solution of (1.1) to the time

TN := ck0δN = cN1− 4
4−γ [2−n2 (n−γ+4

2n − 1
p0

)]α, (3.19)

where c > 0 is a constant independent of N . This proves Theorem (1.1) (i). The statement

(ii) follows easily from (i). Indeed, (1.9) implies that the exponent of T in (3.19) is strictly

positive. Thus, TN also can be arbitrarily large as N can be taken arbitrarily large.
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4 Proof of Theorem 1.2

We present sufficient conditions on the initial function u0 under which Theorem 1.1 can be

applied. Before giving our result, we state an useful interpolation lemma.

Lemma 4.1 (see [22]) Suppose that 0 < p1 < p2 ≤ ∞, and let p ∈ (p1, p2) be given by

1

p
=

1− θ
p1

+
θ

p2
,

for some θ ∈ (0, 1), then

Lp ↪→ Lp1 + Lp2 .

Moreover, for any f ∈ Lp there are sequences of functions (ϕt)t>0 ⊂ Lp1 and (ψt)t>0 ⊂ Lp2

such that f = ϕt + ψt, ∀t > 0 and

ct−θmax(‖ϕt‖Lp1 , t‖ψt‖Lp2 ) ≤ ‖f‖Lp ,

where c > 0 is independent of t.

Proposition 4.1 Suppose that p lies in the region

4n

2n+ γ
< p < 2.

Then, for any p0 satisfying
4n

2n+ γ
< p0 < p, (4.1)

we have the inclusion Lp\L2 ⊂ Ap0,α with

α =
1/p− 1/2

1/p0 − 1/p
.

Proof Let φ ∈ Lp\L2. By lemma 4.1, for ∀t > 0, there exist gt ∈ L2 and ht ∈ Lp0 satisfying

φ = gt + ht

and

ct−θmax(t‖gt‖L2 , ‖ht‖Lp0 ) ≤ ‖φ‖Lp , (4.2)

where c > 0 is independent of t and θ ∈ (0, 1) satisfies

1

p
=
θ

2
+

1− θ
p0

.

Note that ‖gt‖L2 →∞ as t→ 0, since φ /∈ L2. Therefore, we can choose tN > 0 for any N > 1

such that

‖gtN ‖L2 = Nα = N
1−θ
θ .

Then, by (4.2) we get

‖htN ‖Lp0 ≤ ctθN‖φ‖Lp and t1−θN ·N
1−θ
θ ≤ ‖φ‖Lp .
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From these inequalities, we get ‖htN ‖Lp0 ≤ c‖φ‖
1

1−θ
Lp N−1. Now, let us define

ϕN = gtN , ψN = htN .

Then, we see that (3.1) is fulfilled with C0 = max(1, cC‖φ‖
1

1−θ
Lp ), where C is the constant of

(2.1). Furthermore, (3.2) is also satisfied by the generalized Strichartz inequality lemma 2.1 if

we assume (4.1).

Then the Theorem 1.2 is immediate consequences of Theorem 1.1 and Proposition 4.1.

Remark 4.1 By Theorem 1.1 (ii), TN can get arbitrarily large if

α =
1/p− 1/2

1/p0 − 1/p
< { 4

4− γ
[2− n

2
(
n+ 4− γ

2n
− 1

p0
)]}−1,

by solving this inequality after the formally letting

max(
6n

3n− 2γ + 8
,

4n

2n+ γ
) < p0 < 2,

we see that p lies in the range in (1.11), and the condition (1.11) isn’t an empty set with (1.12),

because

−γ2 + (n+ 4)γ + 16n = n(16 + γ) + γ(4− γ),

γ2 − (n+ 8)γ + 16n+ 16 = n(16− γ) + (4− γ)2.

So it is obviously that 2n(16+γ)
−γ2+(n+4)γ+16n < 2 and 2n(16−γ)

γ2−(n+8)γ+16n+16 < 2. Inaddtion, we can see

2n(16− γ)

γ2 − (n+ 8)γ + 16n+ 16
>

6n

3n− 2γ + 8
,

2n(16 + γ)

−γ2 + (n+ 4)γ + 16n
>

4n

2n+ γ
> 1.
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