References
Arimitsu, M. L., Piatt, J. F., Hatch, S., Suryan, R. M., Batten, S., Bishop, M. A., . . . von Biela, V. R. (2021). Heatwave-induced synchrony within forage fish portfolio disrupts energy flow to top pelagic predators. Global Change Biology, 27 (9), 1859-1878. doi:10.1111/gcb.15556
Barlow, J., Franca, F., Gardner, T. A., Hicks, C. C., Lennox, G. D., Berenguer, E., . . . Graham, N. A. J. (2018). The future of hyperdiverse tropical ecosystems. Nature, 559 (7715), 517-526. doi:10.1038/s41586-018-0301-1
Bjærke, O., Andersen, T., & Titelman, J. (2014). Predator chemical cues increase growth and alter development in nauplii of a marine copepod.Marine Ecology Progress Series, 510 , 15-24.
Cavieres, G., Rezende, E. L., Clavijo‐Baquet, S., Alruiz, J. M., Rivera‐Rebella, C., Boher, F., & Bozinovic, F. (2020). Rapid within‐and transgenerational changes in thermal tolerance and fitness in variable thermal landscapes. Ecology and Evolution, 10 (15), 8105-8113.
Chew, L. L., Chong, V. C., Tanaka, K., & Sasekumar, A. (2012). Phytoplankton fuel the energy flow from zooplankton to small nekton in turbid mangrove waters. Marine Ecology Progress Series, 469 , 7-24. doi:10.3354/meps09997
Davis, T. L. O. (1985). The food of barramundi, Lates calcarifer(Bloch), in coastal and inland waters of Van Diemen Gulf and the Gulf of Carpentaria, Australia. Journal of Fish Biology, 26 (6), 669-682. doi:10.1111/j.1095-8649.1985.tb04307.x
Dinh, K. V. (2019). Vietnam’s fish kill remains unexamined.Science, 365 (6451), 333-333. doi:10.1126/science.aay6007
Dinh, K. V., Dinh, H. T., Pham, H. T., Selck, H., & Truong, K. N. (2020). Development of metal adaptation in a tropical marine zooplankton. Scientific Reports, 10 (1), 10212. doi:10.1038/s41598-020-67096-1
Dinh, K. V., Doan, K. L. U., Doan, N. X., Pham, H. Q., Le, T. H. O., Le, M.-H., . . . Truong, K. N. (2021). Parental exposures increase the vulnerability of copepod offspring to copper and a simulated marine heatwave. Environmental Pollution, 287 , 117603. doi:https://doi.org/10.1016/j.envpol.2021.117603
Doan, N. X., Vu, M. T. T., Nguyen, H. T., Tran, H. T. N., Pham, H. Q., & Dinh, K. V. (2018). Temperature- and sex-specific grazing rate of a tropical copepod Pseudodiaptomus annandalei to food availability: implications for live feed in aquaculture. Aquaculture Research, 49 (12), 3864-3873. doi:10.1111/are.13854
Doan, X. N., Vu, M. T. T., Pham, H. Q., Wisz, M. S., Nielsen, T. G., & Dinh, K. V. (2019). Extreme temperature impairs growth and productivity in a common tropical marine copepod. Scientific Reports, 9 , 4550. doi:10.1038/s41598-019-40996-7
Donelson, J. M., Munday, P. L., McCormick, M. I., & Pitcher, C. R. (2012). Rapid transgenerational acclimation of a tropical reef fish to climate change. Nature Climate Change, 2 , 30-32.
Donelson, J. M., Salinas, S., Munday, P. L., & Shama, L. N. S. (2018). Transgenerational plasticity and climate change experiments: Where do we go from here? Global Change Biology, 24 (1), 13-34. doi:10.1111/gcb.13903
Evans, R., Lea, M. A., Hindell, M. A., & Swadling, K. M. (2020). Significant shifts in coastal zooplankton populations through the 2015/16 Tasman Sea marine heatwave. Estuarine Coastal and Shelf Science, 235 , 11. doi:10.1016/j.ecss.2019.106538
Feng, Y., Bethel, B. J., Dong, C., Zhao, H., Yao, Y., & Yu, Y. (2022). Marine heatwave events near Weizhou Island, Beibu Gulf in 2020 and their possible relations to coral bleaching. Science of The Total Environment , 153414. doi:https://doi.org/10.1016/j.scitotenv.2022.153414
Fox, R. J., Donelson, J. M., Schunter, C., Ravasi, T., & Gaitán-Espitia, J. D. (2019). Beyond buying time: the role of plasticity in phenotypic adaptation to rapid environmental change.Philosophical Transactions of the Royal Society B: Biological Sciences, 374 (1768), 20180174. doi:doi:10.1098/rstb.2018.0174
Garrabou, J., Coma, R., Bensoussan, N., Bally, M., ChevaldonnÉ, P., Cigliano, M., . . . Cerrano, C. (2009). Mass mortality in Northwestern Mediterranean rocky benthic communities: effects of the 2003 heat wave.Global Change Biology, 15 (5), 1090-1103. doi:10.1111/j.1365-2486.2008.01823.x
Garrabou, J., Gomez-Gras, D., Ledoux, J. B., Linares, C., Bensoussan, N., Lopez-Sendino, P., . . . Harmelin, J. G. (2019). Collaborative database to track mass mortality events in the Mediterranean Sea.Frontiers in Marine Science, 6 , 707. doi:10.3389/fmars.2019.00707
Grønning, J. B., Doan, N. X., Dinh, T. N., Dinh, K. V., & Nielsen, T. G. (2019). Ecology of Pseudodiaptomus annandalei in tropical aquaculture ponds with emphasis on the limitation of production.Journal of Plankton Research, 41 (5), 741-758.
Guillaume, A. S., Monro, K., & Marshall, D. J. (2016). Transgenerational plasticity and environmental stress: do paternal effects act as a conduit or a buffer? Functional Ecology, 30 (7), 1175-1184. doi:https://doi.org/10.1111/1365-2435.12604
Harada, A. E., Healy, T. M., & Burton, R. S. (2019). Variation in thermal tolerance and its relationship to mitochondrial function across populations of Tigriopus californicus . Frontiers in Physiology, 10 . doi:21310.3389/fphys.2019.00213
Hirst, A. G., & Kiorboe, T. (2002). Mortality of marine planktonic copepods: global rates and patterns. Marine Ecology Progress Series, 230 , 195-209. doi:10.3354/meps230195
Hobday, A. J., Alexander, L. V., Perkins, S. E., Smale, D. A., Straub, S. C., Oliver, E. C. J., . . . Wernberg, T. (2016). A hierarchical approach to defining marine heatwaves. Progress in Oceanography, 141 , 227-238. doi:10.1016/j.pocean.2015.12.014
Hughes, T. P., Kerry, J. T., Alvarez-Noriega, M., Alvarez-Romero, J. G., Anderson, K. D., Baird, A. H., . . . Wilson, S. K. (2017). Global warming and recurrent mass bleaching of corals. Nature, 543 (7645), 373-+. doi:10.1038/nature21707
Hughes, T. P., Kerry, J. T., Connolly, S. R., Baird, A. H., Eakin, C. M., Heron, S. F., . . . Torda, G. (2019). Ecological memory modifies the cumulative impact of recurrent climate extremes. Nature Climate Change, 9 (1), 40-43. doi:10.1038/s41558-018-0351-2
Krause, K. E., Dinh, K. V., & Nielsen, T. G. (2017). Increased tolerance to oil exposure by the cosmopolitan marine copepodAcartia tonsa . Science of The Total Environment, 607–608 , 87-94. doi:https://doi.org/10.1016/j.scitotenv.2017.06.139
Lasley-Rasher, R. S., & Yen, J. (2012). Predation risk suppresses mating success and offspring production in the coastal marine copepod,Eurytemora herdmani . Limnology and Oceanography, 57 (2), 433-440. doi:10.4319/lo.2012.57.2.0433
Le, M.-H., Dinh, K. V., Nguyen, M. V., & Rønnestad, I. (2020). Combined effects of a simulated marine heatwave and an algal toxin on a tropical marine aquaculture fish cobia (Rachycentron canadum ).Aquaculture Research, 51 (6), 2535-2544. doi:10.1111/are.14596
Low, J. S., Chew, L. L., Ng, C. C., Goh, H. C., Lehette, P., & Chong, V. C. (2018). Heat shock response and metabolic stress in the tropical estuarine copepod Pseudodiaptomus annandalei converge at its upper thermal optimum. Journal of Thermal Biology, 74 , 14-22.
Lürling, M., & Scheffer, M. (2007). Info-disruption: pollution and the transfer of chemical information between organisms. Trends in Ecology & Evolution, 22 (7), 374-379. doi:10.1016/j.tree.2007.04.002
Munday, P. L. (2014). Transgenerational acclimation of fishes to climate change and ocean acidification. F1000prime reports, 6 .
Nguyen, T. T., Le, M. H., Doan, N. X., Pham, H. Q., Vu, M. T. T., & Dinh, K. V. (2020). Artificial light pollution increases the sensitivity of tropical zooplankton to extreme warming. Environmental Technology & Innovation, 20 , 101179. doi:https://doi.org/10.1016/j.eti.2020.101179
Oliver, E. C. J., Donat, M. G., Burrows, M. T., Moore, P. J., Smale, D. A., Alexander, L. V., . . . Wernberg, T. (2018). Longer and more frequent marine heatwaves over the past century. Nature Communications, 9 (1), 1324. doi:10.1038/s41467-018-03732-9
Pham, H. T., Dinh, K. V., Nguyen, C. C., & Quoc, L. B. (2020). Changes in the magnitude of the individual and combined effects of contaminants, warming, and predators on tropical cladocerans across 11 generations.Environmental Science & Technology, 54 (23), 15287-15295. doi:10.1021/acs.est.0c05366
Pörtner, H. O. (2010). Oxygen- and capacity-limitation of thermal tolerance: a matrix for integrating climate-related stressor effects in marine ecosystems. Journal of Experimental Biology, 213 (6), 881-893. doi:10.1242/jeb.037523
Ryu, T., Veilleux, H. D., Donelson, J. M., Munday, P. L., & Ravasi, T. (2018). The epigenetic landscape of transgenerational acclimation to ocean warming. Nature Climate Change, 8 (6), 504-+. doi:10.1038/s41558-018-0159-0
Sentis, A., Bertram, R., Dardenne, N., Ramon-Portugal, F., Espinasse, G., Louit, I., . . . Danchin, E. (2018). Evolution without standing genetic variation: change in transgenerational plastic response under persistent predation pressure. Heredity, 121 (3), 266-281. doi:10.1038/s41437-018-0108-8
Smale, D. A., Wernberg, T., Oliver, E. C. J., Thomsen, M., Harvey, B. P., Straub, S. C., . . . Moore, P. J. (2019). Marine heatwaves threaten global biodiversity and the provision of ecosystem services.Nature Climate Change, 9 , 306–312. doi:10.1038/s41558-019-0412-1
Somero, G. N. (2010). The physiology of climate change: how potentials for acclimatization and genetic adaptation will determine ‘winners’ and ‘losers’. Journal of Experimental Biology, 213 (6), 912-920. doi:10.1242/jeb.037473
Thor, P., & Dupont, S. (2015). Transgenerational effects alleviate severe fecundity loss during ocean acidification in a ubiquitous planktonic copepod. Global Change Biology, 21 (6), 2261-2271. doi:10.1111/gcb.12815
Torda, G., Donelson, J. M., Aranda, M., Barshis, D. J., Bay, L., Berumen, M. L., . . . Munday, P. L. (2017). Rapid adaptive responses to climate change in corals. Nature Climate Change, 7 (9), 627-636. doi:10.1038/nclimate3374
Tran, T. T., Janssens, L., Dinh, K. V., & Stoks, R. (2018). Transgenerational interactions between pesticide exposure and warming in a vector mosquito. Evolutionary Applications, 11 (6), 906-917. doi:doi:10.1111/eva.12605
Truong, K. N., Vu, N.-A., Doan, N. X., Le, M.-H., Vu, M. T. T., & Dinh, K. V. (2020). Predator cues increase negative effects of a simulated marine heatwave on tropical zooplankton. Journal of Experimental Marine Biology and Ecology, 530-531 , 151415. doi:https://doi.org/10.1016/j.jembe.2020.151415
Walsh, M. R., Cooley IV, F., Biles, K., & Munch, S. B. (2015). Predator-induced phenotypic plasticity within-and across-generations: a challenge for theory? Proceedings of the Royal Society B: Biological Sciences, 282 (1798), 20142205.
Warton, D. I., & Hui, F. K. C. (2011). The arcsine is asinine: the analysis of proportions in ecology. Ecology, 92 (1), 3-10. doi:10.1890/10-0340.1
Worm, B., Barbier, E. B., Beaumont, N., Duffy, J. E., Folke, C., Halpern, B. S., . . . Watson, R. (2006). Impacts of biodiversity loss on ocean ecosystem services. Science, 314 (5800), 787-790. doi:10.1126/science.1132294
Yao, Y., Wang, J., Yin, J., & Zou, X. (2020). Marine heatwaves in China’s marginal seas and adjacent offshore waters: past, present, and future. Journal of Geophysical Research: Oceans, 125, (3), e2019JC015801.
Table 1. The results of the generalized mixed models testing effects of marine heatwave (MHW) and fish predator cues (FPC) on surival, reproductive parameters and cumulative faecals of F1Pseudodiaptomus incisus . Significant P values are signed with *.