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Optical and acoustic stereo imaging has great potential for the precise
and consistent localization of intervention underwater robots; however,
it is still being explored due to its sensing limitations and various tech-
nical challenges. This study presents a novel localization method by
combining an inertial navigation system and an optical and acoustic
stereo imaging system. As a strategy for localization correction relative
to underwater structures, the robot’s pose is estimated based on a single
acoustic image using a sonar simulator for mid-range localization, and
a robust visual tracking using a 3-D wireframe model is employed for
high-precision localization near the target structures. The performance
of the proposed technique was demonstrated through experimental val-
idation using real data obtained from a test tank.

Introduction: The localization technique is essential for automating
underwater intervention robots that are widely used for various inter-
vention tasks such as maintenance and repair operations on subsea
platforms. Optical cameras and imaging sonars have been explored
as important sensors for localization correction of intervention robots
because each provides rich visual information for close-range environ-
ments and range information over a wide image area, even in extreme
underwater environments, respectively. For example, the 2-D geometric
transformation between two acoustic images enables an effective local-
ization correction, and it can be obtained via feature point matching [1]
and topology graph matching [2]. However, they are applicable only to
images with minor differences in imaging position and abundant acous-
tic textures. Meanwhile, optical images enable 6-DOF pose estimation
for close-range subsea structures. Pose estimation has been primarily
based on template matching [3] and edge-based matching [4]. However,
it is hard to expect they would behave robustly against distant objects
because of light attenuation and turbidity in the underwater environment.
Localization correction using an optic-acoustic stereo system allows the
intervention robots to have a more practical localization system suitable
for intervention tasks than using a single sensor [5]. However, it is still
regarded as a challenging issue because both sensors have different mea-
surement characteristics and have sensing limitations in the underwater
environment. Therefore, efficient strategies to use both sensors for local-
ization correction need to be further explored.

This study proposes a novel localization technique using an optic-
acoustic stereo system for underwater intervention robots. This tech-
nique is based on an inertial navigation system that uses optic-acoustic
images for localization correction to enable near-far range localization
from subsea platforms. The merits of the proposed technique were veri-
fied experimentally using real data obtained from a test tank.

Localization strategy: The proposed localization system aims to esti-
mate the 3-D positional relationship between an intervention robot and
subsea structures. It is based on an inertial navigation system that uses
an extended Kalman filter. In addition, It uses relative poses to the struc-
tures obtained using an optic-acoustic stereo system for localization
correction. Pose estimation is performed sequentially for each sensor,
and each estimation result is selectively fused to the inertial navigation
through a reliability evaluation. The subsea structures are assumed to
be designed and deployed by humans, and their shapes and layouts are
entirely known. Consequently, it enables pose estimation based on image
alignment using an sonar simulator for a single-shot acoustic image. In
addition, it enables robust visual tracking and pose estimation using 3-D
wireframe models of the structures for an optical image.

Pose estimation with acoustic image alignment: Pose estimation for
acoustic images consists of image-pose pair group generation, image-

Fig 1 Schematic diagram of the proposed localization system: Gray solid
line boxes indicate components related to the pose estimation for the acoustic
image, and dashed line boxes indicate the pose estimation for the optical
image.

pose pair nearest-neighbor (NN) search, and image alignment. First, the
group generation builds a database composed of pose hypotheses and
their simulated images over a bounded localization area using an sonar
simulator. Next, the NN search finds an image-pose pair in the database
most similar to the input image and then returns its pose label. Finally,
the image alignment matches the input image and the image generated
in the continuous pose space of the simulator to determine the position
where the input image was actually taken.

The group generation samples a certain number of pose hypotheses
over a 3-D pose space in a bounded localization area and generates sim-
ulated acoustic images for each pose hypothesis. For example, 𝑁 sam-
pling for each degree of freedom of a 3-D pose produces 6𝑁 pairs. In
this paper, we considered 3𝑁 pairs, assuming that the navigation sen-
sors provide the roll, pitch, and altitude information of the camera. The
image-pose pair NN search finds a pair in the group that is most similar
to the input image 𝐼𝑡 at time 𝑡 . The NN search consists of two steps: pair
clustering and pair selection. Pair clustering is an offline process that
clusters pairs using image hashing, minhashing which is a data dimen-
sionality reduction method, and locality-sensitive hashing (LSH) which
is a hash-based clustering and search technique. First, it creates a 𝑛 ×𝑚
hash table containing 𝑚 poses and their 𝑛 dimension binary hashes of
images. Subsequently, minhashing uses random permutations to trans-
form the hash table into a 𝑟 ×𝑚 signature matrix that maintains the Jac-
card similarity between hashes. Then, LSH divides the signature matrix
into 𝑏 bands and assigns similar pose labels (or keys) to the same bucket.
Pair selection is an online process that assigns an input image to a bucket
and chooses a pair with the smallest image distance in the bucket. Simi-
lar to pair clustering, it sequentially applies image hashing, minhashing,
and LSH to the input image to search a bucket. The most similar pair is
then found in the bucket using the correlation ratio, which is a similarity
measure suitable for multimodality data comparison. The pose label of
the pair was used as an initial for image alignment.

The initial poses of the NN search are in discrete pose spaces and
may differ from the actual poses. Therefore, it needs a procedure to find
the actual pose from the initial pose in a continuous pose space, assum-
ing that the actual pose is near the initial pose. Hence, we employed
an image alignment technique that aligns the input and the simulation
image to find more accurate pose in continuous pose spaces. The image
alignment problem can be formulated as follows:

x̂ = argmin
x

𝑑 (𝑆 (x) , 𝐼𝑡 ) . (1)

The equation determines the 6-DOF pose x̂ at which the sonar simula-
tor produces a simulated image 𝑆 = [𝑆𝑟 , 𝑆𝜓 ] that minimizes the image
distance 𝑑 ( ·) with respect to the input acoustic image 𝐼 𝑡 = [𝐼𝑟 , 𝐼𝜓 ],
where the subscripts 𝑟 and 𝜓 denote two acoustic images each with dif-
ferent imaging geometries: x-y and r-azimuth. The number of parame-
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Algorithm 1: Acoustic Image Alignment

Input: x̃, It = [I𝑟 , I𝜓 ]
Result: x̂
Param: 𝐾, 𝑁, 𝜁 ,D = [d1, d2, d3 ]

1 x1 ←− x̃, F𝐼 ←− FeatureExtraction (It)
2 for 𝑘 ← 1 to K do
3 for 𝑛← 1 to N do
4 𝜆𝑛 ←− BidirectionalLineSearch (x𝑘 , d𝑛 , 𝐼

𝑡 )
5 x←− x𝑘 + 𝜆𝑛d𝑛

6 end
7 d𝑘 ←− SetSearchDirection (x𝑘 , x)
8 𝜆𝑘 ←− BidirectionalLineSearch (x𝑘 , d𝑘 , 𝐼

𝑡 , F𝐼 )
9 x𝑘+1 ←− x𝑘 + 𝜆𝑘d𝑘 , x̂←− x𝑘+1

10 E ←− |x𝑘 − x𝑘+1 |
11 if E < 𝜁 then
12 Return(x̂)
13 end
14 end

ters to be estimated can be varied according to the sensor configuration
and localization strategy. We only considered the 3-DOF pose, ignoring
the camera’s roll, pitch, and vertical motion. In addition, this study only
considered image alignment for acoustic images with multimodal rela-
tionship, sparse acoustic texture, and no significant difference in imag-
ing position. To this end, we consider an image distance 𝑑 (𝑆∗ (x) , 𝐼∗) =
𝐶 (𝑆∗ (x) , 𝐼∗) + 𝛽 ·𝑀 (𝑆∗ (x) , 𝐼∗) , which is the weighted sum of the cor-
relation ratio 𝑀, which can measure pixel dependence for multimodal-
ity imaging data, and the Chamfer distance 𝐶, which indirectly mea-
sures the geometric difference even for images with sparse textures. The
Chamfer distance is calculated for feature points clustered with a pos-
itive gradient on the range axis of the acoustic image, which is known
as a representative feature point representing the outline of an object in
the acoustic image. Assuming a static environment, we can directly esti-
mate the camera heading motion by measuring the pixel motions on the
azimuth axis of the r-azimuth acoustic image. Therefore, the resulting
image distance is the weighted sum of the distances between the two
images, 𝑑 (𝑆 (x) , 𝐼𝑡 ) = 𝛼 · 𝑑 (𝑆𝑟 (x) , 𝐼𝑟 ) + (1 − 𝛼) · 𝑑 (𝑆𝜓 (x) , 𝐼𝜓) .

Algorithm 1 summarizes the procedure of the parameter estimation
of image alignment. This takes an initial x̃ and an input image 𝐼 𝑡 and
then returns an estimated pose x̂. K and N represent the number of iter-
ations for the parameter estimation and line search, respectively. The
latter corresponds to the degree of freedom of the pose that we want to
estimate, and it was set to three here. The vector d is a unit vector that
represents each search direction of the pose to be estimated. It is used
for a line search based on the golden section search in BidirectionalLi-
neSearch, and the line search exists in the inner and main loops. The first
for the inner loop determines the direction of acceleration of the param-
eter updates, and the second for the main loop determines the step size
of update acceleration 𝜆. A criterion is used to determine whether pose
estimation is to be used for filter updates. It is calculated as the ratio of
the two correlation ratios 𝐶 (𝑆𝑟 (x) , 𝐼 𝑡𝑟 )/𝐶 (𝑆𝑟 (x) , 𝐺 (𝑆𝑟 (x))) , where
𝐶 (𝑆𝑟 (x) , 𝐺 (𝑆𝑟 (x))) is the correlation ratio between a simulated image
and the simulated image with Gaussian smoothing 𝐺 ( ·) . 𝐶 (𝑆𝑟 (x) , 𝐼 𝑡𝑟 )
is the correlation ratio between the simulation and input images. The
estimation is excluded from the filter update if the criterion is less than
the threshold value.

Edge-based pose estimation using particle filtering: Pose estimation for
optical images is based on visual tracking technique via geometric par-
ticle filtering on the Lie group with a 3-D wireframe model [6]. State x𝑡
at time 𝑡 is represented as x𝑡 = x𝑡−1 · exp(A𝑡−1 + dW𝑡

√
Δ𝑡) , where state

x𝑡 ∈ 𝑆𝐸 (3) is in the Lie group. A𝑡−1 = 𝜆𝑎 log(x−1
𝑡−2x𝑡−1) is the first-

order autoregressive (AR) state dynamics. dW𝑡 is the Wiener process
noise in 𝔰𝔢(3) with covariance 𝚺𝑤 ∈ ℜ6×6. The particles are evaluated
using the measurement likelihood. A 3-D wireframe CAD model for
each pose particle is projected onto the image plane. The moving edge
(ME) algorithm then finds the edge pixels of the object in the image
[7]. After the ME search, the residual vector r = [𝑟1, · · · , 𝑟𝑁𝑧

]𝑇 is

Fig 2 Experimental setup for data acquisition: Sensors, mounting frame,
two mock-up models, and markers for localization reference were deployed
in the water tank.

determined as the Euclidean distances between the sample and candi-
date points searched by the ME algorithm. The resulting measurement
likelihood is defined with the residuals and the ratio of matched points
as follows:

𝑝 (z𝑡 | x𝑡 ) ∝ exp
(
−𝜆𝑣

𝑁𝑝 − 𝑁𝑖

𝑁𝑝

)
exp (−𝜆𝑟 r̄) (2)

where 𝑁𝑝 is the number of sample points in the CAD model and 𝑁𝑖 is
the number of matched points in the ME algorithm. 𝜆𝑟 and 𝜆𝑣 are tuning
parameters that control the sensitivity of each term. The followings are
the estimation criterion 𝜆𝑣

𝑁𝑝−𝑁𝑖

𝑁𝑝
< 𝜖1 and 𝜆𝑟 r̄ < 𝜖2.

Filter system: The filter system uses a 6-DOF kinematic model of a
vehicle using inertial sensor measurements [8]. x𝑣 = [𝑥𝑦𝑧 𝜙 𝜃 𝜓𝑢𝑣𝑤 ]𝑇
is the state vector, where 𝑥, 𝑦, and 𝑧 are the positions; 𝜙, 𝜃 , and 𝜓 are
the Euler angles in the global frame; and 𝑢, 𝑣, and𝑤 are the linear veloc-
ities in the vehicle-fixed frame. The vehicle pose in the global frame is
obtained by z𝑖𝑚𝑢 = [𝑧 ¤𝑢 𝑧 ¤𝑣 𝑧 ¤𝑤 𝑧 ¤𝑝 𝑧 ¤𝑞 𝑧 ¤𝑟 ]𝑇 from the IMU, where 𝑧 ¤𝑢, 𝑧 ¤𝑣 ,
and 𝑧 ¤𝑤 are the linear accelerations, and 𝑧𝑝 , 𝑧𝑞 , and 𝑧𝑟 are the angular
velocities. The resulting state vector X = [x𝑣 x𝑚 ]𝑇 is composed of the
state of the subsea structure x𝑚 = [𝑥𝑚 𝑦𝑚 𝑧𝑚 𝜙𝑚 𝜃𝑚 𝜓𝑚 ]𝑇 and vehicle
state x𝑣 . The system dynamics have motion models of the vehicle and
subsea structure, which can be represented as

¤X =

[
¤x𝑣
¤x𝑚

]
=

[
𝑓 (x𝑣 , zimu)

0

]
+ w (3)

where 𝑓 (x𝑣 , zimu) denotes the motion model [8]. Here, w denotes
the uncertainty assumed to follow a zero-mean Gaussian distribution.
Because the subsea structure is assumed to be stationary, the time deriva-
tive ¤x𝑚 of the state vector is set to zero.

The measurement model employs two measurements for filter update.
The first is the motion measurement, z𝑣 = [𝑢𝑑 𝑣𝑑 𝑤𝑑 𝑑𝑑 ]𝑇 , composed
of the linear velocity (𝑢𝑑 , 𝑣𝑑 , 𝑤𝑑) and altitude 𝑑𝑑 obtained from the
DVL. In addition, it contains the relative pose between the subsea struc-
ture and the vehicle: z𝑚 = [ 𝑧𝑥 𝑧𝑦 𝑧𝜓 ]𝑇 from a pose estimation for the
acoustic image, or z𝑚 = [ 𝑧𝑥 𝑧𝑦 𝑧𝑧 𝑧𝜙 𝑧𝜃 𝑧𝜓 ]𝑇 from the pose esti-
mation for the optical image. Motion measurement can be represented
as z = [ z𝑣 z𝑚 ]𝑇 + v. v = [ v𝑣 v𝑚 ]𝑇 is for the measurement
noise, where v𝑣 is the motion measurement, which is assumed to follow
a zero-mean Gaussian distribution with covariance R𝑣 , and v𝑚 is for the
pose estimation, which is assumed to follow a zero-mean Gaussian dis-
tribution with covariance R𝑚. v𝑚 and R𝑚 are modeled differently with
different scale factors according to what a pose estimation is carried out.

Experimental Results: The proposed localization techniques were vali-
dated under a scenario in which an intervention system maneuvers near
a cluster of subsea platforms for their tasks. The validation used real data
consisting of optical images, acoustic images and sensor measurements
(DVL and IMU) obtained by moving a mounting frame along a rectan-
gular path in the test tank. The imaging plane of the imaging sonar was
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(a) NN search (b) Model projection

(c) Alignment (d) Edge matching

Fig 3 Pose estimation results: Image alignment results are shown in (a) and
(c), respectively. The 3-D wireframe model is projected onto the image plane
using the initial pose of image alignment (b), and the model is precisely
aligned to the object through particle filtering (d).

Table 1. Performance of two pose estimations: RMSE, success rate,
and convergence time in mean. 𝑁 , 𝑁𝑎 , and 𝑁𝑜 are the number of
input acoustic images, success pose estimation for input acoustic
images, and success pose estimation for optical images, respectively.

x (m) y (m) yaw (◦) Success rate Time (sec)

Acoustic 0.271 0.212 3.38 0.15 (𝑁𝑎/𝑁) 4.21

Optical 0.192 0.217 2.93 0.82 (𝑁𝑜/𝑁𝑎) 1.19

fixed to be parallel to the bottom of the tank. Two scaled mock-up mod-
els of the control panel of a wellhead, an offshore platform for oil or gas
production, were built and placed on the bottom of the test tank.

Fig. 3(a) shows superimposed images between the input and the sim-
ulation images founded by the NN search. The success criterion for NN
search is when the retrieved pose has a position error of less than 0.4
m and an azimuth error of less than 5 degrees. The performance of NN
searches was evaluated along with this criterion. The NN search shows
higher accuracy when the camera and the mock-up model are close. The
pose accuracy was increased as the sampling size increased. Fig. 3(c)
presents superimposed images by the image alignment. The image align-
ment was evaluated with the pose error and convergence time as shown
in Table 1. Likewise, the imaging distortion increased the pose error for
images representing distant objects. However, the overall performance
was acceptable to be used for the localization correction of the inter-
vention robots. Besides, the image alignment converges slower than the
image update rate of the actual imaging sonar, but it could be improved
by adjusting the trade-off between accuracy and speed parameters. Fig.
3(b) and (d) show the results of the edge-based visual tracking. Since
optical images are subject to light attenuation and distortion, pose esti-
mation was mostly done at the close range of the mock-up model. Since
the pose estimation directly estimates the 6-DOF pose for the mock-up
model, it has a clear advantage to the operation of the intervention robots
that require accurate 3-D positional information for their tasks. Table 1
shows the performance of two pose estimations with their RMSE, suc-
cess rate, and convergence time.

The proposed localization system was compared with the integrated
IMU-DVL system and ground-truth system, each of which employs dif-
ferent information for localization corrections with the same system
model. The integrated IMU-DVL system uses DVL measurements, and
ground truth uses DVL measurements and the relative pose to markers
placed at the bottom of the test tank. Fig 4 shows the paths generated by
each localization system. Red lines indicate the paths generated by DVL-
IMU and the proposed localization system. The blue line represents the
path obtained using the ground truth system. The two squares represent
the mockup model, whose shape and layout were the same as those of the

Fig 4 Localization results of proposed localization system

Table 2. RMSE of two localization systems: The results are evaluated
for the entire path and a specific localization area within a distance
of 3 meters from the mock-up model, respectively

Entire path within 3 meters

Length (m) x (m) y (m) yaw (◦) x (m) y (m) yaw (◦)

IMU+DVL 52.28 0.41 0.32 4.22 0.38 0.4 3.71

Proposed 51.15 0.29 0.24 2.16 0.06 0.04 1.83

experimental setup. Meanwhile, the circle marker is the position where
pose estimation performed localization correction. Because acoustic and
optical images are subject to distortion for distant objects, most pose
estimation was performed near the mockup model. The pose estimation
for distant objects has slightly more errors, but it will provide useful
information for mid-range localization. Table 2 summarizes RMSE of
tow localization systems. This shows that a reliable localization system
for intervention robots has been achieved.

Conclusion: In this study, an underwater localization algorithm was
developed using an optic-acoustic stereo system for underwater inter-
vention robots. The feasibility and usability were verified using real data
obtained from a test tank. This study implemented global localization
for a single-shot acoustic image and expanded its usability with edge-
based tracking for high-precision localization near subsea structures. In
the experiment, the proposed localization system showed reliable accu-
racy for the intervention system to maneuver near offshore platforms and
perform autonomous intervention tasks without the need for external
beacons for positioning, significantly improving the overall efficiency
and reliability of underwater operations.
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