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Abstract

In this paper, we study the stabilization of a coupled wave system formed by one localized
non-regular fractional viscoelastic damping of Kelvin-Voigt type and localized non-smooth
coefficients. Our main aim is to prove that the C0-semigroup associated with this model is
strong stability and decays polynomially at a rate of t−1. By introducing a new system to
deal with fractional Kelvin-Voigt damping, we obtain a new equivalent augmented system, so
as to show the well-posedness of the system based on Lumer-Phillips theorem. We achieve
the strong stability for the C0-semigroup associated with this new model by using a general
criteria of Arendt-Batty, and then turn out a polynomial energy decay rate of order t−1 with
the help of a frequency domain approach.
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1 Introduction

Coupled systems have many applications in manipulation and modeling of structural engineering,

such as automotive, spacecraft, turbines, satellites and road traffic (see [18]). A lot of work

in coupled systems is to consider the stability of the system under different damping positions,

different damping types or different couplers. Due to the wide application of smart materials in

modern science and technology, there are more and more studies on viscoelastic damped elastic

systems (see [12, 24, 25, 35, 37]). Indeed, when smart materials are applied to elastic structures,

their damping coefficient, mass density and Young’s modulus will change accordingly. Viscoelastic

damping generally comes in two types. One is Kelvin-Voigt damping and the other is Botzmann

damping (see [28,29]). And the Kelvin-Voigt damping is often called internal damping because it

is caused by the internal friction of the vibrating structural material. In addition, there are many

studies on local and global damping, which we recommend to readers [11,13,22,23,30].

In recent years, the study of wave equations with different damping types has attracted exten-

sive attention. In [40], Tcheugoue Tebou proved some decay estimates for wave equations with a
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nonlinear damping term localized in a neighborhood of a suitable subset of the boundary. In [21],

Cavalcati and Martinez studied the existence and uniform decay rate of solutions of nonlinear

damped wave equations acting on the boundary. In [42], Zhang investigated the elastic wave

equation with local Kelvin-Voigt damping, and analyzed how the dissipation mechanism intro-

duced by local Kelvin-Voigt damping affects the long-term energy behavior of the system, then

demonstrated the exponential stability of the system when the coefficient function near the inter-

face is sufficiently smooth. Alabau et al. [8] investigated the coupled waves with partial frictional

damping, that is {
utt −∆u+ αv = 0, (x, t) ∈ Ω× R+,

vtt −∆v + αu+ βvt = 0, (x, t) ∈ Ω× R+,
(1.1)

which is subjected to Dirichlet boundary conditions. For system (1.1), the energy is not expo-

nentially stable, but decays at a polynomial rate of t−1/2. For optimality of the polynomial decay

rate of the system, Lobato et al. proved in [32]. Moreover, Oquendo and Pacheco [36] considered

a system consisting of two coupled waves in which the partial frictional damping in system (1.1)

is substituted by the partial Kelvin-Voigt damping, the system is described by
utt −∆u+ αv = 0, (x, t) ∈ Ω× R+,

vtt −∆v + αu− β∆vt = 0, (x, t) ∈ Ω× R+,

u = 0, v = 0, (x, t) ∈ ∂Ω× R+.

(1.2)

For system (1.2), although the Kelvin-Voigt damping is stronger than the frictional one, they

proved that it decays at a slower polynomial rate of t−1/4. They also demonstrated that the

decay rate is optimal.

For the coupled viscoelastic model, which is driven by an abundance of physical factors and

has been widely used in engineering and mechanics. It has received great attention in recent

years. Next we introduce the case where the viscoelastic wave equations is coupled by velocity

terms. In [26], Hassine and Souayeh investigated the behavior of coupled wave system with partial

Kelvin-Voigt damping. They mainly consider the following system:
utt − [ux + a(x)uxt]x + vt = 0, (x, t) ∈ (−1, 1)× R+,

vtt − cvxx − ut = 0, (x, t) ∈ (−1, 1)× R+,

u(1, t) = v(1, t) = 0, u(−1, t) = v(−1, t) = 0, t ∈ R+,

(u, ut, v, vt)(x, 0) = (u0, u1, v0, v1)(x), x ∈ (−1, 1),

(1.3)

where c > 0 and a ∈ L∞(−1, 1) is a non-negative function. They supposed that the damping

coefficient is a piece-wise function satisfies the form a = d.1[0,1] , where d is a strictly positive

constant. Thanks to the Kelvin-Voigt damping (a(x)uxt)x is singular, system (1.3) can be regarded

as a coupling of the transmitted wave equation with the conservative wave equation. And they

established that the system is lack of the exponential stability and polynomially stable with a

slower rate of type t−1/12. Moreover, Wehbe et al. in [41] investigated the stability of the Kelvin-

Voigt type locally coupled wave equations with only one internal viscoelastic damping through
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non-smooth coefficients. The system is described as
utt − (aux + b(x)uxt)x + c(x)yt = 0, (x, t) ∈ (0, L)× R+,

ytt − yxx − c(x)ut = 0, (x, t) ∈ (0, L)× R+,

u(0, t) = u(L, t) = y(0, t) = y(L, t) = 0, t ∈ R+,

(u, ut, v, vt)(x, 0) = (u0, u1, v0, v1)(x), x ∈ (0, L),

(1.4)

where

b(x) =

{
b0, x ∈ (α1, α3),

0, otherwise,
and c(x) =

{
c0, x ∈ (α2, α4),

0, otherwise,
(1.5)

and a > 0, b0 > 0 and c0 ∈ R∗, and they considered 0 < α1 < α2 < α3 < α4 < L. They

demonstrated the system is polynomial stability. In addition, Akil et al. in [2] investigated the

stability of coupled wave equations with non-smooth localized viscoelastic damping of Kelvin-

Voigt type and localized time delay and proved the polynomial stability of the system.

Over the past several years, another type of damping that has been widely used is fractional

damping. Fractional calculus has been successfully applied in a variety of fields and modified

many existing models of physical processes, such as heat conduction, wave propagation, diffu-

sion, viscoelasticity and electronics, see [15, 16, 39] and abundant references therein. Caputo and

Mainardi established the relationship between fractional derivative and theory of viscoelasticity

in [20]. Besides, the application of fractional computation in modeling can improve the capture of

complex dynamics of natural systems, and fractional-order control can achieve the performance

that could not be achieved in integer-order control. Readers can refer to [27, 33, 38] for further

application of fractional calculus.

Fractional calculus contains various expansions of the general definition of integral derivative

to real derivative, including Caputo derivative, Riemann-Liouville derivative and Riesz derivative,

etc. For the Caputo derivative, there are many applications in different equations. For example,

in [1] Achouri et al. considered the Euler-Bernoulli beam equation with a boundary damping of

fractional derivative type and studied the polynomial stability of the system using the semigroup

theory of linear operators. In [17], Benaissa and Benkhedda considered the wave equation with a

dynamic boundary control condition of fractional derivative type and demonstrated the energy of

the system is polynomially stable. In [3], Akil et al. investigated the stability results of hyperbolic

systems of wave-wave, wave-Euler-Bernoulli beam and beam-beam types. Two major non-smooth

local fractional Kelvin-Voigt damping models are coupled by boundary connections. And they

established different types of polynomial energy decay rate of these systems.

In our paper, we investigate the stabilization of a system of localized coupled wave equations,

which is based on system (1.4). The coupling is via non-smooth coefficients with only one localized
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non-regular fractional Kelvin-Voigt damping. The system is described by

utt − (aux + b(x)∂α,ηt ux)x + c(x)yt = 0, (x, t) ∈ (0, L)× R+,

ytt − yxx − c(x)ut = 0, (x, t) ∈ (0, L)× R+,

u(0, t) = u(L, t) = y(0, t) = y(L, t) = 0, t ∈ R+,

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ (0, L),

y(x, 0) = y0(x), yt(x, 0) = y1(x), x ∈ (0, L),

(1.6)

where

b(x) =

{
b0, x ∈ (0, β2),

0, x ∈ (β2, L),
and c(x) =

{
c0, x ∈ (β1, β3),

0, x ∈ (0, β1) ∪ (β3, L),
(1.7)

and a > 0, b0 > 0 and c0 ∈ R∗, and they considered 0 < β1 < β2 < β3 < L. The notation ∂α,ηt

stands for the generalized Caputo’s fractional derivative of order α ∈ (0, 1) is regard to the time

variable t and is defined as

[Dα,ηw] (t) = ∂α,ηt w(t) =
1

Γ(1− α)

∫ t

0
(t− s)−αe−η(t−s)dw

ds
(s)ds, η ≥ 0, (1.8)

where Γ is the usual Euler Gamma function. The fractional differentiation Dα,η is the inverse

operation of fractional integration defined by

[Iα,ηw] (t) =

∫ t

0

(t− s)α−1e−η(t−s)

Γ(α)
w(s)ds. (1.9)

From (1.8) and (1.9), we know that

[Dα,ηw] = I1−α,ηDw. (1.10)

The system consists of two coupled wave equations. The Kelvin-Voigt singular local viscoelas-

tic damping is applied to the first equation, and the lack of feedback on the second equation is

compensated by the coupling effects. Only one equation in this coupled system is damped, because

when coupled systems are involved some undamped equations, they are usually considered to be

indirectly damped. Such “indirect” stability problems are studied in [4, 5, 8] and further investi-

gated in [6, 7, 9]. These authors used different methods to investigate whether a single damping

term is sufficient to ensure that the energy of the entire system decays to zero at infinity, and

to confirm at what rate. In addition, some researchers also noted that in the indirectly damped

system of Kelvin-Voigt, the coupling terms would affect the stability of the system. In [10], the

author compared his proof results with [8] and showed that different forms of coupling terms

(velocity coupling and displacement coupling) lead to different stability of the system.

In this paper, we will further analyze whether the rate of decay is determined by the damping

term or the coupling terms in the case of piecewise damping and piecewise velocity couplings.

Through calculation, it is found that by changing the damping term of the system to the fractional

order, the same stability result as integer order damping is obtained, that is, the system decays

at t−1. This shows that the velocity coupling terms have a great influence on the stability of the
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system. Meanwhile, in the process of proof, we also find that the reason why the rate of decay of

the system can reach t−1 is indeed caused by the estimation of the coupling terms ut and yt.

The organization of this paper is as follows. In Section 2, in order to deal with the fractional

damping term, we reformulate system (1.6)-(1.7) into an equivalent augmented system. Based on

semigroup approach, we analyze the well-posedness of the system. In Section 3, we investigate the

strong stability of system (1.6)-(1.7) in the absence of the compactness of the resolvent through

a general criteria of Arendt and Batty. In Section 4, we establish a polynomial decay for solution

of type t−1, which based on a frequency domain approach combined with multiplier technique.

2 The augmented model and well-posedness

In this subsection, we analyze the well-posedness of system (1.6)-(1.7) by introducing a new

function to transform the system into an augmented model. For this purpose, we will introduce

the following claims, which will be used hereinafter.

Theorem 2.1 (see [34]) Let µ be the function defined by

µ(ξ) = |ξ|
2α−1

2 , ξ ∈ R, α ∈ (0, 1),

and η ≥ 0. Then the relation between the “input” V and the “output” O of the following system:

∂tw(x, ξ, t) + (ξ2 + η)w(x, ξ, t)− V (x, t)µ(ξ) = 0, (x, ξ, t) ∈ (0, L)× R× R+, (2.1)

w(x, ξ, 0) = 0, (x, ξ) ∈ (0, L)× R, (2.2)

O(x, t)− k(α)

∫
R
µ(ξ)w(x, ξ, t)dξ = 0, (x, t) ∈ (0, L)× R+, (2.3)

is given by

O(x, t) = I1−α,ηV (x, t), (2.4)

where k(α) = sin (απ)
π and I1−α,η is defined as (1.9).

For the above theorem, we take V (x, t) =
√
b(x)uxt(x, t). Based on (1.8) and (1.10), it is easy

to get

[Dα,ηw] = ∂α,ηt w = I1−α,ηDw.

Thus, according to Theorem 2.1, we can conclude that the output O is described by

O(x, t) =
√
b(x)I1−α,ηuxt(x, t) =

√
b(x)

Γ(1− α)

∫ t

0
(t− s)−αe−η(t−s)∂sux(x, s)ds =

√
b(x)∂α,ηt ux(x, t).

Therefore, substituting V (x, t) =
√
b(x)uxt(x, t) and O(x, t) =

√
b(x)∂α,ηt ux(x, t) into system

(2.1)-(2.3), we can derive

∂tw(x, ξ, t) + (ξ2 + η)w(x, ξ, t)−
√
b(x)uxt(x, t)|ξ|

2α−1
2 = 0, (x, ξ, t) ∈ (0, L)× R× R+,

w(x, ξ, 0) = 0, (x, ξ) ∈ (0, L)× R,√
b(x)∂α,ηt ux(x, t)− k(α)

∫
R
|ξ|

2α−1
2 w(x, ξ, t)dξ = 0, (x, t) ∈ (0, L)× R+.

(2.5)

5



Based on system (2.5), we derive system (1.6) into the augmented model

utt −
(
aux +

√
b(x)k(α)

∫
R
|ξ|

2α−1
2 w(x, ξ, t)dξ

)
x

+ c(x)yt = 0, (x, t) ∈ (0, L)× R+, (2.6)

ytt − yxx − c(x)ut = 0, (x, t) ∈ (0, L)× R+, (2.7)

wt(x, ξ, t) + (ξ2 + η)w(x, ξ, t)−
√
b(x)uxt(x, t)|ξ|

2α−1
2 = 0, (x, ξ, t) ∈ (0, L)× R× R+, (2.8)

with the boundary conditions

u(0, t) = u(L, t) = y(0, t) = y(L, t) = 0, t ∈ R+, (2.9)

and the initial conditions

u(x, 0) = u0(x), ut(x, 0) = u1(x), w(x, ξ, 0) = 0,

y(x, 0) = y0(x), yt(x, 0) = y1(x),
x ∈ (0, L), ξ ∈ R, (2.10)

where b(x) and c(x) are given by (1.7).

Now, let us start to define the Hilbert energy space

H =
{
(u, v, y, z, w) ∈ H1

0 (0, L)× L2(0, L)×H1
0 (0, L)× L2(0, L)×W

}
,

where W = L2((0, L)× R). The Hilbert space H is equipped with the inner product

⟨U,U1⟩H =

∫ L

0

(
vv1 + auxu1,x + zz1 + yxy1,x

)
dx+ k(α)

∫ L

0

∫
R
w(x, ξ)w1(x, ξ)dξdx, (2.11)

for all U = (u, v, y, z, w) and U1 = (u1, v1, y1, z1, w1) in H. Then the corresponding norm is

represented by

∥U∥2H =

∫ L

0

(
|v|2 + a|ux|2 + |z|2 + |yx|2

)
dx+ k(α)

∫ L

0

∫
R
|w(x, ξ)|2dξdx.

Moreover, the energy of system (2.6)-(2.10) is established by

E(t) =
1

2

∫ L

0

(
|ut|2 + a|ux|2 + |yt|2 + |yx|2

)
dx+

1

2
k(α)

∫ L

0

∫
R
|w(x, ξ, t)|2dξdx. (2.12)

Multiplying (2.6), (2.7) by ut, yt respectively, integrating by parts on (0, L), and multiplying

(2.8) by k(α)w, integrating on (0, L)× R, then taking the real part respectively, we obtain

d

dt
E(t) = −k(α)

∫ L

0

∫
R
(ξ2 + η)|w(x, ξ, t)|2dξdx. (2.13)

Since α ∈ (0, 1), it follows that k(α) > 0, then
d

dt
E(t) ≤ 0. Consequently, system (2.6)-(2.10) is

dissipative.

If U = (u, v, y, z, w) is a solution of system (2.6)-(2.10), we can transform the system into the

first-order equation {
Ut = AU,

U(0) = U0,
(2.14)
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where U0 = (u0, u1, y0, y1, 0) and the unbounded linear operator A is defined by

A


u
v
y
z
w

 =



v(
aux +

√
b(x)k(α)

∫
R
|ξ|

2α−1
2 w(x, ξ)dξ

)
x

− c(x)z

z
yxx + c(x)v

−(ξ2 + η)w(x, ξ) +
√
b(x)vx|ξ|

2α−1
2

 ,

where the domain of A is described by

D(A) :=
{
U = (u, v, y, z, w) ∈ H; y ∈ H2(0, L) ∩H1

0 (0, L), v, z ∈ H1
0 (0, L),(

aux +
√
b(x)k(α)

∫
R
|ξ|

2α−1
2 w(x, ξ)dξ

)
x

∈ L2(0, L), |ξ|w(x, ξ) ∈W,

−(ξ2 + η)w(x, ξ) +
√
b(x)vx|ξ|

2α−1
2 ∈W

}
. (2.15)

Lemma 2.1 (see [3]) Let α ∈ (0, 1), η ≥ 0, one has

I1(η, α) = k(α)

∫
R

|ξ|2α−1

1 + ξ2 + η
dξ, I2(η, α) =

∫
R

|ξ|2α−1

(1 + ξ2 + η)2
dξ

and I3(η, α) = k(α)

∫ +∞

0

|ξ|2α+1

(1 + ξ2 + η)2
dξ

are well defined.

Proposition 2.1 The unbounded linear operator A is m-dissipative in the Hilbert space H .

Proof. For all U = (u, v, y, z, w) ∈ D(A), it is easy to obtain

ℜ⟨AU,U⟩H = −k(α)
∫ L

0

∫
R
(ξ2 + η)|w(x, ξ)|2dξdx ≤ 0, (2.16)

which states that A is dissipative. We then prove that I −A maps D(A) onto H. Consequently,

let F = (f1, f2, f3, f4, f5) ∈ H, there exists U = (u, v, y, z, w) ∈ D(A) solution of

(I −A)U = F.

Equivalently, one has

u− v = f1, (2.17)

v −
(
aux +

√
b(x)k(α)

∫
R
|ξ|

2α−1
2 w(x, ξ)dξ

)
x

+ c(x)z = f2, (2.18)

y − z = f3, (2.19)

z − yxx − c(x)v = f4, (2.20)

(1 + ξ2 + η)w(x, ξ)−
√
b(x)vx|ξ|

2α−1
2 = f5(x, ξ). (2.21)
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By applying (2.17), (2.21) and the fact that η ≥ 0, we obtain

w(x, ξ) =
f5(x, ξ)

1 + ξ2 + η
+

√
b(x)ux|ξ|

2α−1
2

1 + ξ2 + η
−
√
b(x)f1,x|ξ|

2α−1
2

1 + ξ2 + η
. (2.22)

Substituting (2.22) into (2.18) and (2.17), (2.19) into (2.18), (2.20), that is

u−

(
aux + b(x)I1(η, α)ux − b(x)I1(η, α)f1,x +

√
b(x)k(α)

∫
R

|ξ|
2α−1

2 f5(x, ξ)

1 + ξ2 + η
dξ

)
x

+ c(x)y

= f1 + f2 + c(x)f3, (2.23)

y − yxx − c(x)u = f3 + f4 − c(x)f1, (2.24)

where I1(η, α) is well defined in Lemma 2.1, and with the boundary conditions

u(0) = u(L) = 0 and y(0) = y(L) = 0. (2.25)

Let (φ,ψ) ∈ H1
0 (0, L)×H1

0 (0, L), we then multiply (2.23) and (2.24) by φ and ψ respectively

and integrate by parts on (0, L) to obtain∫ L

0
uφdx+

∫ L

0
auxφxdx+

∫ L

0
c(x)yφdx+ I1(η, α)

∫ L

0
b(x)uxφxdx =

∫ L

0
(f1 + f2 + c(x)f3)φdx

+ I1(η, α)

∫ L

0
b(x)f1,xφxdx− k(α)

∫ L

0

√
b(x)φx

(∫
R

|ξ|
2α−1

2 f5(x, ξ)

1 + ξ2 + η
dξ

)
dx, (2.26)∫ L

0
yψdx+

∫ L

0
yxψxdx−

∫ L

0
c(x)uψdx =

∫ L

0
(f3 + f4 − c(x)f1)ψdx. (2.27)

Combining (2.26) and (2.27), we have

a((u, y), (φ,ψ)) = L(φ,ψ), ∀(φ,ψ) ∈ H1
0 (0, L)×H1

0 (0, L), (2.28)

where

a((u, y), (φ,ψ)) =

∫ L

0
uφdx+

∫ L

0
auxφxdx+

∫ L

0
c(x)yφdx+ I1(η, α)

∫ L

0
b(x)uxφxdx

+

∫ L

0
yψdx+

∫ L

0
yxψxdx−

∫ L

0
c(x)uψdx

and

L(φ,ψ) =

∫ L

0
(f1 + f2 + c(x)f3)φdx− k(α)

∫ L

0

√
b(x)φx

(∫
R

|ξ|
2α−1

2 f5(x, ξ)

1 + ξ2 + η
dξ

)
dx

+ I1(η, α)

∫ L

0
b(x)f1,xφxdx+

∫ L

0
(f3 + f4 − c(x)f1)ψdx.

Since I1(η, α) is well defined and the fact that I1(η, α) > 0, we can deduce that a is a sesquilinear,

continuous coercive form on (H1
0 (0, L)×H1

0 (0, L))
2. Furthermore, based on the definition of b(x)

and the Cauchy-Schwartz inequality, we derive∣∣∣∣∣
∫ L

0

√
b(x)φx

(∫
R

|ξ|
2α−1

2 f5(x, ξ)

1 + ξ2 + η
dξ

)
dx

∣∣∣∣∣ ≤√b0√I2(η, α)∥φx∥L2(0,β2)∥f5(x, ξ)∥W , (2.29)
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where I2(η, α) is well defined. Consequently, it is easy to check that L is an antilinear continuous

form on H1
0 (0, L)×H1

0 (0, L). Therefore, by applying Lax-Milgram theorem, we infer that for all

(φ,ψ) ∈ H1
0 (0, L)×H1

0 (0, L), problem (2.28) admits a unique solution (u, y) ∈ H1
0 (0, L)×H1

0 (0, L).

By using the classical elliptic regularity, it follows that y ∈ H2(0, L) ∩H1
0 (0, L) and(

aux +
√
b(x)k(α)

∫
R
|ξ|

2α−1
2 w(x, ξ)dξ

)
x

∈ L2(0, L).

From (2.17) and (2.19), it is clear to see that v, z ∈ H1
0 (0, L).

In order to demonstrate the existence of U in D(A), we need to show that w(x, ξ), |ξ|w(x, ξ)
in W . Applying (2.22), one has∫ L

0

∫
R
|w(x, ξ)|2dξdx ≤ C

∫ L

0

∫
R

|f5(x, ξ)|2

(1 + ξ2 + η)2
dξdx+ Cb0I2(η, α)

∫ β2

0
(|ux|2 + |f1,x|2)dx.

From Lemma 2.1 and the fact that (u, f1) ∈ H1
0 (0, L)×H1

0 (0, L), it follows that

I2(η, α)

∫ β2

0
(|ux|2 + |f1,x|2)dx < +∞.

Applying the fact that f5(x, ξ) ∈W , we obtain∫ L

0

∫
R

|f5(x, ξ)|2

(1 + ξ2 + η)2
dξdx ≤ 1

(1 + η)2

∫ L

0

∫
R
|f5(x, ξ)|2dξdx < +∞.

Hence, we can conclude that w(x, ξ) ∈W . Therefore, according to (2.22) one can attain∫ L

0

∫
R
|ξw(x, ξ)|2dξdx ≤ C

∫ L

0

∫
R

ξ2|f5(x, ξ)|2

(1 + ξ2 + η)2
dξdx+ Cb0I3(η, α)

∫ β2

0
(|ux|2 + |f1,x|2)dx.

In the same manner, we can deduce that

I3(η, α)

∫ β2

0
(|ux|2 + |f1,x|2)dx < +∞.

Since f5(x, ξ) ∈W and max
ξ∈R

ξ2

(1 + ξ2 + η)2
=

1

4(1 + η)
<

1

4
, it follows that

∫ L

0

∫
R

ξ2|f5(x, ξ)|2

(1 + ξ2 + η)2
dξdx ≤ max

ξ∈R

ξ2

(1 + ξ2 + η)2

∫ L

0

∫
R
|f5(x, ξ)|2dξdx

<
1

4

∫ L

0

∫
R
|f5(x, ξ)|2dξdx < +∞.

So we infer that |ξ|w(x, ξ) ∈W . Therefore, we have

−(ξ2 + η)w(x, ξ) +
√
b(x)vx|ξ|

2α−1
2 = w(x, ξ)− f5(x, ξ) ∈W.

Consequently, there exists U = (u, v, y, z, w) ∈ D(A) unique solution of (I−A)U = F . The proof

is completed. �
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From Proposition 2.1, we deduce that operator A is m-dissipative on the Hilbert space H.

Therefore, it is the infinitesimal generator of a C0-semigroup of contractions (etA)t≥0 based on

Lumer-Phillips theorem (see [31,34]). Hence, the solution of (2.14) can be denoted by

U(t) = etAU0, t ≥ 0,

which states the well-posedness of (2.14). Consequently, we can obtain the following assertion:

Theorem 2.2 Let U0 ∈ H, problem (2.14) exists a unique solution satisfies

U(t) ∈ C0(R+;H).

Moreover, if U0 ∈ D(A), problem (2.14) exists a unique solution satisfies

U(t) ∈ C1(R+;H) ∩ C0(R+;D(A)).

3 Strong stability

In this subsection, we will show the strong stability of the C0-semigroup (etA)t≥0. First of all, we

introduce the theorem of Arendt and Batty, which will be used hereinafter.

Theorem 3.1 (see [14]) Assume that A is the generator of a C0-semigroup of contractions

(etA)t≥0 on a Hilbert space H. If

1. A has no pure imaginary eigenvalues,

2. σ(A) ∩ iR is countable,

where σ(A) represents the spectrum of A, then the C0-semigroup (etA)t≥0 is strongly stable.

Based on the above theorem, the main result of this part is the following theorem:

Theorem 3.2 Suppose that η ≥ 0, then the C0-semigroup of contractions (etA)t≥0 is strongly

stable on the Hilbert space H, that is, for all U0 ∈ H, the solution of (2.14) satisfies

lim
t→+∞

∥etAU0∥H = 0.

According to Theorem 3.1, to complete the proof of Theorem 3.2, we need to prove that the

operator A has no pure imaginary eigenvalues and σ(A) ∩ iR is countable. For this purpose, we

give the subsequent lemmas.

Lemma 3.1 (see [3]) Let α ∈ (0, 1), η ≥ 0, λ ∈ R. For (η > 0 and λ ∈ R) or (η = 0 and

λ ∈ R∗), we obtain

I4(λ, η, α) = iλk(α)

∫
R

|ξ|2α−1

iλ+ ξ2 + η
dξ, I5(λ, η, α) = k(α)

∫
R

|ξ|2α−1

iλ+ ξ2 + η
dξ,

I6(x, λ, η, α) = k(α)

∫
R

|ξ|
2α−1

2 f5(x, ξ)

iλ+ ξ2 + η
dξ, I7(λ, η, α) = k(α)

∫
R

|ξ|2α−1

λ2 + (ξ2 + η)2
dξ,

I8(λ, η, α) = k(α)

∫
R

|ξ|2α−1(ξ2 + η)

λ2 + (ξ2 + η)2
dξ and I9(λ, η, α) =

∫
R

|ξ|2α+1

λ2 + (ξ2 + η)2
dξ

are well defined.
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Lemma 3.2 Suppose that η ≥ 0, then for all λ ∈ R, we get iλI −A is injective, that is,

ker(iλI −A) = {0}.

Proof. Let us assume that there exists λ ∈ R and U = (u, v, y, z, w) ∈ D(A) such that

AU = iλU.

Therefore, one has

v = iλu, (3.1)(
aux +

√
b(x)k(α)

∫
R
|ξ|

2α−1
2 w(x, ξ)dξ

)
x

− c(x)z = iλv, (3.2)

z = iλy, (3.3)

yxx + c(x)v = iλz, (3.4)

(iλ+ ξ2 + η)w(x, ξ) =
√
b(x)vx|ξ|

2α−1
2 , (3.5)

with the boundary conditions

u(0) = u(L) = y(0) = y(L) = 0. (3.6)

By a simple computation we can get

0 = ℜ⟨iλU, U⟩H = ℜ⟨AU,U⟩H = −k(α)
∫ L

0

∫
R
(ξ2 + η)|w(x, ξ)|2dξdx.

It follows that

w(x, ξ) = 0 a.e. in (0, L)× R. (3.7)

Bringing (3.7) into (3.5) and applying the definition of b(x), we infer that

vx = 0 in (0, β2). (3.8)

From (3.1), one gets

λux = 0 in (0, β2). (3.9)

Here are two cases.

Case 1. If λ = 0:

By using (3.1) and (3.3), it follows that

v = z = 0 in (0, L).

From (3.2), (3.4) and (3.7), we have

uxx = yxx = 0.

11



In view of the boundary conditions in (3.6) and the fact that (u, y) ∈ C1([0, L]), it is easy to

obtain that

u = y = 0.

Consequently, U = 0. Then we get

ker(iλI −A) = {0}.

Case 2. If λ ̸= 0:

By applying (3.9), one attains

ux = 0 in (0, β2). (3.10)

According to (3.2), (3.3), (3.7), (3.8), (3.10) and the definition of c(x), we deduce that

yx = 0 in (β1, β2). (3.11)

Inserting (3.1), (3.3) into (3.2), (3.4), then applying (3.7), we conclude that

λ2u+ auxx − iλc(x)y = 0 in (0, L), (3.12)

λ2y + yxx + iλc(x)u = 0 in (0, L). (3.13)

We then show that u = y = 0 in (0, L) based on the subsequent three steps.

Step 1. The purpose of the first step is to prove that u = y = 0 in (0, β2). From (3.10), we obtain

ux = 0 in (0, β1). (3.14)

Applying (3.14), (3.12) and the fact that c(x) = 0 in (0, β1), we deduce that

u = 0 in (0, β1). (3.15)

According to (3.10), (3.15) and u ∈ C1([0, L]), we derive

u = 0 in (β1, β2). (3.16)

Thus, we have

u = 0 in (0, β2). (3.17)

By applying (3.10) and c(x) = c0 in (β1, β2) in equation (3.12), one gets

u =
ic0
λ
y in (β1, β2). (3.18)

In view of c0 ∈ R∗, λ ∈ R∗ and (3.17), we infer that

u = y = 0 in (β1, β2). (3.19)
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Thanks to y ∈ C1([0, L]), we attain

y(β1) = yx(β1) = 0. (3.20)

From (3.13), (3.20) and the fact that c(x) = 0 in (0, β1), one has

y = 0 in (0, β1). (3.21)

Combining (3.17), (3.19) and (3.21), we get u = y = 0 in (0, β2). Hence, it follows that

U = 0, in (0, β2).

Step 2. The purpose of this step is to prove that u = y = 0 in (β2, β3). According to (3.19) and

(u, y) ∈ C1([0, L]), we deduce that

u(β2) = ux(β2) = y(β2) = yx(β2) = 0. (3.22)

Based on (3.12), (3.13) and c(x) = c0 in (β2, β3), it is easy to derive the expression

auxxxx + (a+ 1)λ2uxx + λ2(λ2 − c20)u = 0. (3.23)

Therefore, we can obtain the characteristic equation of system (3.23), that is

H(r) := ar4 + (a+ 1)λ2r2 + λ2(λ2 − c20).

Here we take m = r2, then

H0(m) := am2 + (a+ 1)λ2m+ λ2(λ2 − c20).

There are two different real roots m1 and m2 for the polynomial H0, described by

m1 =
−λ2(a+ 1)−

√
λ4(a− 1)2 + 4ac20λ

2

2a

and

m2 =
−λ2(a+ 1) +

√
λ4(a− 1)2 + 4ac20λ

2

2a
.

Obviously, m1 < 0 and the symbol for m2 depends on the value of λ relative to c0. For this, we

can divide it into three cases: λ2 > c20, λ
2 = c20 and λ2 < c20.

Case 1. If λ2 > c20, then m2 < 0. We set

r1 =
√
−m1, r2 =

√
−m2.

Therefore H has four simple roots ir1,−ir1, ir2 and −ir2, then the general solution of system

(3.12)-(3.13) has the form
u(x) = c1 sin(r1x) + c2 cos(r1x) + c3 sin(r2x) + c4 cos(r2x),

y(x) =
(λ2 − ar21)

iλc0
(c1 sin(r1x) + c2 cos(r1x)) +

(λ2 − ar22)

iλc0
(c3 sin(r2x) + c4 cos(r2x)),
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where cj ∈ C, for j = 1, 2, 3, 4. And the boundary condition (3.22) can be described by

M1


c1
c2
c3
c4

 = 0,

where

M1 =


sin(r1β2) cos(r1β2) sin(r2β2) cos(r2β2)
r1 cos(r1β2) −r1 sin(r1β2) r2 cos(r2β2) −r2 sin(r2β2)

(λ2−ar21)
iλc0

sin(r1β2)
(λ2−ar21)

iλc0
cos(r1β2)

(λ2−ar22)
iλc0

sin(r2β2)
(λ2−ar22)

iλc0
cos(r2β2)

(λ2−ar21)
iλc0

r1 cos(r1β2) − (λ2−ar21)
iλc0

r1 sin(r1β2)
(λ2−ar22)

iλc0
r2 cos(r2β2) − (λ2−ar22)

iλc0
r2 sin(r2β2)

 .
Let the determinant of M1 is denoted by det(M1), we obtain

det(M1) = −r1r2a
2(r21 − r22)

2

λ2c20
.

Owing to r21 − r22 = m2 −m1 ̸= 0, it follows that det(M1) ̸= 0. Hence, system (3.12)-(3.13) with

the boundary conditions (3.22) has only a trivial solution u = y = 0 in (β2, β3).

Case 2. If λ2 = c20, then m2 = 0. We set

r1 =
√
−m1 =

√
(a+ 1)c20

a
.

Therefore H has two simple roots ir1,−ir1 and 0 is a double root, then the general solution of

system (3.12)-(3.13) has the form
u(x) = c1 sin(r1x) + c2 cos(r1x) + c3x+ c4,

y(x) =
(λ2 − ar21)

iλc0
(c1 sin(r1x) + c2 cos(r1x)) +

λ

ic0
(c3x+ c4),

where cj ∈ C, for j = 1, 2, 3, 4. And the boundary condition (3.22) can be described by

M2


c1
c2
c3
c4

 = 0,

where

M2 =


sin(r1β2) cos(r1β2) β2 1
r1 cos(r1β2) −r1 sin(r1β2) 1 0

(λ2−ar21)
iλc0

sin(r1β2)
(λ2−ar21)

iλc0
cos(r1β2)

λβ2

ic0
λ
ic0

(λ2−ar21)
iλc0

r1 cos(r1β2) − (λ2−ar21)
iλc0

r1 sin(r1β2)
λ
ic0

0

 .
Similarly, we obtain

det(M2) = −a
2r51
λ2c20

.
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Thanks to r1 =
√
−m1 ̸= 0, it follows that det(M2) ̸= 0. Hence, system (3.12)-(3.13) with the

boundary conditions (3.22) has only a trivial solution u = y = 0 in (β2, β3).

Case 3. If λ2 < c20, then m2 > 0. We set

r1 =
√
−m1, r2 =

√
m2.

Therefore H has four simple roots ir1,−ir1, r2 and −r2, then the general solution of system

(3.12)-(3.13) has the form
u(x) = c1 sin(r1x) + c2 cos(r1x) + c3 cosh(r2x) + c4 sinh(r2x),

y(x) =
(λ2 − ar21)

iλc0
(c1 sin(r1x) + c2 cos(r1x)) +

(λ2 + ar22)

iλc0
(c3 cosh(r2x) + c4 sinh(r2x)),

where cj ∈ C, for j = 1, 2, 3, 4. And the boundary condition (3.22) can be described by

M3


c1
c2
c3
c4

 = 0,

where

M3 =


sin(r1β2) cos(r1β2) cosh(r2β2) sinh(r2β2)
r1 cos(r1β2) −r1 sin(r1β2) r2 sinh(r2β2) r2 cosh(r2β2)

(λ2−ar21)
iλc0

sin(r1β2)
(λ2−ar21)

iλc0
cos(r1β2)

(λ2+ar22)
iλc0

cosh(r2β2)
(λ2+ar22)

iλc0
sinh(r2β2)

(λ2−ar21)
iλc0

r1 cos(r1β2) − (λ2−ar21)
iλc0

r1 sin(r1β2)
(λ2+ar22)

iλc0
r2 sinh(r2β2)

(λ2+ar22)
iλc0

r2 cosh(r2β2)

 .
Similarly, we obtain

det(M3) =
r1r2a

2(r21 + r22)
2

λ2c20
.

Because r21 + r22 = m2 −m1 ̸= 0, it follows that det(M3) ̸= 0. Hence, system (3.12)-(3.13) with

the boundary conditions (3.22) has only a trivial solution u = y = 0 in (β2, β3). Therefore,

U = 0, in (β2, β3).

Step 3. The purpose of this step is to prove that u = y = 0 in (β3, L). According to (3.12), (3.13)

and the fact that c(x) = 0 in (β3, L), we further deduce{
λ2u+ auxx = 0 in (β3, L),

λ2y + yxx = 0 in (β3, L).
(3.24)

Owing to (u, y) ∈ C1([0, L]) and u = y = 0 in (β2, β3), we arrive at

u(β3) = ux(β3) = y(β3) = yx(β3) = 0. (3.25)

Obviously, it is clear to derive that system (3.24) with the boundary condition (3.25) has only a

trivial solution u = y = 0 in (β3, L).

Accordingly, we showed that U = 0 in (0, L). The proof of Lemma 3.2 is completed. �
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Lemma 3.3 Assume that (η > 0 and λ ∈ R), or (η = 0 and λ ∈ R∗), we get iλI−A is surjective,

that is

R(iλI −A) = H.

Proof. Set F = (f1, f2, f3, f4, f5) ∈ H, we need to show that there exists U = (u, v, y, z, w) ∈
D(A) such that solution of

(iλI −A)U = F. (3.26)

Therefore, we deduce that

iλu− v = f1, (3.27)

iλv −
(
aux +

√
b(x)k(α)

∫
R
|ξ|

2α−1
2 w(x, ξ)dξ

)
x

+ c(x)z = f2, (3.28)

iλy − z = f3, (3.29)

iλz − yxx − c(x)v = f4, (3.30)

(iλ+ ξ2 + η)w(x, ξ)−
√
b(x)vx|ξ|

2α−1
2 = f5(x, ξ). (3.31)

From (3.27), (3.31) and η ≥ 0, we obtain

w(x, ξ) =
f5(x, ξ)

iλ+ ξ2 + η
+

√
b(x)iλux|ξ|

2α−1
2

iλ+ ξ2 + η
−
√
b(x)f1,x|ξ|

2α−1
2

iλ+ ξ2 + η
. (3.32)

Inserting (3.27) and (3.29) into (3.28) and (3.30), then applying (3.32), we have

λ2u+ (aux + b(x)I4(λ, η, α)ux − h(x, λ, η, α))x − iλc(x)y = F1, (3.33)

λ2y + yxx + iλc(x)u = F2, (3.34)

where

F1 = −(f2 + iλf1 + c(x)f3), F2 = −(f4 + iλf3 − c(x)f1),

h(x, λ, η, α) = b(x)I5(λ, η, α)f1,x −
√
b(x)I6(x, λ, η, α),

and I4(λ, η, α), I5(λ, η, α) and I6(x, λ, η, α) are well defined in Lemma 3.1. In fact, we can divide

it into two different cases:

Case 1. If η > 0 and λ = 0. System (3.33)-(3.34) can be converted to the following form:

(aux − h(x, 0, η, α))x = −(f2 + c(x)f3), (3.35)

yxx = −(f4 − c(x)f1). (3.36)

Taking into consideration Lax-Milgram theorem and Lemma 3.1, it follows that system (3.35)-

(3.36) admits a unique solution (u, y) ∈ H1
0 (0, L)×H1

0 (0, L).

Case 2. If η ≥ 0 and λ ∈ R∗. System (3.33)-(3.34) can be converted to the following form:

λ2u+ (aux + b(x)I4(λ, η, α)ux)x − iλc(x)y = F3, (3.37)
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λ2y + yxx + iλc(x)u = F2, (3.38)

where

F3 = F1 + hx(x, λ, η, α).

Define the linear unbounded operator L : H := H1
0 (0, L)×H1

0 (0, L) 7→ H′ such that H′ is the dual

space of H. For all U ∈ H, it follows that

LU =

[
−(aux + b(x)I4(λ, η, α)ux)x + iλc(x)y

−yxx − iλc(x)u

]
.

By applying Lax-Milgram theorem, we can find that L is isomorphism. And system (3.37)-(3.38)

can be expressed by

(λ2L−1 − I)U = L−1F , (3.39)

where U = (u, y)T , F = (F3, F2)
T . Because I is a compact operator from H to H′ and the

operator L−1 is isomorphism, we can deduce that L−1 is compact operator from H to H. Based on

Fredholm’s alternative theorem, the existence of solution of system (3.39) is equivalent to proving

(λ2L−1 − I)U = 0 has only zero solution, i.e. ker(λ2L−1 − I) = {0}. If (û, ŷ) ∈ ker(λ2L−1 − I),

it follows that λ2(û, ŷ)− L(û, ŷ) = 0. Hence,

λ2û+ (aûx + b(x)I4(λ, η, α)ûx)x − iλc(x)ŷ = 0, (3.40)

λ2ŷ + ŷxx + iλc(x)û = 0, (3.41)

with the boundary conditions

û(0) = û(L) = ŷ(0) = ŷ(L) = 0. (3.42)

We multiply (3.40), (3.41) by û, ŷ respectively, integrate by parts on (0, L) and take the sum, then

based on the boundary conditions and take the imaginary part, one obtains

b0ℑ(I4(λ, η, α))
∫ β2

0
|ûx|2dx = 0.

Since I4(λ, η, α) = λ2I7(λ, η, α) + iλI8(λ, η, α), where I7(λ, η, α), I8(λ, η, α) are well defined in

Lemma 3.1, we conclude that ℑ(I4(λ, η, α)) = λI8(λ, η, α) ̸= 0. Consequently, we arrive at

ûx = 0 in (0, β2).

Therefore, system (3.40)-(3.42) converts

λ2û+ aûxx − iλc(x)ŷ = 0 in (0, L), (3.43)

λ2ŷ + ŷxx + iλc(x)û = 0 in (0, L), (3.44)

ûx = 0 in (0, β2). (3.45)

If (û, ŷ) is a solution of system (3.43)-(3.45), then Û = (û, iλû, ŷ, iλŷ, 0) ∈ D(A), moreover

iλÛ−AÛ = 0. Thus, Û ∈ ker(iλI−A). In view of Lemma 3.2, we deduce Û = 0. From Fredholm’s
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alternative theorem, we infer that system (3.39) has a unique solution (u, y) ∈ H1
0 (0, L)×H1

0 (0, L).

And by applying v = iλu− f1, z = iλy − f3 and F ∈ H, we arrive at v, z ∈ H1
0 (0, L), then based

on (3.32) and the classical regularity arguments, we get y ∈ H2(0, L) ∩H1
0 (0, L) and(

aux +
√
b(x)k(α)

∫
R
|ξ|

2α−1
2 w(x, ξ)dξ

)
x

∈ L2(0, L).

Similarly, we next demonstrate w(x, ξ), |ξ|w(x, ξ) in W . Applying (3.32), one has∫ L

0

∫
R
|w(x, ξ)|2dξdx ≤ C

∫ L

0

∫
R

|f5(x, ξ)|2

λ2 + (ξ2 + η)2
dξdx+ Cb0

I7(λ, η, α)

k(α)

∫ β2

0
(|λux|2 + |f1,x|2)dx.

Applying the fact that f5(x, ξ) ∈W and (η > 0 and λ ∈ R) or (η = 0 and λ ∈ R∗), we get∫ L

0

∫
R

|f5(x, ξ)|2

λ2 + (ξ2 + η)2
dξdx ≤ 1

λ2 + η2

∫ L

0

∫
R
|f5(x, ξ)|2dξdx < +∞.

From Lemma 3.1, we have w(x, ξ) ∈W . Moreover,∫ L

0

∫
R
|ξw(x, ξ)|2dξdx ≤ C

∫ L

0

∫
R

ξ2|f5(x, ξ)|2

λ2 + (ξ2 + η)2
dξdx+ Cb0I9(λ, η, α)

∫ β2

0
(|λux|2 + |f1,x|2)dx.

Since f5(x, ξ) ∈W and max
ξ∈R

ξ2

λ2 + (ξ2 + η)2
=

√
η2 + λ2

λ2 + (
√
η2 + λ2 + η)2

= C(λ, η), it follows that

∫ L

0

∫
R

ξ2|f5(x, ξ)|2

λ2 + (ξ2 + η)2
dξdx ≤ max

ξ∈R

ξ2

λ2 + (ξ2 + η)2

∫ L

0

∫
R
|f5(x, ξ)|2dξdx

= C(λ, η)

∫ L

0

∫
R
|f5(x, ξ)|2dξdx < +∞.

By using Lemma 3.1, we infer that |ξ|w(x, ξ) ∈W . Therefore, we have

−(ξ2 + η)w(x, ξ) +
√
b(x)vx|ξ|

2α−1
2 = iλw(x, ξ)− f5(x, ξ) ∈W.

Consequently, we find that (3.26) admits a unique solution U = (u, v, y, z, w) ∈ D(A). The proof

is completed. �
Proof of Theorem 3.2. Based on Lemma 3.2, we obtain that ker(iλI − A) = {0}, i.e. the

operator A has no pure imaginary eigenvalues. Then, by applying R(iλI − A) = H for all

λ ∈ R, η > 0 and λ ∈ R∗, η = 0 in Lemma 3.3 and the closed graph theorem of Banach, we

arrive at σ(A) ∩ iR = {∅} if η > 0 and σ(A) ∩ iR = {0} if η = 0. Accordingly, we complete the

proof Theorem 3.2 by using Theorem 3.1. �

4 Polynomial stability

In this subsection, we discuss the polynomial stability of the system (2.6)-(2.10) under the con-

dition η > 0. To achieve this aim, we rely on the multiplier technique and frequency domain

approach, as well as a recent result by Borichev and Tomilov (see [19]). We first give the following

theorems and lemmas, which will be used later.
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Theorem 4.1 (see [19]) Let (etA)t≥0 be a C0-semigroup on a Hilbert space H with generator A
such that iR ⊂ ρ(A). Then for any ℓ > 0, t > 0, U0 ∈ D(A) and for some C > 0, we have

sup
λ∈R

∥(iλI −A)−1∥L(H) = O(|λ|ℓ) ⇐⇒ ∥etAU0∥2H ≤ C

t
2
ℓ

∥U0∥2D(A).

Therefore, our main result in this part is as follows.

Theorem 4.2 Suppose that η > 0, the C0-semigroup (etA)t≥0 is polynomial stability, that is,

there exists C > 0 independent of U0 ∈ D(A), such that

E(t) ≤ C

t
∥U0∥2D(A), ∀ t > 0. (4.1)

From Theorem 4.1, we take ℓ = 2, the polynomial energy decay (4.1) holds if

iR ⊂ ρ(A) (H1)

and

sup
λ∈R

∥(iλI −A)−1∥L(H) = O(|λ|2) (H2)

are satisfied. Condition (H1) is already showed in Lemma 3.2. Then we will show that condition

(H2) holds by contradiction. For this, we assume (H2) is false, then there exists a real sequence

(λn) with |λn| → +∞, and a sequence (Un) ⊂ D(A) with

∥Un∥H = ∥(un, vn, yn, zn, wn)∥H = 1, (4.2)

such that

λ2n(iλnI −A)Un = Fn := (f1,n, f2,n, f3,n, f4,n, f5,n(·, ξ)) → 0 in H. (4.3)

Here we will find a contradiction with (4.2) such as ∥Un∥H = o(1). For simplicity of calculation,

we omit the index n. Then, equation (4.3) in terms of its components are described by

iλu− v =
f1
λℓ
, f1 → 0 in H1

0 (0, L), (4.4)

iλv − (Sb)x + c(x)z =
f2
λℓ
, f2 → 0 in L2(0, L), (4.5)

iλy − z =
f3
λℓ
, f3 → 0 in H1

0 (0, L), (4.6)

iλz − yxx − c(x)v =
f4
λℓ
, f4 → 0 in L2(0, L), (4.7)

(iλ+ ξ2 + η)w(x, ξ)−
√
b(x)vx|ξ|

2α−1
2 =

f5(x, ξ)

λℓ
, f5(x, ξ) → 0 in W, (4.8)

where

Sb =

Sb0 := aux +
√
b0k(α)

∫
R
|ξ|

2α−1
2 w(x, ξ)dξ, x ∈ (0, β2),

aux, x ∈ (β2, L).
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Lemma 4.1 (see [3]) Let α ∈ (0, 1), η ≥ 0 and λ ∈ R, we obtain

I10(λ, η, α) =

∫
R

|ξ|α+
1
2

(|λ|+ ξ2 + η)2
dξ = c1(|λ|+ η)

α
2
− 5

4 ,

I11(λ, η) =

(∫
R

1

(|λ|+ ξ2 + η)2
dξ

) 1
2

=

√
π

2

1

(|λ|+ η)
3
4

,

I12(λ, η) =

(∫
R

ξ2

(|λ|+ ξ2 + η)4
dξ

) 1
2

=

√
π

4

1

(|λ|+ η)
5
4

,

where c1 > 0 is a positive constant.

Lemma 4.2 Let α ∈ (0, 1), η > 0. Then the solution (u, v, y, z, w) ∈ D(A) of system (4.4)-(4.8)

satisfies ∫ L

0

∫
R
(ξ2 + η)|w(x, ξ)|2dξdx =

o(1)

λℓ
, (4.9)∫ β2

0
|vx|2dx =

o(1)

λℓ+α−1
, (4.10)∫ β2

0
|ux|2dx =

o(1)

λℓ+α+1
. (4.11)

Proof. Taking the inner product of (4.3) with U in H, then applying (4.2) and the fact that U

is uniformly bounded in H, we arrive at

k(α)

∫ L

0

∫
R
(ξ2 + η)|w(x, ξ)|2dξdx = −ℜ⟨AU,U⟩H = ℜ⟨(iλI −A)U,U⟩H = o(λ−ℓ).

Moreover, based on (4.8), we find√
b(x)|ξ|

2α−1
2 |vx| =

∣∣∣∣(iλ+ ξ2 + η)w(x, ξ)− f5(x, ξ)

λℓ

∣∣∣∣
≤ (|λ|+ ξ2 + η)|w(x, ξ)|+ |λ|−ℓ|f5(x, ξ)|.

We multiply the above expression by
|ξ|

(|λ|+ ξ2 + η)2
and integrate on R, one obtains

√
b(x)I10(λ, η, α)|vx| ≤I11(λ, η)

(∫
R
|ξw(x, ξ)|2dξ

) 1
2

+ |λ|−ℓI12(λ, η)

(∫
R
|f5(x, ξ)|2dξ

) 1
2

,

(4.12)

where I10(λ, η, α), I11(λ, η) and I12(λ, η) are well defined in Lemma 4.1. Integrating (4.12) on

(0, L) and according to the definition of b(x) and the Young inequality, we attain∫ β2

0
|vx|2dx ≤ CI211(λ, η)

b0I210(λ, η, α)

∫ L

0

∫
R
|ξw(x, ξ)|2dξdx+

CI212(λ, η)

b0I210(λ, η, α)
|λ|−2ℓ

∫ L

0

∫
R
|f5(x, ξ)|2dξdx.

Thanks to (4.9) and ∥f5∥W = o(1), we derive∫ β2

0
|vx|2dx ≤ C

I211(λ, η)

I210(λ, η, α)

o(1)

|λ|ℓ
+ C

I212(λ, η)

I210(λ, η, α)

o(1)

|λ|2ℓ
.
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From Lemma 4.1, we can infer that∫ β2

0
|vx|2dx ≤ C

(|λ|+ η)α−1

o(1)

|λ|ℓ
+

C

(|λ|+ η)α
o(1)

|λ|2ℓ
. (4.13)

Since α ∈ (0, 1), it follows that min{ℓ+α−1, 2ℓ+α} = ℓ+α−1, then we get (4.10). Furthermore,

based on (4.4), one sees that

iλux = vx + |λ|−ℓf1,x.

We further deduce

∥λux∥L2(0,β2) ≤ ∥vx∥L2(0,β2) + |λ|−ℓ∥f1,x∥L2(0,β2) ≤
o(1)

|λ|
ℓ+α−1

2

+
o(1)

|λ|ℓ
.

Since α ∈ (0, 1), it follows that min

{
ℓ+ α+ 1

2
, 1 + ℓ

}
=
ℓ+ α+ 1

2
. Consequently, the proof of

Lemma 4.2 is completed. �

Lemma 4.3 Let α ∈ (0, 1), η > 0. Then the solution (u, v, y, z, w) ∈ D(A) of system (4.4)-(4.8)

satisfies ∫ β2

0
|Sb0 |

2 dx =
o(1)

λℓ
. (4.14)

Proof. Based on the inequality |a+ b|2 ≤ 2a2 + 2b2, we have∫ β2

0
|Sb0 |

2 dx =

∫ β2

0

∣∣∣∣aux +√b0k(α)∫
R
|ξ|

2α−1
2 w(x, ξ)dξ

∣∣∣∣2 dx
≤ 2a2

∫ β2

0
|ux|2dx+ 2b0k

2(α)

∫ β2

0

∫
R

|ξ|
2α−1

2

√
ξ2 + η√

ξ2 + η
w(x, ξ)dξ

2

dx

≤ 2a2
∫ β2

0
|ux|2dx+M1

∫ β2

0

∫
R
(ξ2 + η)|w(x, ξ)|2dξdx,

where M1 = 2b0k
2(α)I13(α, η) and I13(α, η) =

∫
R

|ξ|2α−1

ξ2 + η
dξ. For I13(α, η), it follows that

|ξ|2α−1

ξ2 + η
∼
0

|ξ|2α−1

η
and

|ξ|2α−1

ξ2 + η
∼
+∞

1

|ξ|3−2α
.

By using the fact that α ∈ (0, 1) and η > 0, we get I13(α, η) is well defined. According to Lemma

4.2, we derive ∫ β2

0
|Sb0 |

2 dx ≤ C
o(1)

λℓ+α+1
+ C

o(1)

λℓ
.

It is easy to obtain the desired result. �

Lemma 4.4 Set 0 < ε < min

{
β1
2
,
β2 − β1

4

}
. Then the solution (u, v, y, z, w) ∈ D(A) of system

(4.4)-(4.8) satisfies ∫ β2−ε

ε
|v|2 dx = o(1). (4.15)
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Proof. We take a cut-off function ρ1(x) ∈ C1([0, L]) such that

ρ1(x) =


1 if x ∈ [ε, β2 − ε],

0 if x ∈ {0} ∪ [β2, L],

0 ≤ρ1 ≤ 1 otherwise,

and max
x∈[0,L]

∣∣ρ′1(x)∣∣ =Mρ′1
,

where Mρ′1
is strictly positive constant. Multiplying (4.5) by

1

λ
ρ1v, integrating by parts on (0, L)

and taking the imaginary part, we deduce∫ L

0
ρ1|v|2dx =−ℑ

{
1

λ

∫ L

0
Sb(ρ

′
1v + ρ1vx)dx

}
−ℑ

{
1

λ

∫ L

0
c(x)zρ1vdx

}
+ ℑ

{
1

λℓ+1

∫ L

0
ρ1f2vdx

}
. (4.16)

To facilitate subsequent calculations, we first give the following estimates by using Lemma 4.2,

Lemma 4.3, the Cauchy-Schwarz inequality, the definition of c(x), Sb and ρ1, ∥f2∥L2(0,L) = o(1)

and v, z are uniformly bounded in L2(0, L), we arrive at∣∣∣∣ℑ{ 1

λ

∫ L

0
Sb(ρ

′
1v + ρ1vx)dx

}∣∣∣∣ = ∣∣∣∣ℑ{ 1

λ

∫ β2

0
Sb0(ρ

′
1v + ρ1vx)dx

}∣∣∣∣ = o(1)

|λ|
ℓ
2
+1
, (4.17)

∣∣∣∣ℑ{ 1

λ

∫ L

0
c(x)zρ1vdx

}∣∣∣∣ = ∣∣∣∣ℑ{c0λ
∫ β2

β1

zρ1vdx

}∣∣∣∣ = O(1)

|λ|
= o(1), (4.18)

∣∣∣∣ℑ{ 1

λℓ+1

∫ L

0
ρ1f2vdx

}∣∣∣∣ = o(1)

|λ|ℓ+1
. (4.19)

Substituting (4.17), (4.18) and (4.19) into (4.16), we can see that∫ L

0
ρ1|v|2dx = o(1).

Consequently, we derive the expression of (4.15) by using the definition of ρ1. �

Lemma 4.5 Set 0 < ε < min

{
β1
2
,
β2 − β1

4

}
. Then the solution (u, v, y, z, w) ∈ D(A) of system

(4.4)-(4.8) satisfies ∫ β2−2ε

β1

|z|2dx = o(1) and

∫ β2−3ε

β1+ε
|yx|2dx = o(1). (4.20)

Proof. We take a cut-off function ρ2(x) ∈ C1([0, L]) such that

ρ2(x) =


0 if x ∈ [0, ε] ∪ [β2 − ε, L],

1 if x ∈ [2ε, β2 − 2ε],

0 ≤ρ2 ≤ 1 otherwise,

and max
x∈[0,L]

∣∣ρ′2(x)∣∣ =Mρ′2
,
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where Mρ′2
is strictly positive constant. Multiplying (4.5) and (4.7) by ρ2z and ρ2v respectively,

integrating on (0, L) and taking the real part, then taking the sum and using integration by parts,

we deduce∫ L

0
c(x)ρ2|z|2dx =

∫ L

0
c(x)ρ2|v|2dx−ℜ

{∫ L

0
(ρ′2z + ρ2zx)Sbdx

}
−ℜ

{∫ L

0
(ρ′2v + ρ2vx)yxdx

}
+ ℜ

{
1

λℓ

∫ L

0
ρ2(f2z + f4v)dx

}
. (4.21)

In view of (4.6), we derive

zx = −iλyx − λ−ℓf3,x. (4.22)

Based on (4.22), Lemma 4.2-4.4, the Cauchy-Schwarz inequality, the definition of Sb and ρ2,

∥f3,x∥L2(0,L) = o(1) and yx, z are uniformly bounded in L2(0, L), we arrive at∣∣∣∣ℜ{∫ L

0
(ρ′2v + ρ2vx)yxdx

}∣∣∣∣ = ∣∣∣∣ℜ{∫ β2−ε

ε
(ρ′2v + ρ2vx)yxdx

}∣∣∣∣ = o(1), (4.23)

∣∣∣∣ℜ{∫ L

0
(ρ′2z + ρ2zx)Sbdx

}∣∣∣∣ = ∣∣∣∣ℜ{∫ β2−ε

ε

[
ρ′2z + ρ2(−iλyx − λ−ℓf3,x)

]
Sb0dx

}∣∣∣∣ = o(1)

|λ|
ℓ
2
−1
.

(4.24)

From the fact that ∥f2∥L2(0,L) = o(1), ∥f4∥L2(0,L) = o(1), ℓ = 2 and v, z are uniformly bounded in

L2(0, L), then substituting (4.23) and (4.24) into (4.21), it is easy to check that∫ L

0
c(x)ρ2|z|2dx =

∫ L

0
c(x)ρ2|v|2dx+ o(1).

In view of Lemma 4.4 and the definition of c(x) and ρ2, we get∫ β2−2ε

β1

|z|2dx = o(1). (4.25)

We then take a cut-off function ρ3(x) ∈ C1([0, L]) such that

ρ3(x) =


0 if x ∈ [0, β1] ∪ [β2 − 2ε, L],

1 if x ∈ [β1 + ε, β2 − 3ε],

0 ≤ρ3 ≤ 1 otherwise.

Multiplying (4.7) by− 1

λ
ρ3z, integrating by parts on (0, L), taking the imaginary part and applying

(4.22), we deduce∫ L

0
ρ3|yx|2dx =

∫ L

0
ρ3|z|2dx+ ℑ

{
1

λ

∫ L

0
ρ′3yxzdx

}
−ℑ

{
1

λ

∫ L

0
c(x)vρ3zdx

}
−ℑ

{
1

λℓ+1

∫ L

0
ρ3(f3,xyx + f4z)dx

}
. (4.26)
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Thanks to (4.25) and yx, v are uniformly bounded in L2(0, L), as well as the definition of c(x)

and ρ3, we infer

ℑ
{
1

λ

∫ L

0
ρ′3yxzdx

}
= ℑ

{
1

λ

∫ β2−2ε

β1

ρ′3yxzdx

}
=
o(1)

|λ|
, (4.27)

ℑ
{
1

λ

∫ L

0
c(x)vρ3zdx

}
= ℑ

{
c0
λ

∫ β2−2ε

β1

vρ3zdx

}
=
o(1)

|λ|
. (4.28)

From the fact that ∥f3,x∥L2(0,L) = o(1), ∥f4∥L2(0,L) = o(1) and yx, z are uniformly bounded in

L2(0, L), then substituting (4.27) and (4.28) into (4.26), it is easy to check that∫ L

0
ρ3|yx|2dx =

∫ L

0
ρ3|z|2dx+

o(1)

|λ|
.

Based on (4.25) and the definition of ρ3, we obtain∫ β2−3ε

β1+ε
|yx|2dx = o(1). (4.29)

From (4.25) and (4.29), we complete the proof of Lemma 4.5. �

Lemma 4.6 Set 0 < ε < min

{
β1
2
,
β2 − β1

4

}
. Then the solution (u, v, y, z, w) ∈ D(A) of system

(4.4)-(4.8) satisfies

|v(β2 − 3ε)|2 + |v(β3)|2 +
1

a
|Sb(β2 − 3ε)|2 + 1

a
|Sb(β3)|2 = O(1), (4.30)

|z(β2 − 3ε)|2 + |z(β3)|2 + |yx(β2 − 3ε)|2 + |yx(β3)|2 = O(1). (4.31)

Proof. We first take p ∈ C1([β2 − 3ε, β3]) such that

p(β2 − 3ε) = −p(β3) = 1

and

max
x∈[β2−3ε,β3]

|p(x)| =Mp, max
x∈[β2−3ε,β3]

∣∣p′(x)∣∣ =Mp′ .

According to (4.4), it is easy to get

iλux − vx =
f1,x
λℓ

. (4.32)

Then, multiplying (4.32) and (4.5) by 2pv and 2a−1pSb respectively, integrating by parts on

(β2 − 3ε, β3), then taking the real part and applying the definition of Sb and c(x), we infer that

ℜ
{
2iλ

∫ β3

β2−3ε
puxvdx

}
+

∫ β3

β2−3ε
p′|v|2dx−

[
p|v|2

]β3

β2−3ε
= ℜ

{
2

λℓ

∫ β3

β2−3ε
pf1,xvdx

}
(4.33)

and

ℜ
{
2iλ

∫ β3

β2−3ε
pvuxdx

}
+ ℜ

{
2iλ

a

∫ β2

β2−3ε
pv

(√
b0k(α)

∫
R
|ξ|

2α−1
2 w(x, ξ)dξ

)
dx

}
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+
1

a

∫ β2

β2−3ε
p′|Sb0 |2dx+ a

∫ β3

β2

p′|ux|2dx−
[
1

a
p|Sb|2

]β3

β2−3ε

+ ℜ
{
2c0
a

∫ β2

β2−3ε
pzSb0dx

}
+ ℜ

{
2c0

∫ β3

β2

pzuxdx

}
= ℜ

{
2

aλℓ

∫ β2

β2−3ε
pf2Sb0dx

}
+ ℜ

{
2

λℓ

∫ β3

β2

pf2uxdx

}
. (4.34)

Combining (4.33) and (4.34), then applying the definition of p, we arrive at

|v(β2 − 3ε)|2 + |v(β3)|2 +
1

a
|Sb(β2 − 3ε)|2 + 1

a
|Sb(β3)|2

=−
∫ β3

β2−3ε
p′|v|2dx− 1

a

∫ β2

β2−3ε
p′|Sb0 |2dx− a

∫ β3

β2

p′|ux|2dx−ℜ
{
2c0
a

∫ β2

β2−3ε
pzSb0dx

}
−ℜ

{
2iλ

a

∫ β2

β2−3ε
pv

(√
b0k(α)

∫
R
|ξ|

2α−1
2 w(x, ξ)dξ

)
dx

}
−ℜ

{
2c0

∫ β3

β2

pzuxdx

}
+ ℜ

{
2

aλℓ

∫ β2

β2−3ε
pf2Sb0dx

}
+ ℜ

{
2

λℓ

∫ β3

β2

pf2uxdx

}
+ ℜ

{
2

λℓ

∫ β3

β2−3ε
pf1,xvdx

}
.

Based on Lemma 4.3, the Cauchy-Schwarz inequality and v, z, ux are uniformly bounded in

L2(0, L), as well as the fact that ℓ = 2, ∥f2∥L2(0,L) = o(1), ∥f1,x∥L2(0,L) = o(1), we can conclude

that

|v(β2 − 3ε)|2 + |v(β3)|2 +
1

a
|Sb(β2 − 3ε)|2 + 1

a
|Sb(β3)|2 = O(1).

Similarly, it follows from (4.6), one has

iλyx − zx =
f3,x
λℓ

. (4.35)

Similarly, we multiply (4.35) and (4.7) by 2pz and 2pyx respectively, integrate by parts on (β2 −
3ε, β3) and take the real part, then take the sum and apply the definition of p and c(x), we can

derive

|z(β2 − 3ε)|2 + |z(β3)|2 + |yx(β2 − 3ε)|2 + |yx(β3)|2

=−
∫ β3

β2−3ε
p′(|z|2 + |yx|2)dx+ ℜ

{
2c0

∫ β3

β2−3ε
pvyxdx

}
+ ℜ

{
2

λℓ

∫ β3

β2−3ε
p(f4yx + f3,xzdx

}
.

Thanks to v, z, yx are uniformly bounded in L2(0, L), the Cauchy-Schwarz inequality and the fact

that ℓ = 2, ∥f4∥L2(0,L) = o(1), ∥f3,x∥L2(0,L) = o(1), we can conclude that

|z(β2 − 3ε)|2 + |z(β3)|2 + |yx(β2 − 3ε)|2 + |yx(β3)|2 = O(1).

Consequently, we complete the proof of Lemma 4.6. �

Lemma 4.7 Set h ∈ C1([0, L]), then the solution (u, v, y, z, w) ∈ D(A) of system (4.4)-(4.8)

satisfies∫ L

0
h′
(
a−1|Sb|2 + |v|2 + |z|2 + |yx|2

)
dx−

[
h(a−1|Sb|2 + |yx|2)

]L
0
−ℜ

{
2

∫ L

0
c(x)hvyxdx

}
+ ℜ

{
2

a

∫ L

0
c(x)hzSbdx

}
+ ℜ

{
2iλ

a

∫ β2

0
hv
√
b0k(α)

∫
R
|ξ|

2α−1
2 w(x, ξ)dξdx

}
=ℜ

{
2

λℓ

∫ L

0
h
(
f1,xv + f3,xz + f4yx

)
dx

}
+ ℜ

{
2

aλℓ

∫ L

0
hf2Sbdx

}
. (4.36)
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Proof. Multiplying (4.5) and (4.7) by 2a−1hSb and 2hyx respectively, integrating in the interval

(0, L) and taking the real part, we infer that

ℜ
{
2iλ

a

∫ L

0
hvSbdx

}
− 1

a

∫ L

0
h
(
|Sb|2

)
x
dx+ ℜ

{
2

a

∫ L

0
c(x)hzSbdx

}
= ℜ

{
2

aλℓ

∫ L

0
hf2Sbdx

}
(4.37)

and

ℜ
{
2iλ

∫ L

0
hzyxdx

}
−
∫ L

0
h
(
|yx|2

)
x
dx−ℜ

{
2

∫ L

0
c(x)hvyxdx

}
= ℜ

{
2

λℓ

∫ L

0
hf4yxdx

}
.

(4.38)

Based on (4.4) and (4.6), it is easy to check that

iλux = −vx − λ−ℓf1,x, (4.39)

iλyx = −zx − λ−ℓf3,x. (4.40)

From the definition of Sb and (4.39), we arrive at

iλSb =

 − a(vx + λ−ℓf1,x) + iλ
√
b0k(α)

∫
R
|ξ|

2α−1
2 w(x, ξ)dξ, x ∈ (0, β2),

− a(vx + λ−ℓf1,x), x ∈ (β2, L).

(4.41)

Accordingly, substituting (4.40) and (4.41) into (4.38) and (4.37) respectively, then using integra-

tion by parts, we derive∫ L

0
h′
(
a−1|Sb|2 + |v|2

)
dx−

[
ha−1|Sb|2

]L
0
+ ℜ

{
2iλ

a

∫ β2

0
hv
√
b0k(α)

∫
R
|ξ|

2α−1
2 w(x, ξ)dξdx

}
+ ℜ

{
2

a

∫ L

0
c(x)hzSbdx

}
= ℜ

{
2

λℓ

∫ L

0
hf1,xvdx

}
+ ℜ

{
2

aλℓ

∫ L

0
hf2Sbdx

}
(4.42)

and ∫ L

0
h′
(
|z|2 + |yx|2

)
dx−

[
h|yx|2)

]L
0
−ℜ

{
2

∫ L

0
c(x)hvyxdx

}
=ℜ

{
2

λℓ

∫ L

0
hf4yxdx

}
+ ℜ

{
2

λℓ

∫ L

0
hf3,xzdx

}
. (4.43)

Consequently, combining (4.42) and (4.43), we get the desired result (4.36). The proof of Lemma

4.7 is complete. �
For further proof, we set 0 < ε < min

{
β1
2
,
β2 − β1

4

}
, and take the cut-off function ρ4(x), ρ5(x) ∈

C1([0, L]) such that

ρ4(x) =


1 if x ∈ [0, β1 + ε],

0 if x ∈ [β2 − 3ε, L],

0 ≤ρ4 ≤ 1 otherwise,

and ρ5(x) =


0 if x ∈ [0, β1 + ε],

1 if x ∈ [β2 − 3ε, L],

0 ≤ρ5 ≤ 1 otherwise.
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Lemma 4.8 Set 0 < ε < min

{
β1
2
,
β2 − β1

4

}
. Then the solution (u, v, y, z, w) ∈ D(A) of system

(4.4)-(4.8) satisfies∫ β1+ε

0
|v|2dx+

∫ β1+ε

0
|yx|2dx+

∫ β1+ε

0
|z|2dx = o(1), (4.44)

a

∫ L

β2

|ux|2dx+

∫ L

β2−3ε
|v|2dx+

∫ L

β2−3ε
|yx|2dx+

∫ L

β2−3ε
|z|2dx = o(1). (4.45)

Proof. In view of Lemma 4.7, here we take h = xρ4. Therefore, form the definition of ρ4 and Sb,

it follows that∫ β1+ε

0
|v|2dx+

∫ β1+ε

0
|yx|2dx+

∫ β1+ε

0
|z|2dx

=− 1

a

∫ β1+ε

0
|Sb0 |2dx−

∫ β2−3ε

β1+ε
(ρ4 + xρ′4)

(
a−1|Sb0 |2 + |v|2 + |z|2 + |yx|2

)
dx

+ ℜ
{
2

∫ L

0
c(x)xρ4vyxdx

}
−ℜ

{
2

a

∫ L

0
c(x)xρ4zSbdx

}
−ℜ

{
2iλ

a

∫ β2

0
xρ4v

√
b0k(α)

∫
R
|ξ|

2α−1
2 w(x, ξ)dξdx

}
+ ℜ

{
2

λℓ

∫ L

0
xρ4

(
f1,xv + f3,xz + f4yx

)
dx

}
+ ℜ

{
2

aλℓ

∫ L

0
xρ4f2Sbdx

}
. (4.46)

Owing to Lemma 4.3-4.5 and the definition of ρ4, we arrive at

−1

a

∫ β1+ε

0
|Sb0 |2dx−

∫ β2−3ε

β1+ε
(ρ4 + xρ′4)

(
a−1|Sb0 |2 + |v|2 + |z|2 + |yx|2

)
dx = o(1). (4.47)

Based on the definition of ρ4, the Cauchy-Schwarz inequality and v, z, yx are uniformly bounded

in L2(0, L), as well as ∥f1,x∥L2(0,L) = o(1), ∥f4∥L2(0,L) = o(1), ∥f3,x∥L2(0,L) = o(1), we get

ℜ
{

2

λℓ

∫ L

0
xρ4

(
f1,xv + f3,xz + f4yx

)
dx

}
=
o(1)

λℓ
. (4.48)

Similarly, from Lemma 4.2-4.5, the definition of ρ4, c(x) and Sb, the Cauchy-Schwarz inequality,

∥f2∥L2(0,L) = o(1) and the fact that v and yx are uniformly bounded in L2(0, L), we refer that∣∣∣∣ℜ{2∫ L

0
c(x)xρ4vyxdx

}∣∣∣∣ = ∣∣∣∣ℜ{2c0 ∫ β2−3ε

β1

xρ4vyxdx

}∣∣∣∣ = o(1), (4.49)

∣∣∣∣ℜ{2

a

∫ L

0
c(x)xρ4zSbdx

}∣∣∣∣ = ∣∣∣∣ℜ{2c0
a

∫ β2−3ε

β1

xρ4zSb0dx

}∣∣∣∣ = o(1)

|λ|
ℓ
2

, (4.50)

∣∣∣∣ℜ{2iλ

a

∫ β2

0
xρ4v

√
b0k(α)

∫
R
|ξ|

2α−1
2 w(x, ξ)dξdx

}∣∣∣∣
=

∣∣∣∣ℜ{2iλ

a

∫ β2−3ε

0
xρ4v

√
b0k(α)

∫
R
|ξ|

2α−1
2 w(x, ξ)dξdx

}∣∣∣∣ = o(1)

|λ|
ℓ
2
−1
, (4.51)
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∣∣∣∣ℜ{ 2

aλℓ

∫ L

0
xρ4f2Sbdx

}∣∣∣∣ = ∣∣∣∣ℜ{ 2

aλℓ

∫ β2−3ε

0
xρ4f2Sb0dx

}∣∣∣∣ = o(1)

|λ|
3ℓ
2

. (4.52)

From the fact that ℓ = 2, then substituting (4.47)-(4.52) into (4.46), we get (4.44). Moreover,

by using Lemma 4.7 and take h = (x − L)ρ5. In the same manner, by applying Lemma 4.2-4.5,

the definition of ρ5 and Sb, the Cauchy-Schwarz inequality, ∥f1,x∥L2(0,L) = o(1), ∥f2∥L2(0,L) =

o(1), ∥f3,x∥L2(0,L) = o(1), ∥f4∥L2(0,L) = o(1), ℓ = 2 and ux, yx, v, z are uniformly bounded in

L2(0, L), we refer that

a

∫ L

β2

|ux|2dx+

∫ L

β2−3ε
|v|2dx+

∫ L

β2−3ε
|yx|2dx+

∫ L

β2−3ε
|z|2dx

=ℜ
{
2

∫ L

0
c(x)(x− L)ρ5vyxdx

}
−ℜ

{
2

a

∫ L

0
c(x)(x− L)ρ5zSbdx

}
− 1

a

∫ β2

β1+ε
|Sb0 |2dx

−
∫ β2−3ε

β1+ε
(ρ5 + (x− L)ρ′5)

(
a−1|Sb0 |2 + |v|2 + |z|2 + |yx|2

)
dx

−ℜ
{
2iλ

a

∫ β2

β1+ε
(x− L)ρ5v

√
b0k(α)

∫
R
|ξ|

2α−1
2 w(x, ξ)dξdx

}
+ ℜ

{
2

λℓ

∫ L

0
(x− L)ρ5

(
f1,xv + f3,xz + f4yx

)
dx

}
+ ℜ

{
2

aλℓ

∫ L

0
(x− L)ρ5f2Sbdx

}
=ℜ

{
2

∫ L

0
c(x)(x− L)ρ5vyxdx

}
−ℜ

{
2

a

∫ L

0
c(x)(x− L)ρ5zSbdx

}
︸ ︷︷ ︸

J

+o(1). (4.53)

Then, from the definition of c(x), ρ5 and Sb, Lemma 4.2-4.5, the Cauchy-Schwarz inequality and

z is uniformly bounded in L2(0, L), we conclude that

J =ℜ
{
2c0

∫ β2−3ε

β1+ε
(x− L)ρ5vyxdx

}
+ ℜ

{
2c0

∫ β3

β2−3ε
(x− L)vyxdx

}
−ℜ

{
2c0
a

∫ β2−3ε

β1+ε
(x− L)ρ5zSb0dx

}
−ℜ

{
2c0

∫ β3

β2−3ε
(x− L)zuxdx

}
−ℜ

{
2c0
a

∫ β2

β2−3ε
(x− L)z

√
b0k(α)

∫
R
|ξ|

2α−1
2 w(x, ξ)dξdx

}
=ℜ

{
2c0

∫ β3

β2−3ε
(x− L)vyxdx

}
−ℜ

{
2c0

∫ β3

β2−3ε
(x− L)zuxdx

}
+ o(1). (4.54)

By using (4.4) and (4.6), one can obtain

ux = iλ−1vx + iλ−ℓ−1f1,x and yx = iλ−1zx + iλ−ℓ−1f3,x. (4.55)

Inserting (4.55) in (4.54), then applying ∥f1,x∥L2(0,L) = o(1), ∥f3,x∥L2(0,L) = o(1) and v, z are

uniformly bounded in L2(0, L), one states that

J = ℜ
{
2c0i

λ

∫ β3

β2−3ε
(x− L)vzxdx

}
−ℜ

{
2c0i

λ

∫ β3

β2−3ε
(x− L)zvxdx

}
+ o(1). (4.56)
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Then, after integrating by parts in the second term of (4.56), it follows that

J = ℜ
{
2c0i

λ

∫ β3

β2−3ε
zvdx

}
−ℜ

{
2c0i

λ
[(x− L)zv]β3

β2−3ε

}
+ o(1). (4.57)

By applying the Cauchy-Schwarz inequality and v, z are uniformly bounded in L2(0, L), then

taking into account the fact that |v(β2 − 3ε)| = O(1), |v(β3)| = O(1), |z(β2 − 3ε)| = O(1) and

|z(β3)| = O(1) in Lemma 4.6, we derive∣∣∣∣ℜ{2c0i

λ

∫ β3

β2−3ε
zvdx

}∣∣∣∣ = O(1)

|λ|
= o(1) (4.58)

and ∣∣∣∣ℜ{2c0i

λ
[(x− L)zv]β3

β2−3ε

}∣∣∣∣ = O(1)

|λ|
= o(1). (4.59)

Combining (4.57), (4.58) and (4.59), we arrive at

J = o(1).

Thanks to (4.53), it is easy to get (4.45). Thus, we complete the proof of Lemma 4.8. �
Proof of Theorem 4.2. By using Lemma 4.2, Lemma 4.4, Lemma 4.5 and the fact that ℓ = 2,

we derive∫ L

0

∫
R
(ξ2 + η)|w(x, ξ)|2dξdx =

o(1)

λℓ
,

∫ β2

0
|ux|2dx =

o(1)

λℓ+α+1
,

∫ β2−ε

ε
|v|2dx = o(1),∫ β2−2ε

β1

|z|2dx = o(1),

∫ β2−3ε

β1+ε
|yx|2dx = o(1).

(4.60)

Then from Lemma 4.8 and (4.60), we arrive at∫ ε

0
|v|2dx = o(1),

∫ β1+ε

0
|yx|2dx = o(1),

∫ β1

0
|z|2dx = o(1),

∫ L

β2

|ux|2dx = o(1),∫ L

β2−ε
|v|2dx = o(1),

∫ L

β2−3ε
|yx|2dx = o(1),

∫ L

β2−2ε
|z|2dx = o(1).

(4.61)

Combining (4.60) and (4.61), we conclude that ∥U∥H = o(1), which contradicts with (4.2). Ac-

cordingly, we show that condition (H2) holds. Therefore, based on Theorem 4.1, we obtain the

desired conclusion (4.1), which completes the proof of Theorem 4.2. �
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