7 References
1. Jensen, P. E., & Leister, D. (2014). Chloroplast evolution, structure and functions. In F1000Prime Reports (Vol. 6). https://doi.org/10.12703/P6-40
2. Daniell, H., Kumar, S., & Dufourmantel, N. (2005). Breakthrough in chloroplast genetic engineering of agronomically important crops.Trends in Biotechnology , 23 (5), 238–245. https://doi.org/10.1016/j.tibtech.2005.03.008
3. Adem, M., Beyene, D., & Feyissa, T. (2017). Recent achievements obtained by chloroplast transformation. In Plant Methods (Vol. 13, Issue 1, pp. 1–11). https://doi.org/10.1186/s13007-017-0179-1
4. Boynton, J. E., Gillham, N. W., Harris, E. H., Hosler, J. P., Johnson, A. M., Jones, A. R., Randolph-Anderson, B. L., Robertson, D., Klein, T. M., Shark, K. B., & Sanford, J. C. (1988). Chloroplast transformation in Chlamydomonas with high velocity microprojectiles. Science , 240 (4858), 1534–1538. https://doi.org/10.1126/science.2897716
5. Dyo, Y. M., & Purton, S. (2018). The algal chloroplast as a synthetic biology platform for production of therapeutic proteins.Microbiology (United Kingdom) , 164 (2), 113–121. https://doi.org/10.1099/mic.0.000599
6. Kwon, Y. M., Kim, K. W., Choi, T. Y., Kim, S. Y., & Kim, J. Y. H. (2018). Manipulation of the microalgal chloroplast by genetic engineering for biotechnological utilization as a green biofactory.World Journal of Microbiology and Biotechnology , 34 (12), 1–11. https://doi.org/10.1007/s11274-018-2567-8
7. Anil Kumar Ruguang Ou, Mustapha Samrakandi, Brenda T. Beerntsen and Richard T. Sayre, S. W. (2013). Development of an RNAi based microalgal larvicide to control mosquitoes . Mwj , 4 (6), 7.
8. Charoonnart, P., Worakajit, N., Zedler, J. A. Z., Meetam, M., Robinson, C., & Saksmerprome, V. (2019). Generation of microalgaChlamydomonas reinhardtii expressing shrimp antiviral dsRNA without supplementation of antibiotics. Scientific Reports ,9 (1), 1–8. https://doi.org/10.1038/s41598-019-39539-x
9. Jackson, H. O., Taunt, H. N., Mordaka, P. M., Smith, A. G., & Purton, S. (2021). The Algal Chloroplast as a Testbed for Synthetic Biology Designs Aimed at Radically Rewiring Plant Metabolism .12 (September), 1–15. https://doi.org/10.3389/fpls.2021.708370
10. Specht, E. A., & Mayfield, S. P. (2013). Synthetic oligonucleotide libraries reveal novel regulatory elements in Chlamydomonaschloroplast mRNAs. ACS Synthetic Biology , 2 (1), 34–46. https://doi.org/10.1021/sb300069k
11. Scaife, M. A., & Smith, A. G. (2016). Towards developing algal synthetic biology. Biochemical Society Transactions ,44 (3), 716–722. https://doi.org/10.1042/BST20160061
12. Crozet, P., Navarro, F. J., Willmund, F., Mehrshahi, P., Bakowski, K., Lauersen, K. J., Pérez-Pérez, M. E., Auroy, P., Gorchs Rovira, A., Sauret-Gueto, S., Niemeyer, J., Spaniol, B., Theis, J., Trösch, R., Westrich, L. D., Vavitsas, K., Baier, T., Hübner, W., De Carpentier, F., … Lemaire, S. D. (2018). Birth of a Photosynthetic Chassis: A MoClo Toolkit Enabling Synthetic Biology in the MicroalgaChlamydomonas reinhardtii . ACS Synthetic Biology ,7 (9), 2074–2086. https://doi.org/10.1021/acssynbio.8b00251
13. Gallaher, S. D., Fitz-Gibbon, S. T., Strenkert, D., Purvine, S. O., Pellegrini, M., & Merchant, S. S. (2018). High-throughput sequencing of the chloroplast and mitochondrion of Chlamydomonas reinhardtii to generate improved de novo assemblies, analyze expression patterns and transcript speciation, and evaluate diversity among laboratory strains and wild is. Plant Journal , 93 (3), 545–565. https://doi.org/10.1111/tpj.13788
14. Cavaiuolo, M., Kuras, R., Wollman, F. A., Choquet, Y., & Vallon, O. (2017). Small RNA profiling in Chlamydomonas : Insights into chloroplast RNA metabolism. Nucleic Acids Research ,45 (18), 10783–10799. https://doi.org/10.1093/nar/gkx668
15. Taylor, G. M., Mordaka, P. M., & Heap, J. T. (2019). Start-Stop Assembly: A functionally scarless DNA assembly system optimized for metabolic engineering. Nucleic Acids Research , 47 (3), e17. https://doi.org/10.1093/nar/gky1182
16. Larrea-Alvarez, M., & Purton, S. (2020). Multigenic engineering of the chloroplast genome in the green alga Chlamydomonas reinhardtii . Microbiology (United Kingdom) , 166 (6), 510–515. https://doi.org/10.1099/mic.0.000910
17. Gimpel, J. A., Nour-Eldin, H. H., Scranton, M. A., Li, D., & Mayfield, S. P. (2016). Refactoring the Six-Gene Photosystem II Core in the Chloroplast of the Green Algae Chlamydomonas reinhardtii .ACS Synthetic Biology , 5 (7), 589–596. https://doi.org/10.1021/acssynbio.5b00076
18. Esland, L., Larrea-Alvarez, M., & Purton, S. (2018). Selectable markers and reporter genes for engineering the chloroplast ofChlamydomonas reinhardtii . Biology , 7 (4), In press. https://doi.org/10.3390/biology7040046
19. Goldschmidt-clermont, M. (1991). Transgenic expression of aminoglycoside adenine transferase in the chloroplast: A selectable marker for site-directed transformation of chlamydomonas. Nucleic Acids Research , 19 (15), 4083–4089. https://doi.org/10.1093/nar/19.15.4083
20. Bateman, J. M., & Purton, S. (2000). Tools for chloroplast transformation in Chlamydomonas : Expression vectors and a new dominant selectable marker. Molecular and General Genetics ,263 (3), 404–410. https://doi.org/10.1007/s004380051184
21. Sandoval-Vargas, J. M., Jiménez-Clemente, L. A., Macedo-Osorio, K. S., Oliver-Salvador, M. C., Fernández-Linares, L. C., Durán-Figueroa, N. V., & Badillo-Corona, J. A. (2019). Use of the ptxD gene as a portable selectable marker for chloroplast transformation inChlamydomonas reinhardtii . Molecular Biotechnology ,61 (6), 461–468. https://doi.org/10.1007/s12033-019-00177-3
22. Rosales-Mendoza, S., Solís-Andrade, K. I., Márquez-Escobar, V. A., González-Ortega, O., & Bañuelos-Hernandez, B. (2020). Current advances in the algae-made biopharmaceuticals field. Expert Opinion on Biological Therapy , 20 (7), 751–766. https://doi.org/10.1080/14712598.2020.1739643
23. Keese, P. (2008). Risks from GMOs due to Horizontal Gene Transfer.Environmental Biosafety Research , 7 (2008), 123–149.
24. Fischer, N., Stampacchia, O., Redding, K., & Rochaix, J. D. (1996). Selectable marker recycling in the chloroplast. Molecular and General Genetics , 251 (3), 373–380. https://doi.org/10.1007/BF02172529
25. Martin Avila, E., Gisby, M. F., & Day, A. (2016). Seamless editing of the chloroplast genome in plants. BMC Plant Biology ,16 (1), 1–13. https://doi.org/10.1186/s12870-016-0857-6
26. Cerutti, H., Johnson, A. M., Boynton, J. E., & Gillham, N. W. (1995). Inhibition of chloroplast DNA recombination and repair by dominant negative mutants of Escherichia coli RecA.Molecular and Cellular Biology , 15 (6), 3003–3011. https://doi.org/10.1128/mcb.15.6.3003
27. Bingham, S. E., & Webber, A. N. (1994). Maintenance and expression of heterologous genes in chloroplast of Chlamydomonas reinhardtii . Journal of Applied Phycology , 6 (2), 239–245. https://doi.org/10.1007/BF02186077
28. Kunstner, P., Guardiola, A., Takahashi, Y., & Rochaix, J. D. (1995). A mutant strain of Chlamydomonas reinhardtii lacking the chloroplast photosystem II psbI gene grows photoautotrophically.Journal of Biological Chemistry , 270 (16), 9651–9654. https://doi.org/10.1074/jbc.270.16.9651
29. Vermes, A., Guchelaar, H. J., & Dankert, J. (2000). Flucytosine: a review of its pharmacology, clinical indications, pharmacokinetics, toxicity and drug interactions. Journal of Antimicrobial Chemotherapy , 46 (2), 171–179. https://doi.org/10.1093/jac/46.2.171
30. Svab, Z., & Maliga, P. (1993). High-frequency plastid transformation in tobacco by selection for a chimeric aadA gene.Proceedings of the National Academy of Sciences of the United States of America , 90 (3), 913–917. https://doi.org/10.1073/pnas.90.3.913
31. Serino, G., & Maliga, P. (1997). A negative selection scheme based on the expression of cytosine deaminase in plastids. Plant Journal , 12 (3), 697–701. https://doi.org/10.1046/j.1365-313X.1997.d01-17.x
32. Young, R. E. B., & Purton, S. (2014). Cytosine deaminase as a negative selectable marker for the microalgal chloroplast: A strategy for the isolation of nuclear mutations that affect chloroplast gene expression. Plant Journal , 80 (5), 915–925. https://doi.org/10.1111/tpj.12675
33. Bankaitis, V. A. (1990). The Chlamydomonas sourcebook.Cell , 61 (4), 559–560. https://doi.org/10.1016/0092-8674(90)90467-s
34. Cox, R. S., Dunlop, M. J., & Elowitz, M. B. (2010). A synthetic three-color scaffold for monitoring genetic regulation and noise.Journal of Biological Engineering , 4 . https://doi.org/10.1186/1754-1611-4-10
35. El-Sheekh, M. M. (2000). Stable Chloroplast Transformation inChlamydomonas reinhardtii using Microprojectile Bombardment.Folia Microbiologica , 45 (6), 496–504. https://doi.org/10.1007/BF02818717
36. Berthold, D. A., Best, B. A., & Malkin, R. (1993). A rapid DNA preparation for PCR from Chlamydomonas reinhardtii andArabidopsis thaliana . Plant Molecular Biology Reporter ,11 (4), 338–344. https://doi.org/10.1007/BF02905336
37. Franklin, J. L., Zhang, J., & Redding, K. (2003). Use of aminoglycoside adenyltransferase translational fusions to determine topology of thylakoid membrane proteins. FEBS Letters ,536 (1–3), 97–100. https://doi.org/10.1016/S0014-5793(03)00034-6
38. Chen, X., Zaro, J. L., & Shen, W. C. (2013). Fusion protein linkers: Property, design and functionality. In Advanced Drug Delivery Reviews (Vol. 65, Issue 10, pp. 1357–1369). https://doi.org/10.1016/j.addr.2012.09.039
39. Macedo-Osorio, K. S., Pérez-España, V. H., Garibay-Orijel, C., Guzmán-Zapata, D., Durán-Figueroa, N. V., & Badillo-Corona, J. A. (2018). Intercistronic expression elements (IEE) from the chloroplast ofChlamydomonas reinhardtii can be used for the expression of foreign genes in synthetic operons. Plant Molecular Biology ,98 (4–5), 303–317. https://doi.org/10.1007/s11103-018-0776-z
40. Arai, R., Ueda, H., Kitayama, A., Kamiya, N., & Nagamune, T. (2001). Design of the linkers which effectively separate domains of a bifunctional fusion protein. Protein Engineering , 14 (8), 529–532. https://doi.org/10.1093/protein/14.8.529
41. Purton, S. (2007). Tools and techniques for chloroplast transformation of Chlamydomonas . In Advances in Experimental Medicine and Biology (Vol. 616, pp. 34–45). https://doi.org/10.1007/978-0-387-75532-8_4
42. Zhao, S., & Gorte, R. J. (2003). The effect of oxide dopants in ceria on n-butane oxidation. Applied Catalysis A: General ,248 (1–2), 9–18. https://doi.org/10.1016/S0926-860X(03)00102-9
43. Wannathong, T., Waterhouse, J. C., Young, R. E. B., Economou, C. K., & Purton, S. (2016). New tools for chloroplast genetic engineering allow the synthesis of human growth hormone in the green algaChlamydomonas reinhardtii . Applied Microbiology and Biotechnology , 100 (12), 5467–5477. https://doi.org/10.1007/s00253-016-7354-6
44. Eberhard, S., Drapier, D., & Wollman, F. A. (2002). Searching limiting steps in the expression of chloroplast-encoded proteins: Relations between gene copy number, transcription, transcript abundance and translation rate in the chloroplast of Chlamydomonas reinhardtii.Plant Journal , 31 (2), 149–160. https://doi.org/10.1046/j.1365-313X.2002.01340.x
45. Coragliotti, A. T., Beligni, M. V., Franklin, S. E., & Mayfield, S. P. (2011). Molecular factors affecting the accumulation of recombinant proteins in the Chlamydomonas reinhardtii . Molecular Biotechnology , 48 (1), 60–75. https://doi.org/10.1007/s12033-010-9348-4
46. Fuentes, P., Armarego-Marriott, T., & Bock, R. (2018). Plastid transformation and its application in metabolic engineering.Current Opinion in Biotechnology , 49 , 10–15. https://doi.org/10.1016/j.copbio.2017.07.004
47. Barnes, D., Franklin, S., Schultz, J., Henry, R., Brown, E., Coragliotti, A., & Mayfield, S. P. (2005). Contribution of 5′- and 3′-untranslated regions of plastid mRNAs to the expression ofChlamydomonas reinhardtii chloroplast genes. Molecular Genetics and Genomics , 274 (6), 625–636. https://doi.org/10.1007/s00438-005-0055-y
48. Dauvillee, D., Hilbig, L., Preiss, S., & Johanningmeier, U. (2004). Minimal extent of sequence homology required for homologous recombination at the psbA locus in Chlamydomonas reinhardtiichloroplasts using PCR-generated DNA fragments. Photosynthesis Research , 79 (2), 219–224. https://doi.org/10.1023/B:PRES.0000015384.24958.a9
49. Yu, Z., Geisler, K., Leontidou, T., Young, R., Vonlanthen, S., Purton, S., Abell, C., & Smith, A. (2021). Droplet-based microfluidic screening and sorting of microalgal populations for strain engineering applications. Algal Research, in Press , 1 (56), 102293.
50. Maliga, P. (2004). Plastid transformation in higher plants.Annual Review of Plant Biology , 55 , 289–313. https://doi.org/10.1146/annurev.arplant.55.031903.141633
51. Agrawal, S., Karcher, D., Ruf, S., & Bock, R. (2020). The functions of chloroplast glutamyl-tRNA in translation and tetrapyrrole biosynthesis. Plant Physiology , 183 (5), 263–276. https://doi.org/10.1104/pp.20.00009