Figure legends
Fig. 1: Diversification of Octopus insularis throughout
its species range. A: Sampling sites in this study. Black arrows depict
the major oceanic currents (Sissini et al., 2017): the South Equatorial
Current (SEC) runs westwards from the African to the Brazilian coast,
splitting into the Brazil Current (BC) running southwards, and the North
Brazil Current (NBC) running northwards and continuing as the Caribbean
Current (CC). Gray scale represents depth. B: EMU PCA considering 11
eigenvalues. Abbreviations of sampling localities: AL - Alagoas, AR –
Atol das Rocas, ASC – Ascension Island, BA – Bahía, CE -Ceará, FN –
Fernando do Noronha, OIC – Panama, RN – Rio Grande do Norte, SPS –
São Pedro/ São Paulo archipelago, STH – Saint Helena Island, TM –
Trindade and Martim Vaz archipelago.
Fig. 2: Population structure of Octopus insularis . A:
Spatial interpolation of ancestral clusters assuming K=2 and 6, using
the “69inds_40MD” dataset in TESS3R. B: Co-ancestry matrix of all
samples (“full” dataset) inferred in fineRADstructure. Colors on the
axis correspond to the individual assignment in the two hierarchical
levels shown in A.
Fig. 3 : Phylogenetic relationship of the 69 individuals ofO. insularis . A: mid-rooted Maximum Likelihood tree inferred by
IQtree from concatenated SNP. B: unrooted Coalescent tree inferred by
tetrad from resampling unlinked SNPs. Individuals are colored according
to their lineage identity. Black nodes demarcate UF bootstrap/bootstrap
support of >90, white nodes demarcate bootstrap support of
>50.
Fig. 4: Genetic diversity and inbreeding coefficients within
inferred clusters for the 69inds_40MD dataset. A: Individual
FIT, B: π* values. Individuals are grouped by clusters
inferred from tess3R at K = 6 and fineRADstrucuture. Boxplots are drawn
for each cluster, with the solid black line marking the median, the top
and bottom end of the box the 25% and 75% quartile boundaries and the
whiskers the 1.5 interquartile range.
Fig. 5: Demographic modelling of two pairs of adjacent
lineages. The top depicts the best model according to AIC
values, with the top block representing the ancestral effective
population Size (Na), subsequent blocks effective population size (nu1,
nu2, nu1a, nu2a, nu1b, nu2b) scaled to Na, arrows between blocks
migration (2*Na*migrants/generation, m12,m21) and height of the blocks
represent time since a particular demographic event (2*Na*generations,
T, T1, T2). Bottom shows empirical and modelled SFS as well as per-site
residuals and a histogram with the distribution of all residuals. A;
Best model for N-Coastal vs S-Coastal lineages, B: Best model for
S-Oceanic vs S-Coastal lineages.
References
Akaike, H. (1974). A new look at the statistical model identification.IEEE transactions on automatic control , 19 (6), 716-723.
Amor, M. D., Norman, M. D., Roura, A., Leite, T. S., Gleadall, I. G.,
Reid, A., … & Strugnell, J. M. (2017). Morphological assessment of
the Octopus vulgaris species complex evaluated in light of
molecular‐based phylogenetic inferences. Zoologica
Scripta , 46 (3), 275-288.
Amor, M. D., Johnson, J. C., & James, E. A. (2020). Identification of
clonemates and genetic lineages using next-generation sequencing
(ddRADseq) guides conservation of a rare species, Bossiaea vombata
(Fabaceae). Perspectives in Plant Ecology, Evolution and
Systematics , 45 , 125544.
Arruda, W. Z., Campos, E. J., Zharkov, V., Soutelino, R. G., & da
Silveira, I. C. (2013). Events of equatorward translation of the Vitoria
Eddy. Continental Shelf Research , 70 , 61-73.
Avendaño, O., Roura, Á., Cedillo-Robles, C. E., González, Á. F.,
Rodríguez-Canul, R., Velázquez-Abunader, I., & Guerra, Á. (2020).
Octopus americanus: a cryptic species of the O. vulgaris species complex
redescribed from the Caribbean. Aquatic Ecology , 54 (4),
909-925.
Ávila, S. P., Cordeiro, R., Madeira, P., Silva, L., Medeiros, A.,
Rebelo, A. C., … & Johnson, M. E. (2018). Global change impacts on
large-scale biogeographic patterns of marine organisms on Atlantic
oceanic islands. Marine Pollution Bulletin , 126 , 101-112.
Avni, E., Cohen, R., & Snir, S. (2015). Weighted quartets
phylogenetics. Systematic biology , 64 (2), 233-242.
Barratt, C. D., Bwong, B. A., Jehle, R., Liedtke, H. C., Nagel, P.,
Onstein, R. E., … & Loader, S. P. (2018). Vanishing refuge? Testing
the forest refuge hypothesis in coastal East Africa using genome‐wide
sequence data for seven amphibians. Molecular Ecology ,27 (21), 4289-4308.
Barroso, C. X., Lotufo, T. M. D. C., & Matthews‐Cascon, H. (2016).
Biogeography of Brazilian prosobranch gastropods and their Atlantic
relationships. Journal of Biogeography , 43 (12), 2477-2488.
Barry, P., Broquet, T., & Gagnaire, P. A. (2022). Age‐specific
survivorship and fecundity shape genetic diversity in marine fishes.Evolution letters , 6 (1), 46-62.
Boessenkool, S., Taylor, S. S., Tepolt, C. K., Komdeur, J., & Jamieson,
I. G. (2007). Large mainland populations of South Island robins retain
greater genetic diversity than offshore island refuges.Conservation Genetics , 8 (3), 705-714.
Bouth, H. F., Leite, T. S., Lima, F. D. D., & Oliveira, J. E. L.
(2011). Atol das Rocas: an oasis for Octopus insularis juveniles
(Cephalopoda: Octopodidae). Zoologia (Curitiba) , 28 (1),
45-52.
Burnham, K. P., & Anderson, D. R. (2002). Model selection and
multimodel
inference: a practical information-theoretic approach. Springer.
Canestrelli, D., Sacco, F., & Nascetti, G. (2012). On glacial refugia,
genetic diversity, and microevolutionary processes: deep
phylogeographical structure in the endemic newt Lissotriton italicus.Biological Journal of the Linnean Society , 105 (1), 42-55.
Caye, K., Deist, T. M., Martins, H., Michel, O., & François, O. (2016).
TESS3: fast inference of spatial population structure and genome scans
for selection. Molecular Ecology Resources , 16 (2),
540-548.
Cheddadi, R., Vendramin, G. G., Litt, T., François, L., Kageyama, M.,
Lorentz, S., … & Lunt, D. (2006). Imprints of glacial refugia in the
modern genetic diversity of Pinus sylvestris. Global Ecology and
Biogeography , 15 (3), 271-282.
Chifman, J., & Kubatko, L. (2014). Quartet inference from SNP data
under the coalescent model. Bioinformatics , 30 (23),
3317-3324.
da Silva, E. J., Bezerra, L. E. A., & Martins, I. X. (2018). The
tropical Octopus insularis (Mollusca, Octopodidae): a natural enemy of
the exotic invasive swimming crab Charybdis hellerii (Crustacea,
Portunidae). Pan-American Journal of Aquatic
Sciences , 13 (1), 79-83.
Danecek, P., Auton, A., Abecasis, G., Albers, C. A., Banks, E.,
DePristo, M. A., … & 1000 Genomes Project Analysis Group. (2011). The
variant call format and VCFtools. Bioinformatics , 27 (15),
2156-2158.
DeWoody, J. A., Harder, A. M., Mathur, S., & Willoughby, J. R. (2021).
The long-standing significance of genetic diversity in conservation.Molecular Ecology , 30 (17), 4147-4154.
Duda Jr, T. F., Kohn, A. J., & Matheny, A. M. (2009). Cryptic species
differentiated in Conus ebraeus, a widespread tropical marine gastropod.The Biological Bulletin , 217 (3), 292-305.
Eaton, D. A., & Overcast, I. (2020). ipyrad: Interactive assembly and
analysis of RADseq datasets. Bioinformatics , 36 (8),
2592-2594.
Ellegren, H., & Galtier, N. (2016). Determinants of genetic diversity.Nature Reviews Genetics , 17 (7), 422-433.
Excoffier, L., Foll, M., & Petit, R. J. (2009). Genetic consequences of
range expansions. Annual Review of Ecology, Evolution, and
Systematics , 40 , 481-501.
Excoffier, L., & Lischer, H. E. (2010). Arlequin suite ver 3.5: a new
series of programs to perform population genetics analyses under Linux
and Windows. Molecular ecology resources , 10 (3), 564-567.
Excoffier, L., Smouse, P. E., & Quattro, J. M. (1992). Analysis of
molecular variance inferred from metric distances among DNA haplotypes:
application to human mitochondrial DNA restriction data.Genetics , 131 (2), 479-491.
Filatov, D. A., Bendif, E. M., Archontikis, O. A., Hagino, K., &
Rickaby, R. E. (2021). The mode of speciation during a recent radiation
in open-ocean phytoplankton. Current Biology .
Fisher, M. C., Helser, T. E., Kang, S., Gwak, W., Canino, M. F., &
Hauser, L. (2022). Genetic structure and dispersal in peripheral
populations of a marine fish (Pacific cod, Gadus macrocephalus) and
their importance for adaptation to climate change. Ecology and
Evolution , 12 (1), e8474.
Flores-Valle, A., Pliego-Cárdenas, R., Jimenéz-Badillo, M. D. L.,
Arredondo-Figueroa, J. L., & Barriga-Sosa, I. D. L. Á. (2018). First
record of Octopus insularis Leite and Haimovici, 2008 in the octopus
fishery of a marine protected area in the Gulf of Mexico. Journal
of Shellfish Research , 37 (1), 221-227.
Fonseca, R. D., Campos, P., Iglesia, A. R. D. L., Barroso, G., Bergeron,
L., Nande, M., … & Castro, L. F. C. (2021). Low coverage whole genome
sequencing reveals the underlying structure of European sardine
populations. Authorea .
Francisco, P. M., Mori, G. M., Alves, F. M., Tambarussi, E. V., & de
Souza, A. P. (2018). Population genetic structure, introgression, and
hybridization in the genus Rhizophora along the Brazilian coast.Ecology and evolution , 8 (6), 3491-3504.
Frankham, R. (1995). Conservation genetics. Annual review of
genetics , 29 (1), 305-327.
Frankham, R. (1997). Do island populations have less genetic variation
than mainland populations?. Heredity , 78 (3), 311-32
Frichot, E., & François, O.
(2015). LEA: An R package for landscape and ecological association
studies. Methods in Ecology and Evolution , 6 (8), 925-929.
Gaither, M. R., Bernal, M. A., Fernandez‐Silva, I., Mwale, M., Jones, S.
A., Rocha, C., & Rocha, L. A. (2015). Two deep evolutionary lineages in
the circumtropical glasseye Heteropriacanthus cruentatus (Teleostei,
Priacanthidae) with admixture in the south‐western Indian Ocean.Journal of Fish Biology , 87 (3), 715-727.
Galtier, N., Nabholz, B., Glémin, S., & Hurst, G. D. D. (2009).
Mitochondrial DNA as a marker of molecular diversity: a reappraisal.Molecular ecology , 18 (22), 4541-4550.
Giarla, T. C., & Esselstyn, J. A. (2015). The challenges of resolving a
rapid, recent radiation: empirical and simulated phylogenomics of
Philippine shrews. Systematic Biology , 64 (5), 727-740.
Giglio, V. J., Pinheiro, H. T., Bender, M. G., Bonaldo, R. M.,
Costa-Lotufo, L. V., Ferreira, C. E., … & Francini-Filho, R. B.
(2018). Large and remote marine protected areas in the South Atlantic
Ocean are flawed and raise concerns: Comments on Soares and Lucas
(2018). Marine Policy , 96 , 13-17.
Guo, B., DeFaveri, J., Sotelo, G., Nair, A., & Merilä, J. (2015).
Population genomic evidence for adaptive differentiation in Baltic Sea
three-spined sticklebacks. BMC biology , 13 (1), 1-18.
Guo, B., Li, Z., & Merilä, J. (2016). Population genomic evidence for
adaptive differentiation in the Baltic Sea herring. Molecular
ecology , 25 (12), 2833-2852.
Gutenkunst, R. N., Hernandez, R. D., Williamson, S. H., & Bustamante,
C. D. (2009). Inferring the joint demographic history of multiple
populations from multidimensional SNP frequency data. PLoS
genet , 5 (10), e1000695.
Haimovici, M., Leite, T. S., Marinho, R. A., Batista, B., Madrid, R. M.,
Oliveira, J. E., Lima, L. F. D., & Candice, L. (2014). As pescarias de
polvos do nordeste do Brasil. In M. Haimovici, J. M. Andriguetto Filho
& P. S. Sunye (Eds.), A pesca marinha e estuarina no Brasil:
estudos de caso (pp. 147–160). FURG.
Hewitt, G. (2000). The genetic legacy of the Quaternary ice ages.Nature , 405 (6789), 907-913.
Higgins, K. L., Semmens, J. M., Doubleday, Z. A., & Burridge, C. P.
(2013). Comparison of population structuring in sympatric octopus
species with and without a pelagic larval stage. Marine Ecology
Progress Series , 486 , 203-212.
Hoang, D. T., Chernomor, O., Von Haeseler, A., Minh, B. Q., & Vinh, L.
S. (2018). UFBoot2: improving the ultrafast bootstrap approximation.Molecular biology and evolution , 35 (2), 518-522.
Hoffmann, A. A., & Sgrò, C. M. (2011). Climate change and evolutionary
adaptation. Nature , 470 (7335), 479-485.
Jereb, P., Roper, C. F. E., Norman, M. D., & Finn, J. K. (2014)Cephalopods of the world: An annotated and illustrated catalogue
of cephalopod species known to date. Octopods and vampire squids.FAO Species Catalogue for Fisheries Purposes. No. 4, Vol. 3 .
Rome: FAO.
Johannesson, K., Ring, A. K., Johannesson, K. B., Renborg, E., Jonsson,
P. R., & Havenhand, J. N. (2018). Oceanographic barriers to gene flow
promote genetic subdivision of the tunicate Ciona intestinalis in a
North Sea archipelago. Marine biology , 165 (8), 1-10.
Jørgensen, H. B., Hansen, M. M., Bekkevold, D., Ruzzante, D. E., &
Loeschcke, V. (2005). Marine landscapes and population genetic structure
of herring (Clupea harengus L.) in the Baltic Sea. Molecular
Ecology , 14 (10), 3219-3234.
Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K., Von Haeseler, A., &
Jermiin, L. S. (2017). ModelFinder: fast model selection for accurate
phylogenetic estimates. Nature methods , 14 (6), 587-589.
Lande, R. (1995). Mutation and conservation. Conservation
biology , 9 (4), 782-791.
Leite, T. S., Haimovici, M., Molina, W., & Warnke, K. (2008).
Morphological and genetic description of Octopus insularis, a new
cryptic species in the Octopus vulgaris complex (Cephalopoda:
Octopodidae) from the tropical southwestern Atlantic. Journal of
Molluscan Studies , 74 (1), 63-74.
Leite, T. S., Haimovici, M., Mather, J., & Oliveira, J. L. (2009a).
Habitat, distribution, and abundance of the commercial octopus (Octopus
insularis) in a tropical oceanic island, Brazil: Information for
management of an artisanal fishery inside a marine protected
area. Fisheries research , 98 (1-3), 85-91.
Leite, T. S., Haimovici, M., & Mather, J. (2009b). Octopus insularis
(Octopodidae), evidences of a specialized predator and a time-minimizing
hunter. Marine Biology , 156 (11), 2355-2367.
Leite, T. S., Batista, A. T., Lima, F. D., Barbosa, J. C., & Mather, J.
(2016). Geographic variability of Octopus insularis diet: from oceanic
island to continental populations. Aquatic Biology , 25 ,
17-27.
Lima, F. D., Berbel-Filho, W. M., Leite, T. S., Rosas, C., & Lima, S.
M. (2017). Occurrence of Octopus insularis Leite and Haimovici, 2008 in
the Tropical Northwestern Atlantic and implications of species
misidentification to octopus fisheries management. Marine
Biodiversity , 47 (3), 723-734.
Lima, F. D., Ángeles-González, L. E., Leite, T. S., & Lima, S. M.
(2020). Global climate changes over time shape the environmental niche
distribution of Octopus insularis in the Atlantic Ocean. Marine
Ecology Progress Series , 652 , 111-121.
Lima, F. D., Leite, T. S. & Lima, S. M. (2022). Seamounts and oceanic
currents drive the population structure of Octopus insularis in the
Southwest Tropical Atlantic. Under review
Lischer, H. E., & Excoffier, L. (2012). PGDSpider: an automated data
conversion tool for connecting population genetics and genomics
programs. Bioinformatics , 28 (2), 298-299.
Lopes, P. F. M., Andrade, L. C. A., Pennino, M. G., & Leite, T. S.
(2021). The inter-annual fishing variability in Octopus insularis(Leite & Haimovici 2008) as a result of oceanographic factors.Fisheries Oceanography , 30 (5), 515–526. doi:
10.1111/fog.12534
Lotze, H. K., Lenihan, H. S., Bourque, B. J., Bradbury, R. H., Cooke, R.
G., Kay, M. C., … & Jackson, J. B. (2006). Depletion, degradation,
and recovery potential of estuaries and coastal seas. Science ,312 (5781), 1806-1809.
Ludt, W. B., & Rocha, L. A. (2015). Shifting seas: The impacts of
Pleistocene sea‐level fluctuations on the evolution of tropical marine
taxa. Journal of Biogeography , 42 (1), 25-38.
Macieira, R. M., Simon, T., Pimentel, C. R., & Joyeux, J. C. (2015).
Isolation and speciation of tidepool fishes as a consequence of
Quaternary sea-level fluctuations. Environmental Biology of
Fishes , 98 (1), 385-393.
Malinsky, M., Trucchi, E., Lawson, D. J., & Falush, D. (2018).
RADpainter and fineRADstructure: population inference from RADseq
data. Molecular biology and evolution , 35 (5), 1284-1290.
Martins, N., Macagnan, L., Cassano, V., & Gurgel, C. (2021). Barriers
to gene flow along the Brazilian coast: a synthesis and data analysis.
Authorea Preprints.
Mazzei, E. F., Pinheiro, H. T., Simon, T., Moura, R. L., Macieira, R.
M., Pimentel, C. R., … & Joyeux, J. C. (2021). Mechanisms of
dispersal and establishment drive a stepping stone community assembly on
seamounts and oceanic islands. Marine Biology , 168 (7),
1-11.
Meisner, J., Liu, S., Huang, M., & Albrechtsen, A. (2021). Large-scale
inference of population structure in presence of missingness using PCA.Bioinformatics , 37 (13), 1868-1875.
Melis, R., Vacca, L., Cuccu, D., Mereu, M., Cau, A., Follesa, M. C., &
Cannas, R. (2018). Genetic population structure and phylogeny of the
common octopus Octopus vulgaris Cuvier, 1797 in the western
Mediterranean Sea through nuclear and mitochondrial markers.Hydrobiologia , 807 (1), 277-296.
Mill, G. N., da Costa, V. S., Lima, N. D., Gabioux, M., Guerra, L. A.
A., & Paiva, A. M. (2015). Northward migration of Cape São Tomé rings,
Brazil. Continental Shelf Research , 106 , 27-37.
Mills, L. S. (2012). Conservation of wildlife populations:
demography, genetics, and management . John Wiley & Sons.
Minh, B. Q., Schmidt, H. A., Chernomor, O., Schrempf, D., Woodhams, M.
D., Von Haeseler, A., & Lanfear, R. (2020). IQ-TREE 2: new models and
efficient methods for phylogenetic inference in the genomic era.Molecular biology and evolution , 37 (5), 1530-1534.
Mora, C., Tittensor, D. P., Adl, S., Simpson, A. G., & Worm, B. (2011).
How many species are there on Earth and in the ocean?. PLoS
biology , 9 (8), e1001127.
Moritz, C., & Agudo, R. (2013). The future of species under climate
change: resilience or decline?. Science , 341 (6145),
504-508.
Neves, J. M., Lima, S. M., Mendes, L. F., Torres, R. A., Pereira, R. J.,
& Mott, T. (2016). Population structure of the rockpool blenny
Entomacrodus vomerinus shows source-sink dynamics among ecoregions in
the tropical Southwestern Atlantic. PloS one , 11 (6),
e0157472.
Oliveira, L. R. D., Fraga, L. D., Ott, P. H., Siciliano, S., Lopes, F.,
Almeida, R., … & Bonatto, S. L. (2019). Population structure,
phylogeography, and genetic diversity of the common bottlenose dolphin
in the tropical and subtropical southwestern Atlantic Ocean.Journal of Mammalogy , 100 (2), 564-577.
Palumbi, S. R. (1992). Marine speciation on a small planet. Trends
in Ecology & Evolution , 7 (4), 114-118.
Palumbi, S. R. (1994). Genetic divergence, reproductive isolation, and
marine speciation. Annual review of ecology and systematics ,25 (1), 547-572.
Pauly, D., & Zeller, D. (2016). Catch reconstructions reveal that
global marine fisheries catches are higher than reported and declining.Nature communications , 7 (1), 1-9.
Peijnenburg, K. T. C. A., Fauvelot, C., Breeuwer, J. A. J., & Menken,
S. B. J. (2006). Spatial and temporal genetic structure of the
planktonic Sagitta setosa (Chaetognatha) in European seas as revealed by
mitochondrial and nuclear DNA markers. Molecular Ecology ,15 (11), 3319-3338
Peluso, L., Tascheri, V., Nunes, F. L., Castro, C. B., Pires, D. O., &
Zilberberg, C. (2018). Contemporary and historical oceanographic
processes explain genetic connectivity in a Southwestern Atlantic coral.Scientific reports , 8 (1), 1-12.
Peterson, B. K., Weber, J. N., Kay, E. H., Fisher, H. S., & Hoekstra,
H. E. (2012). Double digest RADseq: an inexpensive method for de novo
SNP discovery and genotyping in model and non-model species. PloS
one , 7 (5), e37135.
Pinheiro, H. T., Mazzei, E., Moura, R. L., Amado-Filho, G. M.,
Carvalho-Filho, A., Braga, A. C., … & Joyeux, J. C. (2015). Fish
biodiversity of the Vitória-Trindade Seamount Chain, southwestern
Atlantic: an updated database. PloS one , 10 (3), e0118180.
Pinheiro, H. T., Bernardi, G., Simon, T., Joyeux, J. C., Macieira, R.
M., Gasparini, J. L., … & Rocha, L. A. (2017). Island biogeography of
marine organisms. Nature , 549 (7670), 82-85.
Portik, D. M., Leaché, A. D., Rivera, D., Barej, M. F., Burger, M.,
Hirschfeld, M., … & Fujita, M. K. (2017). Evaluating mechanisms of
diversification in a Guineo‐Congolian tropical forest frog using
demographic model selection. Molecular ecology , 26 (19),
5245-5263.
Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A.,
Bender, D., … & Sham, P. C. (2007). PLINK: a tool set for
whole-genome association and population-based linkage analyses.The American journal of human genetics , 81 (3), 559-575.
R Core Team (2017). R: A language and environment for statistical
computing. R Foundation for Statistical Computing, Vienna, Austria. URLhttps://www.R-project.org/.
Reed, D. H., & Frankham, R. (2003). Correlation between fitness and
genetic diversity. Conservation biology , 17 (1), 230-237.
Riginos, C., & Liggins, L. (2013). Seascape genetics: populations,
individuals, and genes marooned and adrift. Geography compass ,7 (3), 197-216.
Rosa, R., Pissarra, V., Borges, F. O., Xavier, J., Gleadall, I.,
Golikov, A… Villanueva, R. (2019). Global patterns of species
richness in coastal cephalopods. Frontiers in Marine Science ,6 , 1–16. doi: 10.3389/fmars.2019.00469
Rozas, J., Ferrer-Mata, A., Sánchez-DelBarrio, J. C., Guirao-Rico, S.,
Librado, P., Ramos-Onsins, S. E., & Sánchez-Gracia, A. (2017). DnaSP 6:
DNA sequence polymorphism analysis of large data sets. Molecular
biology and evolution , 34 (12), 3299-3302.
Sanford, E., & Kelly, M. W. (2011). Local adaptation in marine
invertebrates. Annual review of marine science , 3 ,
509-535.
Sauer, W. H., Gleadall, I. G., Downey-Breedt, N., Doubleday, Z.,
Gillespie, G., Haimovici, M., … & Pecl, G. (2021). World octopus
fisheries. Reviews in Fisheries Science & Aquaculture ,29 (3), 279-429
Simon, T., Pinheiro, H. T., Santos, S., Macieira, R. M., Ferreira, Y.
S., Bernardi, G., … & Joyeux, J. C. (2021). Comparative
phylogeography of reef fishes indicates seamounts as stepping stones for
dispersal and diversification. Coral Reefs , 1-11.
Sissini, M. N., de Barros Barreto, M. B. B., Széchy, M. T. M., de
Lucena, M. B., Oliveira, M. C., Gower, J., … & Horta, P. A. (2017).
The floating Sargassum (Phaeophyceae) of the South Atlantic
Ocean–likely scenarios. Phycologia , 56 (3), 321-328.
Sodeland, M., Jentoft, S., Jorde, P. E., Mattingsdal, M., Albretsen, J.,
Kleiven, A. R., … & Knutsen, H. (2022). Stabilizing selection on
Atlantic cod supergenes through a millennium of extensive exploitation.Proceedings of the National Academy of Sciences , 119 (8).
Sousa, V., & Hey, J. (2013). Understanding the origin of species with
genome-scale data: modelling gene flow. Nature Reviews Genetics ,14 (6), 404-414.
Spielman, D., Brook, B. W., & Frankham, R. (2004). Most species are not
driven to extinction before genetic factors impact them.Proceedings of the National Academy of Sciences , 101 (42),
15261-15264.
Timm, L. E., Bracken-Grissom, H. D., Sosnowski, A., Breitbart, M.,
Vecchione, M., & Judkins, H. (2020). Population genomics of three
deep-sea cephalopod species reveals connectivity between the Gulf of
Mexico and northwestern Atlantic Ocean. Deep Sea Research Part I:
Oceanographic Research Papers , 158 , 103222.
Volk, D. R., Konvalina, J. D., Floeter, S. R., Ferreira, C. E., &
Hoffman, E. A. (2021). Going against the flow: Barriers to gene flow
impact patterns of connectivity in cryptic coral reef gobies throughout
the western Atlantic. Journal of Biogeography , 48 (2),
427-439.
Watson, R. A., & Tidd, A. (2018). Mapping nearly a century and a half
of global marine fishing: 1869–2015. Marine Policy , 93 ,
171-177.
White, T. A., & Searle, J. B. (2007). Factors explaining increased body
size in common shrews (Sorex araneus) on Scottish islands. Journal
of Biogeography , 34 (2), 356-363.
Yu, G., Smith, D. K., Zhu, H., Guan, Y., & Lam, T. T. Y. (2017).
ggtree: an R package for visualization and annotation of phylogenetic
trees with their covariates and other associated data. Methods in
Ecology and Evolution , 8 (1), 28-36.