Figure legends
Fig. 1: Diversification of Octopus insularis throughout its species range. A: Sampling sites in this study. Black arrows depict the major oceanic currents (Sissini et al., 2017): the South Equatorial Current (SEC) runs westwards from the African to the Brazilian coast, splitting into the Brazil Current (BC) running southwards, and the North Brazil Current (NBC) running northwards and continuing as the Caribbean Current (CC). Gray scale represents depth. B: EMU PCA considering 11 eigenvalues. Abbreviations of sampling localities: AL - Alagoas, AR – Atol das Rocas, ASC – Ascension Island, BA – Bahía, CE -Ceará, FN – Fernando do Noronha, OIC – Panama, RN – Rio Grande do Norte, SPS – São Pedro/ São Paulo archipelago, STH – Saint Helena Island, TM – Trindade and Martim Vaz archipelago.
Fig. 2: Population structure of Octopus insularis . A: Spatial interpolation of ancestral clusters assuming K=2 and 6, using the “69inds_40MD” dataset in TESS3R. B: Co-ancestry matrix of all samples (“full” dataset) inferred in fineRADstructure. Colors on the axis correspond to the individual assignment in the two hierarchical levels shown in A.
Fig. 3 : Phylogenetic relationship of the 69 individuals ofO. insularis . A: mid-rooted Maximum Likelihood tree inferred by IQtree from concatenated SNP. B: unrooted Coalescent tree inferred by tetrad from resampling unlinked SNPs. Individuals are colored according to their lineage identity. Black nodes demarcate UF bootstrap/bootstrap support of >90, white nodes demarcate bootstrap support of >50.
Fig. 4: Genetic diversity and inbreeding coefficients within inferred clusters for the 69inds_40MD dataset. A: Individual FIT, B: π* values. Individuals are grouped by clusters inferred from tess3R at K = 6 and fineRADstrucuture. Boxplots are drawn for each cluster, with the solid black line marking the median, the top and bottom end of the box the 25% and 75% quartile boundaries and the whiskers the 1.5 interquartile range.
Fig. 5: Demographic modelling of two pairs of adjacent lineages. The top depicts the best model according to AIC values, with the top block representing the ancestral effective population Size (Na), subsequent blocks effective population size (nu1, nu2, nu1a, nu2a, nu1b, nu2b) scaled to Na, arrows between blocks migration (2*Na*migrants/generation, m12,m21) and height of the blocks represent time since a particular demographic event (2*Na*generations, T, T1, T2). Bottom shows empirical and modelled SFS as well as per-site residuals and a histogram with the distribution of all residuals. A; Best model for N-Coastal vs S-Coastal lineages, B: Best model for S-Oceanic vs S-Coastal lineages.

References

Akaike, H. (1974). A new look at the statistical model identification.IEEE transactions on automatic control , 19 (6), 716-723.
Amor, M. D., Norman, M. D., Roura, A., Leite, T. S., Gleadall, I. G., Reid, A., … & Strugnell, J. M. (2017). Morphological assessment of the Octopus vulgaris species complex evaluated in light of molecular‐based phylogenetic inferences. Zoologica Scripta46 (3), 275-288.
Amor, M. D., Johnson, J. C., & James, E. A. (2020). Identification of clonemates and genetic lineages using next-generation sequencing (ddRADseq) guides conservation of a rare species, Bossiaea vombata (Fabaceae). Perspectives in Plant Ecology, Evolution and Systematics , 45 , 125544.
Arruda, W. Z., Campos, E. J., Zharkov, V., Soutelino, R. G., & da Silveira, I. C. (2013). Events of equatorward translation of the Vitoria Eddy. Continental Shelf Research , 70 , 61-73.
Avendaño, O., Roura, Á., Cedillo-Robles, C. E., González, Á. F., Rodríguez-Canul, R., Velázquez-Abunader, I., & Guerra, Á. (2020). Octopus americanus: a cryptic species of the O. vulgaris species complex redescribed from the Caribbean. Aquatic Ecology , 54 (4), 909-925.
Ávila, S. P., Cordeiro, R., Madeira, P., Silva, L., Medeiros, A., Rebelo, A. C., … & Johnson, M. E. (2018). Global change impacts on large-scale biogeographic patterns of marine organisms on Atlantic oceanic islands. Marine Pollution Bulletin , 126 , 101-112.
Avni, E., Cohen, R., & Snir, S. (2015). Weighted quartets phylogenetics. Systematic biology , 64 (2), 233-242.
Barratt, C. D., Bwong, B. A., Jehle, R., Liedtke, H. C., Nagel, P., Onstein, R. E., … & Loader, S. P. (2018). Vanishing refuge? Testing the forest refuge hypothesis in coastal East Africa using genome‐wide sequence data for seven amphibians. Molecular Ecology ,27 (21), 4289-4308.
Barroso, C. X., Lotufo, T. M. D. C., & Matthews‐Cascon, H. (2016). Biogeography of Brazilian prosobranch gastropods and their Atlantic relationships. Journal of Biogeography , 43 (12), 2477-2488.
Barry, P., Broquet, T., & Gagnaire, P. A. (2022). Age‐specific survivorship and fecundity shape genetic diversity in marine fishes.Evolution letters , 6 (1), 46-62.
Boessenkool, S., Taylor, S. S., Tepolt, C. K., Komdeur, J., & Jamieson, I. G. (2007). Large mainland populations of South Island robins retain greater genetic diversity than offshore island refuges.Conservation Genetics , 8 (3), 705-714.
Bouth, H. F., Leite, T. S., Lima, F. D. D., & Oliveira, J. E. L. (2011). Atol das Rocas: an oasis for Octopus insularis juveniles (Cephalopoda: Octopodidae). Zoologia (Curitiba)28 (1), 45-52.
Burnham, K. P., & Anderson, D. R. (2002). Model selection and multimodel inference: a practical information-theoretic approach. Springer.
Canestrelli, D., Sacco, F., & Nascetti, G. (2012). On glacial refugia, genetic diversity, and microevolutionary processes: deep phylogeographical structure in the endemic newt Lissotriton italicus.Biological Journal of the Linnean Society , 105 (1), 42-55.
Caye, K., Deist, T. M., Martins, H., Michel, O., & François, O. (2016). TESS3: fast inference of spatial population structure and genome scans for selection. Molecular Ecology Resources , 16 (2), 540-548.
Cheddadi, R., Vendramin, G. G., Litt, T., François, L., Kageyama, M., Lorentz, S., … & Lunt, D. (2006). Imprints of glacial refugia in the modern genetic diversity of Pinus sylvestris. Global Ecology and Biogeography , 15 (3), 271-282.
Chifman, J., & Kubatko, L. (2014). Quartet inference from SNP data under the coalescent model. Bioinformatics30 (23), 3317-3324.
da Silva, E. J., Bezerra, L. E. A., & Martins, I. X. (2018). The tropical Octopus insularis (Mollusca, Octopodidae): a natural enemy of the exotic invasive swimming crab Charybdis hellerii (Crustacea, Portunidae). Pan-American Journal of Aquatic Sciences13 (1), 79-83.
Danecek, P., Auton, A., Abecasis, G., Albers, C. A., Banks, E., DePristo, M. A., … & 1000 Genomes Project Analysis Group. (2011). The variant call format and VCFtools. Bioinformatics , 27 (15), 2156-2158.
DeWoody, J. A., Harder, A. M., Mathur, S., & Willoughby, J. R. (2021). The long-standing significance of genetic diversity in conservation.Molecular Ecology , 30 (17), 4147-4154.
Duda Jr, T. F., Kohn, A. J., & Matheny, A. M. (2009). Cryptic species differentiated in Conus ebraeus, a widespread tropical marine gastropod.The Biological Bulletin , 217 (3), 292-305.
Eaton, D. A., & Overcast, I. (2020). ipyrad: Interactive assembly and analysis of RADseq datasets. Bioinformatics36 (8), 2592-2594.
Ellegren, H., & Galtier, N. (2016). Determinants of genetic diversity.Nature Reviews Genetics , 17 (7), 422-433.
Excoffier, L., Foll, M., & Petit, R. J. (2009). Genetic consequences of range expansions. Annual Review of Ecology, Evolution, and Systematics , 40 , 481-501.
Excoffier, L., & Lischer, H. E. (2010). Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular ecology resources , 10 (3), 564-567.
Excoffier, L., Smouse, P. E., & Quattro, J. M. (1992). Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data.Genetics , 131 (2), 479-491.
Filatov, D. A., Bendif, E. M., Archontikis, O. A., Hagino, K., & Rickaby, R. E. (2021). The mode of speciation during a recent radiation in open-ocean phytoplankton. Current Biology .
Fisher, M. C., Helser, T. E., Kang, S., Gwak, W., Canino, M. F., & Hauser, L. (2022). Genetic structure and dispersal in peripheral populations of a marine fish (Pacific cod, Gadus macrocephalus) and their importance for adaptation to climate change. Ecology and Evolution , 12 (1), e8474.
Flores-Valle, A., Pliego-Cárdenas, R., Jimenéz-Badillo, M. D. L., Arredondo-Figueroa, J. L., & Barriga-Sosa, I. D. L. Á. (2018). First record of Octopus insularis Leite and Haimovici, 2008 in the octopus fishery of a marine protected area in the Gulf of Mexico. Journal of Shellfish Research37 (1), 221-227.
Fonseca, R. D., Campos, P., Iglesia, A. R. D. L., Barroso, G., Bergeron, L., Nande, M., … & Castro, L. F. C. (2021). Low coverage whole genome sequencing reveals the underlying structure of European sardine populations. Authorea .
Francisco, P. M., Mori, G. M., Alves, F. M., Tambarussi, E. V., & de Souza, A. P. (2018). Population genetic structure, introgression, and hybridization in the genus Rhizophora along the Brazilian coast.Ecology and evolution , 8 (6), 3491-3504.
Frankham, R. (1995). Conservation genetics. Annual review of genetics , 29 (1), 305-327.
Frankham, R. (1997). Do island populations have less genetic variation than mainland populations?. Heredity , 78 (3), 311-32
Frichot, E., & François, O. (2015). LEA: An R package for landscape and ecological association studies. Methods in Ecology and Evolution , 6 (8), 925-929.
Gaither, M. R., Bernal, M. A., Fernandez‐Silva, I., Mwale, M., Jones, S. A., Rocha, C., & Rocha, L. A. (2015). Two deep evolutionary lineages in the circumtropical glasseye Heteropriacanthus cruentatus (Teleostei, Priacanthidae) with admixture in the south‐western Indian Ocean.Journal of Fish Biology , 87 (3), 715-727.
Galtier, N., Nabholz, B., Glémin, S., & Hurst, G. D. D. (2009). Mitochondrial DNA as a marker of molecular diversity: a reappraisal.Molecular ecology , 18 (22), 4541-4550.
Giarla, T. C., & Esselstyn, J. A. (2015). The challenges of resolving a rapid, recent radiation: empirical and simulated phylogenomics of Philippine shrews. Systematic Biology , 64 (5), 727-740.
Giglio, V. J., Pinheiro, H. T., Bender, M. G., Bonaldo, R. M., Costa-Lotufo, L. V., Ferreira, C. E., … & Francini-Filho, R. B. (2018). Large and remote marine protected areas in the South Atlantic Ocean are flawed and raise concerns: Comments on Soares and Lucas (2018). Marine Policy , 96 , 13-17.
Guo, B., DeFaveri, J., Sotelo, G., Nair, A., & Merilä, J. (2015). Population genomic evidence for adaptive differentiation in Baltic Sea three-spined sticklebacks. BMC biology , 13 (1), 1-18.
Guo, B., Li, Z., & Merilä, J. (2016). Population genomic evidence for adaptive differentiation in the Baltic Sea herring. Molecular ecology , 25 (12), 2833-2852.
Gutenkunst, R. N., Hernandez, R. D., Williamson, S. H., & Bustamante, C. D. (2009). Inferring the joint demographic history of multiple populations from multidimensional SNP frequency data. PLoS genet5 (10), e1000695.
Haimovici, M., Leite, T. S., Marinho, R. A., Batista, B., Madrid, R. M., Oliveira, J. E., Lima, L. F. D., & Candice, L. (2014). As pescarias de polvos do nordeste do Brasil. In M. Haimovici, J. M. Andriguetto Filho & P. S. Sunye (Eds.), A pesca marinha e estuarina no Brasil: estudos de caso (pp. 147–160). FURG.
Hewitt, G. (2000). The genetic legacy of the Quaternary ice ages.Nature , 405 (6789), 907-913.
Higgins, K. L., Semmens, J. M., Doubleday, Z. A., & Burridge, C. P. (2013). Comparison of population structuring in sympatric octopus species with and without a pelagic larval stage. Marine Ecology Progress Series , 486 , 203-212.
Hoang, D. T., Chernomor, O., Von Haeseler, A., Minh, B. Q., & Vinh, L. S. (2018). UFBoot2: improving the ultrafast bootstrap approximation.Molecular biology and evolution , 35 (2), 518-522.
Hoffmann, A. A., & Sgrò, C. M. (2011). Climate change and evolutionary adaptation. Nature , 470 (7335), 479-485.
Jereb, P., Roper, C. F. E., Norman, M. D., & Finn, J. K. (2014)Cephalopods of the world: An annotated and illustrated catalogue of cephalopod species known to date. Octopods and vampire squids.FAO Species Catalogue for Fisheries Purposes. No. 4, Vol. 3 . Rome: FAO.
Johannesson, K., Ring, A. K., Johannesson, K. B., Renborg, E., Jonsson, P. R., & Havenhand, J. N. (2018). Oceanographic barriers to gene flow promote genetic subdivision of the tunicate Ciona intestinalis in a North Sea archipelago. Marine biology , 165 (8), 1-10.
Jørgensen, H. B., Hansen, M. M., Bekkevold, D., Ruzzante, D. E., & Loeschcke, V. (2005). Marine landscapes and population genetic structure of herring (Clupea harengus L.) in the Baltic Sea. Molecular Ecology , 14 (10), 3219-3234.
Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K., Von Haeseler, A., & Jermiin, L. S. (2017). ModelFinder: fast model selection for accurate phylogenetic estimates. Nature methods , 14 (6), 587-589.
Lande, R. (1995). Mutation and conservation. Conservation biology , 9 (4), 782-791.
Leite, T. S., Haimovici, M., Molina, W., & Warnke, K. (2008). Morphological and genetic description of Octopus insularis, a new cryptic species in the Octopus vulgaris complex (Cephalopoda: Octopodidae) from the tropical southwestern Atlantic. Journal of Molluscan Studies74 (1), 63-74.
Leite, T. S., Haimovici, M., Mather, J., & Oliveira, J. L. (2009a). Habitat, distribution, and abundance of the commercial octopus (Octopus insularis) in a tropical oceanic island, Brazil: Information for management of an artisanal fishery inside a marine protected area. Fisheries research98 (1-3), 85-91.
Leite, T. S., Haimovici, M., & Mather, J. (2009b). Octopus insularis (Octopodidae), evidences of a specialized predator and a time-minimizing hunter. Marine Biology156 (11), 2355-2367.
Leite, T. S., Batista, A. T., Lima, F. D., Barbosa, J. C., & Mather, J. (2016). Geographic variability of Octopus insularis diet: from oceanic island to continental populations. Aquatic Biology25 , 17-27.
Lima, F. D., Berbel-Filho, W. M., Leite, T. S., Rosas, C., & Lima, S. M. (2017). Occurrence of Octopus insularis Leite and Haimovici, 2008 in the Tropical Northwestern Atlantic and implications of species misidentification to octopus fisheries management. Marine Biodiversity47 (3), 723-734.
Lima, F. D., Ángeles-González, L. E., Leite, T. S., & Lima, S. M. (2020). Global climate changes over time shape the environmental niche distribution of Octopus insularis in the Atlantic Ocean. Marine Ecology Progress Series652 , 111-121.
Lima, F. D., Leite, T. S. & Lima, S. M. (2022). Seamounts and oceanic currents drive the population structure of Octopus insularis in the Southwest Tropical Atlantic. Under review
Lischer, H. E., & Excoffier, L. (2012). PGDSpider: an automated data conversion tool for connecting population genetics and genomics programs. Bioinformatics , 28 (2), 298-299.
Lopes, P. F. M., Andrade, L. C. A., Pennino, M. G., & Leite, T. S. (2021). The inter-annual fishing variability in Octopus insularis(Leite & Haimovici 2008) as a result of oceanographic factors.Fisheries Oceanography , 30 (5), 515–526. doi: 10.1111/fog.12534
Lotze, H. K., Lenihan, H. S., Bourque, B. J., Bradbury, R. H., Cooke, R. G., Kay, M. C., … & Jackson, J. B. (2006). Depletion, degradation, and recovery potential of estuaries and coastal seas. Science ,312 (5781), 1806-1809.
Ludt, W. B., & Rocha, L. A. (2015). Shifting seas: The impacts of Pleistocene sea‐level fluctuations on the evolution of tropical marine taxa. Journal of Biogeography , 42 (1), 25-38.
Macieira, R. M., Simon, T., Pimentel, C. R., & Joyeux, J. C. (2015). Isolation and speciation of tidepool fishes as a consequence of Quaternary sea-level fluctuations. Environmental Biology of Fishes , 98 (1), 385-393.
Malinsky, M., Trucchi, E., Lawson, D. J., & Falush, D. (2018). RADpainter and fineRADstructure: population inference from RADseq data. Molecular biology and evolution35 (5), 1284-1290.
Martins, N., Macagnan, L., Cassano, V., & Gurgel, C. (2021). Barriers to gene flow along the Brazilian coast: a synthesis and data analysis. Authorea Preprints.
Mazzei, E. F., Pinheiro, H. T., Simon, T., Moura, R. L., Macieira, R. M., Pimentel, C. R., … & Joyeux, J. C. (2021). Mechanisms of dispersal and establishment drive a stepping stone community assembly on seamounts and oceanic islands. Marine Biology , 168 (7), 1-11.
Meisner, J., Liu, S., Huang, M., & Albrechtsen, A. (2021). Large-scale inference of population structure in presence of missingness using PCA.Bioinformatics , 37 (13), 1868-1875.
Melis, R., Vacca, L., Cuccu, D., Mereu, M., Cau, A., Follesa, M. C., & Cannas, R. (2018). Genetic population structure and phylogeny of the common octopus Octopus vulgaris Cuvier, 1797 in the western Mediterranean Sea through nuclear and mitochondrial markers.Hydrobiologia , 807 (1), 277-296.
Mill, G. N., da Costa, V. S., Lima, N. D., Gabioux, M., Guerra, L. A. A., & Paiva, A. M. (2015). Northward migration of Cape São Tomé rings, Brazil. Continental Shelf Research , 106 , 27-37.
Mills, L. S. (2012). Conservation of wildlife populations: demography, genetics, and management . John Wiley & Sons.
Minh, B. Q., Schmidt, H. A., Chernomor, O., Schrempf, D., Woodhams, M. D., Von Haeseler, A., & Lanfear, R. (2020). IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era.Molecular biology and evolution , 37 (5), 1530-1534.
Mora, C., Tittensor, D. P., Adl, S., Simpson, A. G., & Worm, B. (2011). How many species are there on Earth and in the ocean?. PLoS biology , 9 (8), e1001127.
Moritz, C., & Agudo, R. (2013). The future of species under climate change: resilience or decline?. Science , 341 (6145), 504-508.
Neves, J. M., Lima, S. M., Mendes, L. F., Torres, R. A., Pereira, R. J., & Mott, T. (2016). Population structure of the rockpool blenny Entomacrodus vomerinus shows source-sink dynamics among ecoregions in the tropical Southwestern Atlantic. PloS one11 (6), e0157472.
Oliveira, L. R. D., Fraga, L. D., Ott, P. H., Siciliano, S., Lopes, F., Almeida, R., … & Bonatto, S. L. (2019). Population structure, phylogeography, and genetic diversity of the common bottlenose dolphin in the tropical and subtropical southwestern Atlantic Ocean.Journal of Mammalogy , 100 (2), 564-577.
Palumbi, S. R. (1992). Marine speciation on a small planet. Trends in Ecology & Evolution , 7 (4), 114-118.
Palumbi, S. R. (1994). Genetic divergence, reproductive isolation, and marine speciation. Annual review of ecology and systematics ,25 (1), 547-572.
Pauly, D., & Zeller, D. (2016). Catch reconstructions reveal that global marine fisheries catches are higher than reported and declining.Nature communications , 7 (1), 1-9.
Peijnenburg, K. T. C. A., Fauvelot, C., Breeuwer, J. A. J., & Menken, S. B. J. (2006). Spatial and temporal genetic structure of the planktonic Sagitta setosa (Chaetognatha) in European seas as revealed by mitochondrial and nuclear DNA markers. Molecular Ecology ,15 (11), 3319-3338
Peluso, L., Tascheri, V., Nunes, F. L., Castro, C. B., Pires, D. O., & Zilberberg, C. (2018). Contemporary and historical oceanographic processes explain genetic connectivity in a Southwestern Atlantic coral.Scientific reports , 8 (1), 1-12.
Peterson, B. K., Weber, J. N., Kay, E. H., Fisher, H. S., & Hoekstra, H. E. (2012). Double digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PloS one7 (5), e37135.
Pinheiro, H. T., Mazzei, E., Moura, R. L., Amado-Filho, G. M., Carvalho-Filho, A., Braga, A. C., … & Joyeux, J. C. (2015). Fish biodiversity of the Vitória-Trindade Seamount Chain, southwestern Atlantic: an updated database. PloS one , 10 (3), e0118180.
Pinheiro, H. T., Bernardi, G., Simon, T., Joyeux, J. C., Macieira, R. M., Gasparini, J. L., … & Rocha, L. A. (2017). Island biogeography of marine organisms. Nature , 549 (7670), 82-85.
Portik, D. M., Leaché, A. D., Rivera, D., Barej, M. F., Burger, M., Hirschfeld, M., … & Fujita, M. K. (2017). Evaluating mechanisms of diversification in a Guineo‐Congolian tropical forest frog using demographic model selection. Molecular ecology , 26 (19), 5245-5263.
Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A., Bender, D., … & Sham, P. C. (2007). PLINK: a tool set for whole-genome association and population-based linkage analyses.The American journal of human genetics , 81 (3), 559-575.
R Core Team (2017). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URLhttps://www.R-project.org/.
Reed, D. H., & Frankham, R. (2003). Correlation between fitness and genetic diversity. Conservation biology , 17 (1), 230-237.
Riginos, C., & Liggins, L. (2013). Seascape genetics: populations, individuals, and genes marooned and adrift. Geography compass ,7 (3), 197-216.
Rosa, R., Pissarra, V., Borges, F. O., Xavier, J., Gleadall, I., Golikov, A… Villanueva, R. (2019). Global patterns of species richness in coastal cephalopods. Frontiers in Marine Science ,6 , 1–16. doi: 10.3389/fmars.2019.00469
Rozas, J., Ferrer-Mata, A., Sánchez-DelBarrio, J. C., Guirao-Rico, S., Librado, P., Ramos-Onsins, S. E., & Sánchez-Gracia, A. (2017). DnaSP 6: DNA sequence polymorphism analysis of large data sets. Molecular biology and evolution , 34 (12), 3299-3302.
Sanford, E., & Kelly, M. W. (2011). Local adaptation in marine invertebrates. Annual review of marine science , 3 , 509-535.
Sauer, W. H., Gleadall, I. G., Downey-Breedt, N., Doubleday, Z., Gillespie, G., Haimovici, M., … & Pecl, G. (2021). World octopus fisheries. Reviews in Fisheries Science & Aquaculture ,29 (3), 279-429
Simon, T., Pinheiro, H. T., Santos, S., Macieira, R. M., Ferreira, Y. S., Bernardi, G., … & Joyeux, J. C. (2021). Comparative phylogeography of reef fishes indicates seamounts as stepping stones for dispersal and diversification. Coral Reefs , 1-11.
Sissini, M. N., de Barros Barreto, M. B. B., Széchy, M. T. M., de Lucena, M. B., Oliveira, M. C., Gower, J., … & Horta, P. A. (2017). The floating Sargassum (Phaeophyceae) of the South Atlantic Ocean–likely scenarios. Phycologia , 56 (3), 321-328.
Sodeland, M., Jentoft, S., Jorde, P. E., Mattingsdal, M., Albretsen, J., Kleiven, A. R., … & Knutsen, H. (2022). Stabilizing selection on Atlantic cod supergenes through a millennium of extensive exploitation.Proceedings of the National Academy of Sciences , 119 (8).
Sousa, V., & Hey, J. (2013). Understanding the origin of species with genome-scale data: modelling gene flow. Nature Reviews Genetics ,14 (6), 404-414.
Spielman, D., Brook, B. W., & Frankham, R. (2004). Most species are not driven to extinction before genetic factors impact them.Proceedings of the National Academy of Sciences , 101 (42), 15261-15264.
Timm, L. E., Bracken-Grissom, H. D., Sosnowski, A., Breitbart, M., Vecchione, M., & Judkins, H. (2020). Population genomics of three deep-sea cephalopod species reveals connectivity between the Gulf of Mexico and northwestern Atlantic Ocean. Deep Sea Research Part I: Oceanographic Research Papers , 158 , 103222.
Volk, D. R., Konvalina, J. D., Floeter, S. R., Ferreira, C. E., & Hoffman, E. A. (2021). Going against the flow: Barriers to gene flow impact patterns of connectivity in cryptic coral reef gobies throughout the western Atlantic. Journal of Biogeography , 48 (2), 427-439.
Watson, R. A., & Tidd, A. (2018). Mapping nearly a century and a half of global marine fishing: 1869–2015. Marine Policy , 93 , 171-177.
White, T. A., & Searle, J. B. (2007). Factors explaining increased body size in common shrews (Sorex araneus) on Scottish islands. Journal of Biogeography , 34 (2), 356-363.
Yu, G., Smith, D. K., Zhu, H., Guan, Y., & Lam, T. T. Y. (2017). ggtree: an R package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods in Ecology and Evolution , 8 (1), 28-36.