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Summary

In this paper we propose a numerical method for American multi-asset options under
jump-diffusion model based on the combination of the exponential time differenc-
ing (ETD) technique for the differential operator and Gauss-Hermite quadrature for
the integral term. In order to simplify the computational stencil and improve charac-
teristics of the ETD-scheme mixed derivative eliminating transformation is applied.
The results are compared with recently proposed methods.
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1 INTRODUCTION

The class of multi-asset option pricing problems have an increasing interest among the practitioners because they are frequent in
the real market practice. The price of such multi-asset options can be found by the well-known Black-Scholes model1. Despite
its simplicity and elegance, it does not take into consideration the possibility of the abrupt variations in the stock prices, which
emerges a suitable generalization of the Black-Scholes model. In particular, jump-diffusion models assume that underlying
assets price process presents jumps at random times due to some force majeure events. In that case, from the mathematical point
of view, the partial differential problem of option pricing becomes a partial integro-differential equation (PIDE)2, where the
integral part is non-local. In addition, for multi-asset problems the nature of this integral term is multiple3, which adds more
complexity.

The flexibility of American options to be exercised at any moment before the maturity leads to a very challenging free
boundary PIDE problem. One of the most used methods for treating the American option pricing problem is the penalty method
that incorporates an additional term to the original equation for European case4, resulting in a semi-linear PIDE for the jump-
diffusion problem. Since the closed-form solution does not exist, some numerical approximation is required.

For multidimensional problems one of the most used techniques is the semi-discretization. The spatial derivatives are approxi-
mated by finite differences (FD)5,6,7,8,9 or finite element method10,11. Some methods are based on the radial basis function (RBF)
approximation for the spatial derivatives12. Usually, the time-stepping is performed by the standard Crank-Nicolson scheme
or backward difference. In13 the mesh-free method based on moving least squares collocation is considered. However, in cited
above papers the problems are limited to one or two assets in the portfolio. This important lack motivates us to consider more
general 𝑛-dimensional problem.

Another important numerical challenge is related to the correlated assets. The presence of the mixed derivative terms in the
PIDE is the source of many computational drawbacks and may cause instabilities and inaccuracies. The negative effect of the
mixed derivative terms increases exponentially with the growth of the dimensionality of the problem. Thus, it is extremely
important to address this issue in multi-dimensional cases. In present paper, we use the approach based on 𝐿𝐷𝐿𝑇 -factorization

0Abbreviations: FD, finite difference; GH, Gauss-Hermite; ETD, exponential time differencing; PIDE, partial integro-differential equation
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of the so-called diffusion matrix14. This mixed derivative removing technique allows avoiding of the numerical drawbacks and
reducing significantly the computational cost.

There are a variety of multi-asset options, which differ to each other by the payoff function. This payoff function defines
the initial and boundary conditions. The considered mixed derivative removing algorithm transforms the original semi-infinite
domain to an infinite one. For the numerical solution, it is truncated, thus at the boundaries of this new truncated domain the
PIDE is valid and can be used as the boundary conditions. This makes the proposed algorithm more versatile and flexible to an
option type.

Since the jump-diffusion model is considered, the corresponding non-local integral term has to be handled. In3, as well as
in many other papers cited above the trapezoidal rule is employed. However, it requires additional computational resources and
leads to a dense matrix discretization12 for FD methods. This drawback can be avoided by applying the Fast Fourier Transform15.
Moreover, the integration domain is infinite and thus has to be truncated, which affects to the accuracy. An alternative approach
for numerical approximation of improper integrals is the Gauss-Hermite quadrature, which allows an accurate approximation of
the improper integral with a very low number of quadrature nodes. Since thee nodes not necessary coincide with the mesh points
of the computational domain of the spatial discretization, an interpolation is to be employed. In7 the bivariate Gauss-Hermite
quadrature is applied to the two-asset option under the jump-diffusion model. In present paper we generalize it to 𝑛-dimensional
case by proposing a multi-dimensional interpolation algorithm.

In present paper, we follow the semi-discretization approach, the second-order central FD scheme are used for the spatial
derivatives approximation. The time-stepping is performed by the exponential time differencing (ETD) method16 based on
exact integration of the system of ordinary differential equations. This approach has been previously tested by authors on one-
dimensional Heston model valuation17 and jump-diffusion models18.

The rest of paper is organized as follows. In Section 2 the PIDE is derived for the European and American option values
under the multi-asset jump-diffusion model. Section 3 describes the mixed derivative removing algorithm in 𝑛-dimensional
case. Section 4 proposes the numerical GH-ETD method for the transformed problem. This method includes: the discretization
of the initial and boundary conditions, as well as the spatial differential operator; the multivariate Gauss-Hermite quadrature,
which uses the multi-linear interpolation; and, finally, the ETD method. The results are presented and discussed in Section 5. In
Section 6 some conclusions are drawn.

2 JUMP-DIFFUSION MODEL FOR MULTI-ASSET OPTION

Let us consider a set of 𝑀 assets 𝐒 = (𝑆1, 𝑆2,… , 𝑆𝑀 ) under jump-diffusion model for price dynamics which incorporates the
stochastic volatility and Poisson jumps, such that for each 𝑖 = 1,… ,𝑀 one has

𝑑𝑆𝑖(𝑡)
𝑆𝑖(𝑡)

= (𝑟 − 𝑞𝑖 − 𝜆𝜅𝑖)𝑑𝑡 + 𝜎𝑖𝑑𝑊𝑖 + (𝑒𝐽𝑖 − 1)𝑑𝑍(𝑡), 𝑖 = 1,… ,𝑀, (1)

where 𝑟 is the risk free interest rate, 𝑞𝑖 and 𝜎𝑖, 𝑖 = 1, … ,𝑀 , are dividend yields and asset volatilities, conditional on the event
that no jumps occur, respectively; 𝑊𝑖, 𝑖 = 1, … ,𝑀 , stand for standard Brownian motions pairwise correlated by 𝜌𝑖𝑗 ∈ (−1, 1),
𝑖, 𝑗 = 1, … ,𝑀 . We consider a model with jumps of the sizes 𝐽𝑖, 𝜅𝑖 represent the expected relative jump sizes (𝜅𝑖 = 𝔼[𝑒𝐽𝑖 −1]),
𝑍(𝑡) is a Poisson process with jump intensity 𝜆 and is independent of the standard Brownian motion19.

2.1 European options
Let us consider a multi-asset European-style option with maturity 𝑇 > 0 written on the assets (1) and let its price be a function
of the time to maturity 𝜏 = 𝑇 − 𝑡 and the asset values 𝐒 denoted by 𝑉 (𝐒, 𝜏). Based on Ito calculus, the option value satisfies the
following PIDE

𝜕𝑉
𝜕𝜏

=1
2

𝑀
∑

𝑖,𝑗=1
𝜌𝑖𝑗𝜎𝑖𝜎𝑗𝑆𝑖𝑆𝑗

𝜕2𝑉
𝜕𝑆𝑖 𝜕𝑆𝑗

+
𝑀
∑

𝑖=1
(𝑟 − 𝑞𝑖 − 𝜆𝑘𝑖)𝑆𝑖

𝜕𝑉
𝜕𝑆𝑖

− (𝑟 + 𝜆)𝑉

+ 𝜆∫
ℝ𝑀

+

𝑉 (𝐒 ⋅ 𝐲, 𝜏)𝑓 (𝐲)𝑑𝐲,
(2)
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where ℝ𝑀
+ =

{

𝐲 ∈ ℝ𝑀
| 𝑦𝑖 ≥ 0, 𝑖 = 1,… ,𝑀

}

; 𝜌𝑖𝑗 are the entries of the symmetric positive semi-definite correlation matrix

𝑅 =
{

𝜌𝑖𝑗
}

1≤𝑖,𝑗≤𝑀 , (3)

such that 𝜌𝑖𝑖 = 1, 𝜌𝑖𝑗 = 𝜌𝑗𝑖, 𝑖 ≠ 𝑗, and |𝜌𝑖𝑗| ≤ 1. Function 𝑓 (𝐲) is the probability density function of a multivariate lognormal
distribution.

At the maturity 𝜏 = 0 the option price is a payoff function:

𝑉 (𝐒, 0) = 𝜑(𝐒), (4)
which is defined by the contract type.

Note that the proposed here numerical algorithm is applicable to any type of multi-asset option.
It is well-known that logarithm transformation for spatial variables leads to constant coefficient partial differential equation20.

Thus, we apply the following transformation

𝑥𝑖 = log𝑆𝑖, 1 ≤ 𝑖 ≤ 𝑀, (5)

with 𝑉 (𝑆, 𝜏) = 𝑈 (𝑋, 𝜏), where 𝑋 = (𝑥1, 𝑥2,… , 𝑥𝑀 )𝑇 , resulting in the following PIDE

𝑈𝜏(𝑋, 𝜏) = 𝑈 (𝑋, 𝜏) + 𝑈 (𝑋, 𝜏), (6)

with differential operator

𝑈 = 1
2

𝑀
∑

𝑖,𝑗=1
𝜌𝑖𝑗

𝜕2𝑈
𝜕𝑥𝑖 𝜕𝑥𝑗

+
𝑀
∑

𝑖=1

(

𝑟 − 𝑞𝑖 − 𝜆𝜅𝑖 −
𝜎2
𝑖

2

)

𝜕𝑈
𝜕𝑥𝑖

− (𝑟 + 𝜆)𝑈 ; (7)

and integral operator 𝑈 is given by the following

𝑈 (𝑋, 𝜏) = 𝜆∫
ℝ𝑀

𝑈 (𝑋 + 𝜂𝜂𝜂, 𝜏)𝑔(𝜂𝜂𝜂)𝑑𝜂𝜂𝜂, (8)

where 𝜂𝜂𝜂 = (𝜂1,… , 𝜂𝑀 ) ∈ ℝ𝑀 . The probability density function of the multivariate normal distribution 𝑔(𝜂𝜂𝜂) is defined as follows

𝑔(𝜂𝜂𝜂) = 1
(2𝜋)𝑀∕2

√

|Σ|
exp

[

−1
2
(𝜂𝜂𝜂 − 𝜇)Σ−1(𝜂𝜂𝜂 − 𝜇)𝑇

]

, (9)

where 𝜇 = (𝜇1, 𝜇2,… , 𝜇𝑀 ) are the means of the jumps, and Σ is the covariance matrix of the jumps19,

Σ =
{

Σ𝑖𝑗
}

1≤𝑖,𝑗≤𝑀 = 𝜌̂𝑖𝑗𝜎𝑖𝜎𝑗 . (10)
Under the proposed transformation payoff function takes the form

𝜙(𝑋) = 𝜑(exp𝑋). (11)

2.2 American options
In contrast to European options, American ones can be exercised at any moment prior to the maturity 𝑇 . Mathematically
speaking, it leads the equation (6) to the following partial integro-differential complementarity problem3

⎧

⎪

⎨

⎪

⎩

𝑈𝜏(𝑋, 𝜏) ≥ 𝑈 (𝑋, 𝜏) + 𝑈 (𝑋, 𝜏),
𝑈 (𝑋, 𝜏) ≥ 𝜙(𝑋),
(𝑈 (𝑋, 𝜏) − 𝜙(𝑋))

(

𝑈𝜏(𝑋, 𝜏) −𝑈 (𝑋, 𝜏) − 𝑈 (𝑋, 𝜏)
)

= 0
(12)

for 𝑋 ∈ ℝ𝑀 and 𝜏 ∈ (0, 𝑇 ].
The American option pricing is formulated as an optimal stopping problem21, however, there are empirical evidences of

irrational exercises22,23. These aspects have been treated in24 by developing a model with rationality parameter. This model has
been used in put options valuation under classical Black-Scholes model25 and under the regime-switching26. In present paper
we extend this rational behavior approach to the multidimensional jump-diffusion models.
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Following the ideas of25,26, let us introduce the rationality parameter ΛRat, such that ΛRat = 0 provides the price of the
corresponding European option (no early exercise), and large values of ΛRat allows the approximation of the American option
with rational exercise. Then, the irrational behaviour of the trader is modelled throughout the intensity function Φ:

Φ(𝛾) =

{

ΛRat, if 𝛾 ≥ 0,
0, otherwise.

(13)

Remark 1. The intensity function (13) can be written as follows

Φ(𝛾) = ΛRat𝟏(𝛾≥0), (14)
where 𝟏(𝛾≥0) is the indicator function. The intensity function (13) corresponds to the penalty method for the free-boundary
problem and can be interpreted as the willing of a buyer to exercise the option when it is profitable25.

Remark 2. The choice of the intensity function is not unique, in25 several smooth analogues of the stepwise function (13) have
been proposed.

After the logarithmic transformation (5), the transformed option price of the American option is the solution of the following
PIDE:

𝑈𝜏(𝑋, 𝜏) = 𝑈 (𝑋, 𝜏) + 𝑈 (𝑋, 𝜏) +𝑈 (𝑋, 𝜏), (15)
where 𝑈 (𝑋, 𝜏) and 𝑈 (𝑋, 𝜏) are defined in (7) and (8), respectively, and 𝑈 (𝑋, 𝜏) is the rationality term given by

𝑈 (𝑋, 𝜏) = Φ (𝑈 (𝑋, 0) − 𝑈 (𝑋, 𝜏)) ⋅ (𝑈 (𝑋, 0) − 𝑈 (𝑋, 𝜏)) . (16)

Since the choice of the rationality parameter ΛRat allows the evaluation of both, European and American options, further we
consider more general PIDE (15). Note that the European option value corresponds to ΛRat = 0.

3 MIXED DERIVATIVE REMOVING

We start this section by recalling the previous results:

Theorem 1 (Company et al.,14). Let 𝑅 =
{

𝜌𝑖𝑗
}

1≤𝑖,𝑗≤𝑀 be the symmetric positive semi-definite matrix and let 𝐿, 𝑃 and 𝐷 be
matrices in ℝ𝑀×𝑀 satisfying

𝑃𝑅𝑃 𝑇 = 𝐿𝐷𝐿𝑇 . (17)
Then, the transformation

𝑌 = 𝐶𝑋 ∈ ℝ𝑀 , 𝐶 = 𝐿−1𝑃 , (18)
leads the differential operator (7) to the canonical form without the mixed derivative terms.

By denoting 𝑊 (𝑌 , 𝜏) = 𝑈 (𝑋, 𝜏), under the transformation (18), differential operator (7) takes the following form

𝑊 = 1
2

𝑀
∑

𝑖=1
𝑑𝑖𝑖

𝜕2𝑊
𝜕𝑦2𝑖

+
𝑀
∑

𝑖=1

( 𝑀
∑

𝑗=1

(

𝑟 − 𝑞𝑗 − 𝜆𝜅𝑗 −
𝜎2
𝑗

2

)

𝑐𝑖𝑗

)

𝜕𝑊
𝜕𝑦𝑖

− (𝑟 + 𝜆)𝑊 , (19)

where 𝑐𝑖𝑗 are the entries of the transformation matrix 𝐶 , 𝑑𝑖𝑖 are the diagonal elements of the matrix 𝐷.

Remark 3. Company et al.,14. Under the transformation (18), differential operator (7) can be written in the compact form

𝑊 = 1
2
(𝐷∇) ⋅ ∇𝑊 + (𝐶𝑄) ⋅ ∇𝑊 − (𝑟 + 𝜆)𝑊 , (20)

where 𝑄 = (𝑄1, 𝑄2,… , 𝑄𝑀 )𝑇 with 𝑄𝑗 =
(

𝑟 − 𝑞𝑗 − 𝜆𝜅𝑗 −
𝜎2
𝑗

2

)

, 1 ≤ 𝑗 ≤ 𝑀 .

Due to (18), the integral term (8) will also change by taking as new integrating variable

𝜉𝜉𝜉 = 𝑌 + 𝐶𝜂𝜂𝜂 ⇐⇒ 𝜂𝜂𝜂 = 𝐶−1(𝜉𝜉𝜉 − 𝑌 ) (21)
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with the Jacobian
| | = det

{

𝜕𝜂𝑖
𝜕𝜉𝑗

}

= 1
det 𝐶

, (22)

resulting in the following
𝑊 = 𝜆

det 𝐶 ∫
ℝ𝑀

𝑊 (𝜉𝜉𝜉, 𝜏)𝑔
(

𝐶−1(𝜉𝜉𝜉 − 𝑌 )
)

𝑑𝜉𝜉𝜉, (23)

where 𝑔(⋅) is defined in (9).
Finally, the PIDE to solve is written as follows

𝑊𝜏(𝑌 , 𝜏) = 𝑊 (𝑌 , 𝜏) + 𝑊 (𝑌 , 𝜏), 𝑌 ∈ ℝ𝑀 , 𝜏 ∈ [0, 𝑇 ], (24)
where the differential operator is defined in (19) and the integral term is given in (23).

4 NUMERICAL SOLUTION

Multidimensional PIDE (24) is solved numerically. In present paper, we propose a combination of the ETD method with the
Gauss-Hermite quadrature. For the differential operator discretization the second order centred FD approximation is used. This
spatial discretization requires boundary conditions, which are discussed further.

As the initial condition, the transformed payoff function (11) is used setting 𝑋 = 𝐶−1𝑌 .
For the numerical solution, the infinite domain is truncated, thus at the boundaries of this new truncated domain the equation

(24) is valid and can be used as the boundary conditions.

4.1 Differential operator discretization
Following the ideas of27, we consider the truncated domain Ω =

[

𝑦1min
, 𝑦1max

]

×… ×
[

𝑦𝑀min
, 𝑦𝑀max

]

and introduce the uniform
in each dimension mesh

𝑦𝑗𝑖 = 𝑦𝑖min
+ 𝑗ℎ𝑖, ℎ𝑖 =

1
𝑁𝑖

(𝑦𝑖max
− 𝑦𝑖min

), 𝑗 = 0,… , 𝑁𝑖, 𝑖 = 1,… ,𝑀. (25)

Note that the total number of spatial nodes

𝑁 + 1 =
𝑀
∏

𝑖=1
(𝑁𝑖 + 1). (26)

Let us number all nodes from 0 to 𝑁 , such that (𝑦𝑗 , 𝜏) = (𝑦𝑗11 , 𝑦
𝑗2
2 ,… , 𝑦𝑗𝑀𝑀 , 𝜏), where

𝑗 = [𝑗1, 𝑗2,… , 𝑗𝑀 ] = 𝑗1 +
𝑀
∑

𝑖=2

( 𝑖−1
∏

𝑛=1
(𝑁𝑛 + 1)

)

𝑗𝑖. (27)

The boundary nodes 𝑦𝑗 ∈ 𝜕Ω are the nodes with at least one of the indexes 𝑗𝑖, 𝑖 = 1,… ,𝑀 , equal to zero or 𝑁𝑖, i.e.,

𝜕Ω =
{

(𝑦𝑗11 , 𝑦
𝑗2
2 ,… , 𝑦𝑗𝑀𝑀 ) ∶ ∃𝑚, 1 ≤ 𝑚 ≤ 𝑀, such that 𝑗𝑚 = 0, or 𝑗𝑚 = 𝑁𝑚

}

. (28)
The set of indexes of all boundary and interior nodes are denoted by Γ and Γ̄, respectively.
Then, the approximate solution at the node (𝑦𝑗 , 𝜏) is denoted by 𝑢𝑗1,…,𝑗𝑀 (𝜏). Further for the simplicity of the presentation, let

us use the abbreviated notation mentioning only the index of the changing variable 𝑦𝑖, the rest of indexes keep the value, then,
the spatial derivatives at the interior nodes are approximated as follows:

𝜕𝑊
𝜕𝑦𝑖

(𝑦𝑗 , 𝜏) =
𝑢𝑗𝑖+1(𝜏) − 𝑢𝑗𝑖−1(𝜏)

2ℎ𝑖
+ 𝑂(ℎ2

𝑖 ), (29)

𝜕2𝑊
𝜕𝑦2𝑖

(𝑦𝑗 , 𝜏) =
𝑢𝑗𝑖+1(𝜏) − 2𝑢𝑗𝑖(𝜏) + 𝑢𝑗𝑖−1(𝜏)

ℎ2
𝑖

+ 𝑂(ℎ2
𝑖 ). (30)

At the boundaries the equation (24) holds, thus, for the discretization of the spatial derivatives is established as follows for
𝑖 = 1,… ,𝑀 , 𝑗 = 0,… , 𝑁 ,
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𝜕𝑊
𝜕𝑦𝑖

(𝑦𝑗 , 𝜏) = −3𝑢𝑗𝑖 (𝜏)+4𝑢𝑗𝑖+1(𝜏)−𝑢𝑗𝑖+2(𝜏)
2ℎ𝑖

+ 𝑂(ℎ2
𝑖 ), 𝑗𝑖 = 0, (31)

𝜕𝑊
𝜕𝑦𝑖

(𝑦𝑗 , 𝜏) = 3𝑢𝑗𝑖 (𝜏)−4𝑢𝑗𝑖−1(𝜏)+𝑢𝑗𝑖−2(𝜏)
2ℎ𝑖

+ 𝑂(ℎ2
𝑖 ), 𝑗𝑖 = 𝑁𝑖, (32)

𝜕2𝑊
𝜕𝑦2𝑖

(𝑦𝑗 , 𝜏) = 2𝑢𝑗𝑖 (𝜏)−5𝑢𝑗𝑖+1(𝜏)+4𝑢𝑗𝑖+2(𝜏)−𝑢𝑗𝑖+3(𝜏)
ℎ2
𝑖

+ 𝑂(ℎ2
𝑖 ), 𝑗𝑖 = 0, (33)

𝜕2𝑊
𝜕𝑦2𝑖

(𝑦𝑗 , 𝜏) = 2𝑢𝑗𝑖 (𝜏)−5𝑢𝑗𝑖−1(𝜏)+4𝑢𝑗𝑖−2(𝜏)−𝑢𝑗𝑖−3(𝜏)
ℎ2
𝑖

+ 𝑂(ℎ2
𝑖 ), 𝑗𝑖 = 𝑁𝑖. (34)

Substituting the derivatives in (19) by the finite-difference approximations (29)–(34), the differential operator 𝑊 (19) is
transformed to the matrix operator 𝐴𝐮, where 𝐮 = [𝑢0,… , 𝑢𝑁 ]𝑇 , 𝐴 = (𝑎𝑖𝑗)0≤𝑖,𝑗≤𝑁 is a sparse matrix with the following nonzero
entries:

1. For the interior nodes 𝑗 ∈ Γ̄:

𝑎𝑗𝑗 = −2
𝑀
∑

𝑖=1

𝑑𝑖𝑖
ℎ2
𝑖

− (𝑟 + 𝜆), 𝑎𝑗, 𝑗±𝑚 =
𝑑𝑚𝑚
ℎ2
𝑚

± 1
2ℎ𝑖

𝛼𝑚, (35)

where 𝑚 =
∏𝑖−1

𝑛=1(𝑁𝑛 + 1), 𝑖 = 1,… ,𝑀 , and

𝛼𝑚 =
𝑀
∑

𝑖=1

(

𝑟 − 𝑞𝑖 − 𝜆𝜅𝑖 −
𝜎2
𝑖

2

)

𝑐𝑚𝑖. (36)

2. For the lower boundary nodes 𝑗 ∈ Γ, 𝑗𝑚 = 0:

𝑎𝑗𝑗 = 2
𝑀
∑

𝑖=1

𝑑𝑖𝑖
ℎ2
𝑖

− 3
𝛼𝑗
2ℎ𝑗

− (𝑟 + 𝜆), (37)

𝑎𝑗,𝑗+𝑚 = −5
𝑑𝑗𝑗
ℎ2
𝑗

+ 4
𝛼𝑗
2ℎ𝑗

, (38)

𝑎𝑗,𝑗+2𝑚 = 4
𝑑𝑗𝑗
ℎ2
𝑗

−
𝛼𝑗
2ℎ𝑗

, (39)

𝑎𝑗,𝑗+3𝑚 = −
𝑑𝑗𝑗
ℎ2
𝑗

, (40)

where 𝑚 =
∏𝑖−1

𝑛=1(𝑁𝑛 + 1), 𝑖 = 1,… ,𝑀 , and 𝛼𝑚 are defined by (36).

3. For the upper boundary 𝑗 ∈ Γ, 𝑗𝑚 = 𝑁𝑚:

𝑎𝑗𝑗 = 2
𝑀
∑

𝑖=1

𝑑𝑖𝑖
ℎ2
𝑖

+ 3
𝛼𝑗
2ℎ𝑗

− (𝑟 + 𝜆), (41)

𝑎𝑗,𝑗−𝑚 = −5
𝑑𝑗𝑗
ℎ2
𝑗

− 4
𝛼𝑗
2ℎ𝑗

, (42)

𝑎𝑗,𝑗−2𝑚 = 4
𝑑𝑗𝑗
ℎ2
𝑗

+
𝛼𝑗
2ℎ𝑗

, (43)

𝑎𝑗,𝑗−3𝑚 = −
𝑑𝑗𝑗
ℎ2
𝑗

, (44)

where 𝑚 =
∏𝑖−1

𝑛=1(𝑁𝑛 + 1), 𝑖 = 1,… ,𝑀 , and 𝛼𝑚 are defined by (36).
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4.2 ETD method
After the semi-discretization of the differential operator described above, the PIDE (24) is substituted by the system of the
ordinary differential equations:

𝑑𝑢𝑢𝑢
𝑑𝜏

= 𝐴𝑢𝑢𝑢 +𝐹𝐹𝐹 (𝑢𝑢𝑢(𝜏)), (45)
where 𝐴 is a sparse banded (𝑁 + 1) × (𝑁 + 1) matrix of the coefficients (35)–(44); 𝐹𝐹𝐹 is a vector-function on the 𝑢𝑢𝑢, which
contains the approximation of the integral term (23) at each point of the mesh 𝑦𝑗 at the moment 𝜏. The approximation of 𝑊
will be discussed in the following subsection.

System (45) can be solved by an ETD method16 basing on the matrix exponential. Firstly, we introduce a uniform temporal
mesh with step-size 𝑘 = 𝑇

𝑁𝜏
, such that

𝑡𝑛 = 𝑛𝑘, 𝑛 = 0,… , 𝑁𝜏 − 1. (46)
In16 it has been shown that the exact solution of (45) in the interval [𝑡𝑛, 𝑡𝑛+1] can be found as

𝑢𝑢𝑢(𝑡𝑛+1) = 𝑒𝐴𝑘𝑢𝑢𝑢(𝑡𝑛) +

𝑘

∫
0

𝑒𝐴𝑠𝐹𝐹𝐹 (𝑢𝑢𝑢(𝑡𝑛+1 − 𝑠))𝑑𝑠. (47)

Note that the integrand in (47) depends on the solution at unknown time-level 𝑡𝑛+1, thus in order to obtain the explicit scheme,
we approximate these unknown values by the corresponding 𝑢𝑢𝑢(𝑡𝑛), then 𝐹𝐹𝐹 (𝑢𝑢𝑢(𝑡𝑛)) is independent on integration variable 𝑠, and
one gets

𝑢𝑢𝑢(𝑡𝑛+1) ≈ 𝑒𝐴𝑘𝑢𝑢𝑢(𝑡𝑛) +
⎛

⎜

⎜

⎝

𝑘

∫
0

𝑒𝐴𝑠𝑑𝑠
⎞

⎟

⎟

⎠

𝐹𝐹𝐹 (𝑢𝑢𝑢(𝑡𝑛)). (48)

In order to avoid the computation of matrix inverse 𝐴−1 which can be challenging due to the dimension of the matrix 𝐴,
and moreover, its singularity or ill-conditioning, we approximate the integral term in (48) by the Simpson’s rule. Denoting the
approximate solution at 𝑡𝑛 by 𝑢𝑢𝑢𝑛 ≈ 𝑢𝑢𝑢(𝑡𝑛), one gets the following explicit formula for computation of 𝑢𝑢𝑢𝑛+1:

𝑢𝑛+1 = 𝑒𝐴𝑘𝑢𝑢𝑢𝑛 + 𝑘
6
(

𝐼 + 4𝑒𝐴𝑘∕2 + 𝑒𝐴𝑘
)

𝐹𝐹𝐹 (𝑢𝑢𝑢𝑛), 𝑛 = 0,… , 𝑁𝜏 − 1. (49)
where 𝐼 is the identity (𝑁 + 1) × (𝑁 + 1) matrix. Note that the matrix 𝐴 is constant-values, thus, the corresponding matrix
exponentials 𝑒𝐴𝑘 and 𝑒𝐴𝑘∕2 are constant-values as well and can be computed just before the temporal iterations. Further we
discuss the numerical approximation of the non-linear (integral) term 𝐹𝐹𝐹 (𝑢𝑢𝑢𝑛).

4.3 Multivariate Gauss-Hermite quadrature
The nonlinear term 𝐹𝐹𝐹 (𝑢𝑢𝑢𝑛), in fact, is the discretization of the integral term 𝑊 , i.e.,

𝐹𝐹𝐹 (𝑢𝑢𝑢𝑛) ≈ 𝜆
det 𝐶 ∫

ℝ𝑀

𝑢(𝜉𝜉𝜉, 𝑡𝑛)𝑔
(

𝐶−1(𝜉𝜉𝜉 − 𝑌 )
)

𝑑𝜉𝜉𝜉, (50)

which can be approximated by some numerical integration method, such as multivariate trapezoidal rule, as it is used for two-
asset case in3 or Gaussian quadrature (for bi-variate Gauss-Hermite quadrature see7).

The main advantage of the trapezoidal rule is its simplicity and applicability for any meshes. However, for good accuracy a
huge amount of the integrand evaluation is needed. In the case of higher dimensions (more than 2) it is computationally costly.
Thus, in this paper we focus on the multivariate Gauss quadrature28, which is a very potent alternative to costly Newton-Cotes
composite rules or slowly convergent Monte Carlo methods. In fact, four-nodes Gauss-Hermite quadrature used in present study
is found to be optimal due to high accuracy and low computational cost.

In the case of one dimension, the Gauss-Hermite quadrature of 𝑁𝐺𝐻 nodes is written as

∞

∫
−∞

𝑓 (𝑥)𝑑𝑥 ≈
𝑁𝐺𝐻
∑

𝑗=1
𝜔𝑗𝑓 (𝜉𝑗) exp(𝜉2𝑗 ), (51)
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where 𝜉𝑗 , 𝑗 = 1,… , 𝑁𝐺𝐻 are the roots of the physicist’s version of the Hermite polynomials and 𝜔𝑗 are the associated weights.
For 𝑁𝐺𝐻 = 4 the nodes 𝜉𝑗 and weights 𝜔𝑗 are given in Table 2 .

Nodes 𝜉𝑗 Weights 𝜔𝑗
±1.650680123885784555883 0.081312835447245177143
±0.5246476232752903178841 0.8049140900055128365061

TABLE 1 The nodes and weights of the Gauss-Hermite quadrature for 𝑁𝐺𝐻 = 4.

In 2D-case the previous formula is extended to the following result:

∞

∫
−∞

∞

∫
−∞

𝑓 (𝑥, 𝑦)𝑑𝑥𝑑𝑦 ≈
𝑁𝐺𝐻
∑

𝑗1=1

𝑁𝐺𝐻
∑

𝑗2=1
𝜔𝑗1𝜔𝑗2𝑓 (𝜉𝑗1 , 𝜉𝑗2) exp(𝜉

2
𝑗1
+ 𝜉2𝑗2), (52)

where the nodes 𝜉𝑗1 and 𝜉𝑗2 and associated weights 𝜔𝑗1 , 𝜔𝑗2 are also given in Table 2 for 𝑁𝐺𝐻 = 4.
Expanding this formula for the case of 𝑀 variables, one gets the approximation of the nonlinear term in (49),

𝐹𝐹𝐹 (𝑢𝑢𝑢𝑛) ≈ 𝜆
det 𝐶 ∫

ℝ𝑀

𝑢(𝜉𝜉𝜉, 𝑡𝑛)𝑔
(

𝐶−1(𝜉𝜉𝜉 − 𝑌 )
)

𝑑𝜉𝜉𝜉

≈ 𝜆
det 𝐶

∞

∫
−∞

…

∞

∫
−∞

𝑢(𝜉𝜉𝜉, 𝑡𝑛)𝑔
(

𝐶−1(𝜉𝜉𝜉 − 𝑌 )
)

𝑑𝜉1 … 𝑑𝜉𝑀 ,

≈ 𝜆
det 𝐶

𝑁𝐺𝐻
∑

𝑗1=1

𝑁𝐺𝐻
∑

𝑗2=1
…

𝑁𝐺𝐻
∑

𝑗𝑀=1
𝜔𝑗1𝜔𝑗2 …𝜔𝑗𝑀 𝑢(𝜉𝜉𝜉

𝑗 , 𝑡𝑛)𝑔
(

𝐶−1((𝜉𝜉𝜉𝑗)𝑇 − 𝑌 )
)

exp(𝜉2𝑗1 +…+ 𝜉2𝑗𝑀 ),

(53)

where 𝜉𝜉𝜉𝑗 = [𝜉𝑗1 ,… , 𝜉𝑗𝑀 ], are vectors of all possible combinations of the nodes of the one-dimensional GH quadrature from
Table 2 .

In the formula above the solution at the node 𝜉𝜉𝜉𝑗 is required, which may differ from the mesh-points 𝑦𝑗 , thus, multivariate
linear interpolation is employed.

4.4 Multi-linear interpolation
Let us denote the query point by 𝜁𝜁𝜁 . In order to minimize the error, we start with searching for the nearest to 𝜁𝜁𝜁 mesh-nodes
denoted by 𝑌 0 and 𝑌 1, i.e., the coordinates of these nodes satisfy

𝑌 0
𝑖 ≤ 𝜁𝑖 ≤ 𝑌 1

𝑖 , ∀𝑖 = 1,… ,𝑀. (54)

Analogously to bilinear or trilinear interpolation, we consider 𝑀-dimensional hypercube with 2𝑀 corners denoted by 𝛿,
which can be numbered by binary vectors of the length 𝑀 , where the index [0,… , 0] corresponds to 𝛿0,…,0 = 𝑌 0 and the
index [1,… , 1] corresponds to 𝛿1,…,1 = 𝑌 1. The 𝑖-th component in the index equal to 1 means that the 𝑖-th component of the
corresponding corner is 𝑌 1

𝑖 , and 𝑌 0
𝑖 , otherwise.

Now, let us introduce a function ΞΞΞ, which transforms a 𝑀-dimensional vector 𝛿 to 2𝑀 -dimensional:

ΞΞΞ(𝛿) =

[

1, 𝛿1,… , 𝛿𝑀 , 𝛿1𝛿2,… , 𝛿1𝛿𝑀 , 𝛿2𝛿3,… , 𝛿1𝛿2𝛿3,… ,

( 𝑀
∏

𝑖=1
𝛿𝑖

)]

. (55)

Then the solution of the multi-linear interpolation problem can be written as

𝑢(𝜁𝜁𝜁 ) = 𝛼𝛼𝛼 ⋅ΞΞΞ(𝜁𝜁𝜁 )𝑇 , (56)
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TABLE 2 The nodes and weights of the Gauss-Hermite quadrature for 𝑁𝐺𝐻 = 4.

Nodes 𝜉𝑗 Weights 𝜔𝑗

±1.650680123885784555883 0.081312835447245177143
±0.5246476232752903178841 0.8049140900055128365061

TABLE 3 Parameters for the American basket option.

𝑇 𝐸 𝑟 𝑞1 𝑞2 𝜎1 𝜎2 𝜌

6 months 100 0.03 0.01 0.01 0.12 0.14 0.3

where 𝛼𝛼𝛼 = [𝛼0,… , 𝛼2𝑀 ] is the vector of the coefficients, and
Coefficients 𝛼𝛼𝛼 are found as the solution of the following linear system:

⎛

⎜

⎜

⎜

⎜

⎜

⎝

ΞΞΞ
(

𝛿0,…,0,0
)

ΞΞΞ
(

𝛿0,…,0,1
)

ΞΞΞ
(

𝛿0,…,0,1
)

…
ΞΞΞ
(

𝛿1,…,1,1
)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝛼0
𝛼1
𝛼2
…
𝛼2𝑀

⎞

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝑢
(

𝛿0,…,0,0
)

𝑢
(

𝛿0,…,0,1
)

𝑢
(

𝛿0,…,0,1
)

…
𝑢
(

𝛿1,…,1,1
)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

. (57)

5 NUMERICAL RESULTS

Apart from the new combined multivariate GH-ETD method for nonlinear PIDE, we propose the algorithm which can treat any
kind of options. It is possible because no additional boundary conditions are posed, which are different for different kind of
options. In order to prove the adaptivity of the proposed scheme, we start this section with various exotic options on two assets.
Then, we focus on the multi-asset jump-diffusion models.

For most of the examples, we chose uniform grid with 𝑁 = 150 nodes in each direction. Thus, the size of matrix 𝐴 is
𝑁2 × 𝑁2. In order to perform such huge matrix calculations, sparse matrices and parallel computing tools of MATLAB are
used. Moreover, the matrix exponential in this case is time-consuming, which urges an effective and fast algorithm. For the
calculations, algorithm proposed in29,30 is employed.

Computations are performed by MATLAB R2021a for Windows 10 home (64-bit) Intel(R) Core(TM) i5-8265u CPU, 1.60
GHz.

5.1 American options
Let us consider the case of American basket call option with the payoff function

𝜑basket(𝐒) = max

{ 𝑀
∑

𝑖=1
𝛼𝑖𝑆𝑖 − 𝐸, 0

}

, (58)

where 𝛼𝑖, 𝑖 = 1,… ,𝑀 , are the basket weights, such as
∑𝑀

𝑖=1 𝛼𝑖 = 1.
American options give the opportunity of the early exercise, thus rationality formulation (15) is considered. The rationality

parameter is set ΛRat = 100 (in previous study the convergence to American option price was proven25).

Example 5.1 (American basket call). Consider an American basket call option27 with the parameters given in Table 3 .

For better approximation the spatial computational domain is chosen as [−5, 5] × [−5, 5] with 150 × 150 nodes. In Table
4 , we compare the results for (𝑆1, 𝑆2) = (100, 100) with ones computed by the FD method (with mixed derivative removing
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TABLE 4 Price of American basket call option with parameters given in Table 3 for (𝑆1, 𝑆2) = (100, 100)

Method Option price

FD method27 3.41344
HOC19 3.35094

GH-ETD 3.45546

TABLE 5 The price of American basket call option with parameters given in Table 3 .

𝑆1

𝑆2 90 100 110

90 0.3302 1.2856 3.4288
100 1.3165 3.4555 6.8729
110 3.4966 6.8972 11.2116

transformation) proposed in27 and by the High-Order Computational (HOC) method of19. The option price for other assets’
prices are reported in Table 5 . The numerical solution is plotted in Figure 1 .

FIGURE 1 The price of American basket call option with parameters given in Table 3 at 𝑡 = 𝑇 (payoff) (left) and 𝑡 = 0 (right).

5.2 Options under jump-diffusion model
Example 5.2 (1D American option5,12,18). We consider 1D American option, both put and call, under Merton’s jump-diffusion
model with parameters given in Table 6 .

The numerical solution is plotted in Figure 2 : the black solid line represents the payoff, while the solution at 𝑡 = 0 is presented
bt the blue dashed line. In order to obtain better approximation, 60-nodes Gauss-Hermite quadrature is employed, which requires
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TABLE 6 Parameters for the American option under Merton’s jump-diffusion model.

𝑇 𝐸 𝑟 𝑞 𝜎 𝜆 𝜇 𝜎̂

3 months 100 0.05 0.0 0.15 0.1 −0.9 0.45

TABLE 7 American put option value at 𝑆 = 100 computed by various methods.

Method Option price

FF-ETD18 3.2428
RBF-ETI12 3.2418

Implicit method31 3.2412
GH-ETD 3.2408

larger computational domain. Thus, the infinite domain is truncated by [−20, 20]. To perform more accurate computation, the
number of spatial nodes is set 𝑁 = 1000. Rationality parameter is chosen ΛRat = 1000.

0 50 100 150 200
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40
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,t
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t = T (payoff)

t = 0

FIGURE 2 Option price at the maturity, 𝑡 = 𝑇 , (black solid line) and at 𝑡 = 0 (blue dashed line) for the American put under
the jump-diffusion model with parameters given in Table 6 .

This example is considered in many papers5,12,18,31, which allows us to compare the results. The option values at 𝑆 = 100
computed by the front-fixing with ETD (FF-ETD) method of18, radial basis function with differential quadrature with expo-
nential time integration (RBF-ETI) of12, implicit method by d’Halluin et al.31 and the proposed method are reported in Table
7 .
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TABLE 8 Parameters for the European put on minimum of two assets.

𝑇 𝐸 𝑟 𝑞1 𝑞2 𝜎1 𝜎2 𝜌 𝜆 𝜇1 𝜇2 𝜎1 𝜎2 𝜌̂

1 year 100 0.05 0.0 0.0 0.12 0.15 0.3 0.6 −0.1 0.1 0.17 0.13 −0.2

TABLE 9 The price of the European put-on-min option with the parameters given in Table 8 .

𝑆1

𝑆2 90 100 110

90 15.9578 13.5532 12.2341
100 12.1804 9.1420 7.5620
110 9.9008 6.4407 4.6335

Example 5.3. Now, let us consider a European put option on the minimum of two assets 𝑆1, 𝑆2 as it is done in20,7. Parameters
are given in Table 8 .

In this case 𝑀 = 2, the payoff function is written as follows

𝜑(𝑆1, 𝑆2) = max
{

𝐸 − min{𝑆1, 𝑆2}, 0
}

. (59)
We apply the logarithmic transformation (5) and the mixed derivative removing. The transformation matrix 𝐶 is calculated

by Theorem 1, resulting in the following

𝐶 =
(

8.3333 0
−2.5000 6.6667

)

, det 𝐶 = 55.5556 ≠ 0. (60)

We consider the truncated domain [−100, 10]×[−100, 10] with the uniform mesh of 𝑁1 = 𝑁2 = 100 spatial nodes, 𝑘 = 0.1.
The matrix exponential is computed by the fast algorithm29,30.

Payoff and the numerical solution computed by the proposed combined GH-ETD method are presented in Figure 3 . In order
to compare the results with ones in20, we use the bi-linear interpolation to approximate the solution at [𝑆1, 𝑆2] = {90, 100, 110}.
The results are reported in Table 9 .

Now, let us check how the price changes in the case of American option.

Example 5.4. We consider the put-on-min with parameters given in Table 8 .

Instead of the LCP problem and penalty method, as it is proposed in7,3, we include the rationality term and consider the
numerical solution of the equation (15) with ΛRat = 100. The numerical solution (at 𝑡 = 0) is presented in Figure 4 .

The GH quadrature with 4 nodes is used which allows fast and accurate solution. Comparing right plots of Figures 3 and 4 ,
one can notice that the American option value is higher than European one which agrees with theoretical results. Moreover, for
small asset prices (at the lower boundaries) the price of American option coincides with the payoff. It is explained by the fact
that the optimal exercise boundary leads in the computational domain.

The proposed method can be used for higher-dimensional problems. As an example, let us consider the option with three
correlated underlying assets.
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FIGURE 3 Option price at the maturity (left) and at 𝑡 = 0 (right) for the European put on the minimum of two assets with
parameters given in Table 8 (numerical solution by the proposed combined GH-ETD method).

FIGURE 4 Option price at the maturity (left) and at 𝑡 = 0 (right) for the American put on the minimum of two assets with
parameters given in Table 8 (numerical solution by the proposed combined GH-ETD method).

TABLE 10 Parameters for the three-asset (without dividend, 𝑞1 = 𝑞2 = 𝑞3 = 0) American option.

𝑇 𝐸 𝑟 𝜎1 𝜎2 𝜎3 𝜇1 𝜇2 𝜇3 𝜎1 𝜎2 𝜎3 𝜌𝐽1,2 𝜌𝐽1,3 𝜌𝐽2,3
1 year 40 0.05 0.25 0.30 0.20 -0.10 0.10 0.10 0.17 0.13 0.10 -0.20 0.10 0.20

Example 5.5. A three-asset American option is considered under the jump-diffusion model with the parameters given in Table
10 , 𝜆 = 0.6, and the correlation matrix

𝑅 =
⎛

⎜

⎜

⎝

1.0 0.9 0.9
0.9 1.0 0.8
0.9 0.8 1.0

⎞

⎟

⎟

⎠

. (61)

The numerical solution is constructed in the 3D-spatial domain [−10, 5]×[−10, 5]×[−10, 5] with various number of spatial
nodes; the time-step is chosen as 𝑘 = ℎ2 (ℎ is the same for all dimensions). The option price at (𝑆1, 𝑆2, 𝑆3) = (40, 35, 35) for
various grade of GH quadrature are reported in Table 11 .
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TABLE 11 American 3D basket option price at (𝑆1, 𝑆2, 𝑆3) = (40, 35, 35) computed at different meshes and by using 4, 8
and 10 nodes of GH-quadrature.

𝑁𝐺𝐻

(ℎ, 𝑘) 4 8 10

(0.5, 0.25) 23.2461 23.2461 23.2461
(0.25, 0.0625) 23.8436 23.8436 23.8436
(0.15, 0.0225) 23.9418 23.9418 23.9418

From Table 11 , one can observe that the solution converges to the option value 23.0017 with increasing number of mesh
points (decreasing step sizes).

6 CONCLUSIONS

This paper has proposed the universal numerical algorithm for various option pricing models. It is based on the preliminary
mixed derivative eliminating transformation, which simplifies the computational stencil and improves the stability conditions
of the numerical scheme. The transformed PIDE problem is established on the infinite domain. The numerical solution is then
constructed on the truncated domain by applying for the spatial discretization the finite difference schemes of the second order.

The numerical scheme adopts to any kind and style of option due to the one-sided finite differences used at the boundary
points. Thus, no boundary conditions are needed, we assume that the PIDE is valid at the boundaries.

For the temporal discretization the ETD method is used. Due to the logarithmic transformation, the matrix of the coefficients
is constant-valued and, thus, the matrix exponential is computed just once for all time levels.

For the approximation of the integral term in the case of the jump-diffusion models, the multivariate Gauss-Hermite quadrature
has been implemented. The choice of this integration method is conditioned by the good approximation properties for low
number of nodes (comparing to the trapezoidal and other Newton-Cotes formulas). Since the quadrature nodes do not necessary
coincide with the spatial nodes of the domain, the multidimensional linear interpolation has been implemented, the algorithm
has been described in detail.

The proposed GH-ETD method can be applied to European and American options due to the incorporation of the rationality
function. In other words, setting the rationality parameter ΛRat = 0 corresponds to the European option, while ΛRat ≫ 0 refers
to American one.

Finally, we have considered many numerical examples to prove the versatility of the proposed GH-ETD method and to
compare it with other known methods.
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