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Abstract: The motion of plane curves specified by hyperbolic inverse mean curvature with a constant

force term is considered. We proved that this flow remains the convexity for any forced term. Furthermore,

we give an example to understand how the constant forced term c affects this hyperbolic inverse mean

flow. Particularly, the asymptotic behavior of the flow under different initial conditions is discussed.
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1 Introduction

We consider the evolution of plane curves in R2. Let γ : S1 × [0, T ) → R2 be a family

of closed curves which is specified by hyperbolic inverse mean curvature flow with forced

term 
∂2γ

∂t2
=

(
1

k
− c

)
n⃗−

⟨
∂2γ

∂s∂t
,
∂γ

∂t

⟩
t⃗,

γ
∣∣∣
t=0

= γ0,
∂γ

∂t

∣∣∣
t=0

= f n⃗0,

(1.1)

where
1

k
is the inverse mean curvature of the curve γ, n⃗ and t⃗ are respectively the unit

outer normal vector and tangential vector of γ, <,>means the standard Euclidean metric

in R2, the initial normal velocity of the curve γ is f , c is a constant, s = s(·, t) denotes

the arc-length parameter. By the Frenet formula

∂t⃗

∂s
= −kn⃗,

∂n⃗

∂s
= kt⃗,
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where t⃗ =
∂γ

∂s
. So

∂2γ

∂t2
= −

(
1− ck

k2

)
∂2γ

∂s2
−

⟨
∂2γ

∂s∂t
,
∂γ

∂t

⟩
∂γ

∂s
. (1.2)

When c = 0, Zhou, Mao and Wu [1] considered hyperbolic inverse mean curvature

flow, they proved the local existence of this geometry flow. Some hyperbolic evolution

equations of geometric quantities were given. Under different assumption of initial veloc-

ity, the asymptotic behavior for an evolving convex closed curve under hyperbolic inverse

mean curvature flow with forced term.

Geometric evolution equations are powerful tools in studying mathematical problems

and receive more and more attentions in the past few decades. Perelman successfully

solve the 3-dimensional Poincaré conjecture using Ricci flow. The Ricci flow is an intrinsic

flow, however, the mean curvature flow is an extrinsic flow which is the most important

geometric flow in the geometry of submanifolds and the image processing (see, e.g., [2]).

Huisken and Ilmanen [3] proved the Riemannian Penrose inequality in terms of the weak

solution of the inverse mean flow. Brendle etal. [4] proved a sharp Minkowski inequality

for mean convex and star-shaped hypersurface in anti-de Sitter-Schwarzschild manifold

(n ≥ 3). Recently, Xia [5] studied inverse anisotropic mean curvature flow and prove

a Minkowski type inequality. Liu [6] introduced the inverse mean curvature flow with

a constant forced term, she proved the convexity of the flow for any external forced

field c . Furthermore, if c <
1

H0
, the solution of the flow expands for all time, and the

hypersurface converges to a sphere after rescaling the time. If c >
1

H0
, the hypersurface

converges to a point in a finite time.

Hyperbolic mean curvature flow with forced term describes the motion of melting

and crystallization interface of helium crystals, one can refer to [7], [8]-[13]. Wang [10]

proved the lifespan of classical solution to Cauchy problem for hyperbolic mean cur-

vature flow with a linear forcing term. In [11], under hyperbolic mean curvature flow

with different constant external forced term, the evolution of plane curves was stud-

ied. Furthermore, Wang [12] investigated symmetry reduction and invariant solutions to

a hyperbolic Monge-Ampère equation. They are also some other hyperbolic curvature

flows. See [14]-[23]. Based on hyperbolic inverse mean curvature flow, we consider the

hyperbolic inverse mean curvature flow with forced term.

This paper consists of the following. Preliminaries and hyperbolic evolution equations

that the geometry quantities of the curves satisfied are given in Section 2. Furthermore,

the local existence of the flow (1.1) is given. In Section 3, we given an example to analysis
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the motion of circles specified by the hyperbolic inverse mean curvature flow with forced

term c. Finally, the main result is proved.

2 Preliminaries

In this section, we investigate the short-time existence and give some propositions and

proof these propositions.

Definition 2.1. A flow is a normal flow if and only if the tangential velocity of the

curve is zero for all time.

Lemma 2.1 The hyperbolic inverse curvature flow with forced term (1.1) is a normal

flow.

Proof.
d

dt

⟨
∂γ

∂t
,
∂γ

∂u

⟩
=

⟨
∂2γ

∂t2
,
∂γ

∂u

⟩
+

⟨
∂γ

∂t
,
∂2γ

∂t∂u

⟩
=−

⟨
∂2γ

∂s∂t
,
∂γ

∂t

⟩⟨
t⃗,

∂γ

∂u

⟩
+

⟨
∂γ

∂t
,
∂2γ

∂t∂u

⟩
=−

⟨
∂2γ

∂s∂t
,
∂γ

∂t

⟩ ∣∣∣∣∂γ∂u
∣∣∣∣+⟨

∂γ

∂t
,
∂2γ

∂t∂u

⟩
=−

⟨
∂2γ

∂u∂t
,
∂γ

∂t

⟩
+

⟨
∂γ

∂t
,
∂2γ

∂t∂u

⟩
=0,

which means that ⟨
∂γ

∂t
,
∂γ

∂u

⟩
=

⟨
∂γ

∂t
,
∂γ

∂u

⟩ ∣∣∣
t=0

= 0.

The proof of Lemma 2.1 is finished.

In fact, the flow (1.1) is rewritten as
∂γ

∂t
= σn⃗

γ
∣∣∣
t=0

= γ0,

(2.1)

in which σ satisfies
∂σ

∂t
= k−1 − c, σ

∂σ

∂s
=

⟨
∂2γ

∂s∂t
,
∂γ

∂t

⟩
.

By the definition of arc-length,

ds = g(u, t)du =
∣∣∣∂γ
∂u

∣∣∣du.
Assume that the unit outer normal angle of γ is denoted by θ, then t⃗ and n⃗ are given by

t⃗ = (− sin θ, cos θ), n⃗ = (cos θ, sin θ).
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Then we have ∂θ
∂s = k and

∂t⃗

∂t
=

∂t⃗

∂θ

∂θ

∂t
= −∂θ

∂t
n⃗,

∂n⃗

∂t
=

∂n⃗

∂θ

∂θ

∂t
=

∂θ

∂t
t⃗. (2.2)

Lemma 2.2 ∂g
∂t = kσg.

Proof. Derive g with respect to t, we have

∂

∂t
(g2) =

∂

∂t

⟨
∂γ

∂u
,
∂γ

∂u

⟩
= 2

⟨
∂γ

∂u
,
∂2γ

∂t∂u

⟩
= 2

⟨
gt⃗,

∂

∂u
(σn⃗)

⟩
=2

⟨
gt⃗, σ

∂n⃗

∂u

⟩
= 2

⟨
gt⃗, σ

∂n⃗

∂s

∂s

∂u

⟩
=2

⟨
gt⃗, gσkt⃗

⟩
=2g2kσ,

Lemma 2.2 is proved. �

In terms the above Lemma, we can deduce

∂

∂t

∂

∂s
=

∂

∂t

(
1

g

∂

∂u

)
=− 1

g2
∂g

∂t

∂

∂u
+

1

g

∂

∂t

∂

∂u

=− 1

g2
(kσg)

∂

∂u
+

1

g

∂

∂u

∂

∂t

=− kσ
∂

∂s
+

∂

∂s

∂

∂t
.

Then
∂t⃗

∂t
=

∂

∂t

∂γ

∂s
= −kσ

∂γ

∂s
+

∂

∂s

∂γ

∂t

=− kσ
∂γ

∂s
+

∂

∂s
(σn⃗)

=− kσt⃗+
∂σ

∂s
n⃗+ σ

∂n⃗

∂s

=− kσt⃗+
∂σ

∂s
n⃗+ kσt⃗ =

∂σ

∂s
n⃗,

furthermore by (2.2),

−∂θ

∂t
=

∂σ

∂s
,

∂n⃗

∂t
= −∂σ

∂s
t⃗.

Let us parameterize the evolving curve γ(·, t) by the normal angle θ, denote

γ̃(θ, τ) = γ(u(θ, τ), t(θ, τ)),

in which t(θ, τ) = τ . Since
∂θ

∂τ
=

∂θ

∂t
+

∂θ

∂u

∂u

∂τ
= 0,
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we have

∂θ

∂t
+

∂θ

∂u

∂u

∂τ
=

∂θ

∂t
+

∂θ

∂s

∂s

∂u

∂u

∂τ
=

∂θ

∂t
+ kg

∂u

∂τ
= 0.

Hence,

∂t⃗

∂τ
= −

(
∂θ

∂t
+ kg

∂u

∂τ

)
n⃗ = 0,

similarly, we obtain ∂n⃗
∂τ = 0.

The support function of the closed convex curve γ̃ is given by

h = ⟨γ̃, n⃗⟩.

Its derivative satisfies

hθ = ⟨γ̃, t⃗⟩.

hθθ = ⟨γ̃θ, t⃗⟩+ ⟨γ̃,−n⃗⟩ = ⟨γ̃θ, t⃗⟩ − h,

and the evolving curve can be depicted by

γ̃ = hn⃗+ hθ t⃗.

By a direct computation, we have

hθθ + h = ⟨γ̃θ, t⃗⟩ = ⟨γ̃s ·
∂s

∂θ
, t⃗⟩ = ∂s

∂θ
=

1

k
.

Since

γ̃τ = hτ n⃗+ hθτ t⃗,

we have

hτ = ⟨γ̃τ , n⃗⟩ = ⟨γu
∂u

∂τ
+ γt, n⃗⟩ = ⟨γt, n⃗⟩

and

hττ =

⟨
γut

∂u

∂τ
+ γtt, n⃗

⟩
=

⟨
γut

∂u

∂τ
, n⃗

⟩
+ k−1 − c.

By
∂g

∂t
= kσg, we get

hτθ =

⟨
∂γ̃

∂τ
, t⃗

⟩
=

⟨
∂γ

∂t
+

∂γ

∂u

∂u

∂τ
, t⃗

⟩
= g

∂u

∂τ

and

hθτ =
∂

∂θ
⟨γt, n⃗⟩ =

⟨
γut

∂u

∂θ
, n⃗

⟩
=

1

kg
⟨γut, n⃗⟩ .
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Therefore, the evolution equation of the support function h is given by

hττ =

⟨
γut

∂u

∂τ
, n⃗

⟩
+ k−1 − c

=khθτg
∂u

∂τ
+ k−1 − c

=kh2θτ + k−1 − c,

which is equivalent to

hττ =
h2θτ

hθθ + h
+ hθθ + h− c.

Hence, the flow (1.1) can be rewritten by
hhττ + hττhθθ − h2θτ − (hθθ + h)2 + chθθ + ch = 0,

h(θ, 0) = l(θ),

hτ (θ, 0) = f̃(θ),

(2.3)

in which l(θ) = ⟨γ̃0, n⃗0⟩. This is a nonlinear hyperbolic equation, by the linearization

method we can get the local existence of the IVP(2.3). Denote

A(hθθ, hθτ , h) :=
h2θτ

hθθ + h
+ hθθ + h,

then we have

hττ =
∂A

∂hθθ
hθθ +

∂A

∂hθτ
hθτ +

∂A

∂h
h− c (2.4)

where
∂A

∂hθθ
= 1−

h2θτ
(hθθ + h)2

,
∂A

∂hθτ
=

2hθτ
hθθ + h

,
∂A

∂h
= 1−

h2θτ
(hθθ + h)2

.

The coefficient matrix of terms in (2.4) is − 1
hθτ

hθθ + h

hθτ
hθθ + h

1−
h2θτ

(hθθ + h)2

 .

According to a linear transformation, we have − 1 0

0 1


According to the standard theory of linear hyperbolic partial differential equations (c.f.

[24]), we get the following result.

Theorem 2.1 (Local existences and uniqueness) Suppose γ0 is a strictly convex closed

curve, the smooth function f(u) is the initial velocity of γ0. Then there is a family of

strictly convex closed curves γ(·, t) which satisfy the flow (1.1) for all t ∈ [0, T ) with

T > 0.
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3 Expansion and Convergence

In this section, We will give an example to try to analysis the exact solutions of the flow

(1.1). Without loss of generality, τ is replaced by t.

Example 3.1. Assume that γ(θ, t) is a family of circles centered at the origin in R2

with the radius r(t) , i.e.,

γ(θ, t) = r(t)(cos θ, sin θ).

Then the support function and curvature k of γ(θ, t) are given respectively by

h(θ, t) = r(t), k(θ, t) =
1

r(t)
,

which means that the flow (1.1) is rewritten as
r′′(t) = r(t)− c,

r(0) = r0 > 0, r′(0) = r1.
(3.1)

Solving the equation (3.1) directly yields

r(t) = (r0 − c) cosh t+ r1 sinh t+ c.

Then we have the following

• if r0 + r1 − c > 0, then r′′(t) < 0, the flow exists for all t ∈ [0,∞). Furthermore, if

r0− r1− c ≤ 0, the solution increases to the infinity (see Figure 1), if r0− c > r1 ≥ 0, the

solution increases to the infinity (see Figure 2), if c− r0 < r1 < 0 < r0 − c, the solution

shrinks firstly to the minimum and then expands to the infinity (see Figure 3);

• if r0 = c− r1, then r(t) = (r0 − c)e−t + c, there are four subcases:

if r0 > c ≥ 0, which means that the solution exists for all time, the solution shrinks

to a circle with radius r(t) = c as t → ∞ (see Figure 4);

if r0 > 0 > c, which implies the solution shrinks to a point as t → ln c−r0
c (see Figure

5);

if r0 = c, the evolving curves are in a stable condition which radius is r(t) = c;

if r0 < c, then the solution expands to a circle with radius r(t) = c as t → ∞(see

Figure 6).

• if r0 + r1 − c < 0, there are three subcases:

if r0−r1−c > 0, r′(t) < 0, then the solution shrinks to a point as t → ln

(
−c+

√
r21+2cr0−r20

r0+r1−c

)
(see Figure 7);

if r0 − r1 − c < 0, then the evolving curves expand firstly to the maximum and then

converge to a point as t → ln

(
−c−

√
r21+2cr0−r20

r0+r1−c

)
(see Figure 8);
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if r0 − r1 − c = 0,then the evolving curves shrink to a point as t → ln
(

−2c
r0+r1−c

)
(see

Figure 9).

Figure 1: r0 =

2, r1 = 1, c = 2

Figure 2: r0 =

2, r1 =
1
2 , c = 1

Figure 3: r0 =

2, r1 = −1
2 , c = 1

Figure 4: r0 =

2, r1 = −1, c = 1

Figure 5: r0 =

2, r1 = −3, c =

−1

Figure 6: r0 =

2, r1 = 1, c = 3

Remark 3.1 when the forced term c vanishes, we can get the same results in [1]. As

shown in Example 3.1, the flow is affected by the forced term c, hence, we generalized

the results in [1]. The inverse mean curvature flow with forced term c, we can get the

following equation 
r′(t) = r − c,

r(0) = r0 > 0.
(3.2)

Then the solution of the equation (3.2) is

r(t) = (r0 − c)et + c,

on [0,Ω) for some 0 < Ω ≤ ∞.

• when r0 − c > 0, the solution exists for all t ∈ [0,∞), the solution expands expo-

nentially to the infinity. The normalized curves converges to a circle.
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Figure 7: r0 =

2, r1 = −2, c = 3

Figure 8: r0 =

2, r1 =
1
2 , c = 3

Figure 9: r0 =

2, r1 = −1, c = 3

• when r0 − c < 0, the solution shrinks to a point as t → ln
( c

c− r0

)
.

Remark 3.2 In terms of Example 3.1 and Remark 3.1, we know that hyperbolic

flow is different from heat flow even if the initial curve is circles, the solution of the flow

(1.1) depends on r0, r1 and the forced term c. It is not easy to describe the asymptotic

behavior of the flow (1.2) as t tends to the maximum time. However, we can overcome

this difficulty by the following proposition.

Proposition 3.1 (Containment principle) Assume that γ1(u, t) and γ2(u, t) are two

strictly closed convex solutions of the flow (1.1). Assume that γ2(u, 0) is contained in

the domain enclosed by γ1(u, 0) with f1(u) ≥ f2(u). Then γ2(u, t) lies in the domain

enclosed by γ1(u, t) for all t ∈ [0, T ).

Proof. Suppose the support function of γi(u, t) is hi(θ, t) (i = 1, 2) which satisfies (2.5),

and they satisfy h2(θ, 0) ≤ h1(θ, 0) and f̃2(θ) ≤ f̃2(θ).

Denote

ν(θ, t) := h2(θ, t)− h1(θ, t),

derivative ν with t twice,

νtt = h2tt − h1tt =
h22θt + k−2

2

h2 + h2θθ
−

h21θt + k−2
1

h1 + h1θθ

= k1k2

(
1

k1k2
− h1θth2θt

)
νθθ + (k1h1θt + k2h2θt)νθt + k1k2

(
1

k1k2
− h1θth2θt

)
ν,

which means that ν satisfies the following linear hyperbolic equation

νtt = k1k2

(
1

k1k2
− h1θth2θt

)
νθθ + (k1h1θt + k2h2θt)ωθt + k1k2

(
1

k1k2
− h1θth2θt

)
ν,

νt

∣∣∣
t=0

= f̃2(θ)− f̃1(θ) = ν1(θ),

ν
∣∣∣
t=0

= l2(θ)− l1(θ) = ν0(θ).

(3.3)
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Denote the operator L by

L[ν] := k1k2

(
1

k1k2
− h1θth2θt

)
νθθ + (k1h1θt + k2h2θt)νθt − νtt,

then which implies

a = k1k2

(
1

k1k2
− h1θth2θt

)
, b =

1

2
(k1h1θt + k2h2θt), c = −1,

we get

b2 − ac =
1

4
(k1h1θt + k2h2θt)

2 − k1k2

(
1

k1k2
− h1θth2θt

)
· (−1)

=
1

4
(k1h1θt + k2h2θt)

2 + 1 > 1.

Therefore, the operator L is uniformly hyperbolic for all (θ, t) ∈ [0, 2π] × [0, T ). By

the maximum principle for one-dimensional wave equation, see chapter 4 of Protter-

Weinbergrt [25], we know that h2(θ, t) ≤ h1(θ, t) for all (θ, t) ∈ [0, 2π]× [0, T ). The proof

is finished.

Proposition 3.2 (Preserving convexity) Assume the curvature of γ0 satisfies

ξ = min
θ∈[0,2π]

k0(θ) > 0.

Then for a fourth continuously differentiable solution h of (2.5), the curvature of (γ(·, t)

satisfies

k(θ, t) ≥ ξ,

for all t ∈ [0,Ω) which is the maximal interval for the solution of the flow (1.1).

Proof. By Theorem 2.1 and the strictly convexity of γ0, we know that γ(u, t) is strictly

convex for any t ∈ [0, T ), where T ≤ Ω and h satisfies

htt = kh2θt + k−1 − c.

By k = (hθθ + h)−1, we get

kt = (hθθ + h)−1
t = −(hθθ + h)−2(hθθt + ht) = −k2(hθθt + ht).

Therefore, we have

hθθt + ht = −(hθθ + h)2kt = − 1

k2
kt,

hθθtt + htt = (− 1

k2
kt)t =

2

k3
k2t −

1

k2
ktt,

hθθθt + hθt = (− 1

k2
kt)θ =

2

k3
ktkθ −

1

k2
kθt,
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and

httθθ + htt =(kh2θt + k−1 − c)θθ + kh2θt + k−1 − c

=((h2θt − 1)θk + (h2θt − 1)kθ)θ + (k−1 + k)θθ + (h2θt − 1)k + (k−1 + k)− c

=(h2θt − 1)(kθθ + k)− [(2hθthθθt)θk + 4hθthθθtkθ]−
[
kθθ −

1

k2
kθθ +

2

k3
k2θ + (k−1 + k)− c

]
=(h2θt − 1)(kθθ + k)−

[
2((hθθt + ht)

2 − 2hθθtht − h2t + hθt(hθθ + h)θt − h2θt)k + 4kθhθt(
1

k
− h)t

]
− k2

[
2

k3
k2θ + (1− 1

k2
)kθθ + (k−1 + k)− c

]
=(h2θt − 1)(kθθ + k)− 2k

[
(− 1

k2
kt)

2 − 2(− 1

k2
kt)ht + h2t − h2θt + hθt(

2

k3
ktkθ −

1

k2
kθt)

]
+ 4(kθhθt

1

k2
kt + kθhθtht)−

[
2

k3
k2θ + (1− 1

k2
)kθθ + (k−1 + k)− c

]

,

ktt =
2

k
k2t − (htt + hθθtt)k

2

=
2

k
k2t − k2(h2θt − 1)(kθθ + k)− 2k3

[
(− 1

k2
kt)

2 + h2t − 2(− 1

k2
kt)ht − h2θt + hθt(

2

k3
ktkθ −

1

k2
kθt)

]
+ 4k2(kθhθt

1

k2
kt + kθhθtht)− k2

[
2

k3
k2θ + (1− 1

k2
)kθθ + (k−1 + k)− c

]
=(1− k2h2θt)kθθ + 2khθtkθt + 4k2hθthtkθ −

2

k3
k2θ − 4khtkt + k3(h2θt − 2h2t − k−2) + ck2

.

Therefore, the curvature k satisfies

ktt =
(
1− k2h2θt

)
kθθ+2khθtkθt+4k2hθthtkθ−

2

k3
k2θ −4khtkt+k3(h2θt−2h2t −k−2)+ ck2.

Denote the operator L by

L̄[k] :=
(
1− k2h2θt

)
kθθ + 2khθtkθt − ktt + 4k2hθthtkθ −

2

k3
k2θ − 4khtkt.

Then

ā =
(
1− k2h2θt

)
, b̄ = khθt, c̄ = −1.

Therefore, we get

b̄2 − āc̄ = (khθt)
2 − k2

(
1

k2
− h2θt

)
· (−1) = 1 > 0.

Therefore, the operator L is uniformly hyperbolic for all (θ, t) ∈ [0, 2π]× [0, T ).

The curvature k(θ, t) of the curve γ(·, t) satisfies the evolution equation
(L+ l)[k] = 0 in [0, 2π]× [0, T ),

k(θ, 0) = k0(θ),

(−bkθ − ckt)
∣∣∣
t=0

= β(θ) ≥ 0,
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in which the operator l is denoted by

l[k] := (h2θt − 2h2t )k
3 − k − k2.

Denote the function k(θ, t) = min
θ∈[0,2π]

k0(θ) = ξ, then it satisfies


(L+ l)[k] = 0, in [0, 2π]× [0, T ),

k(θ, 0) ≤ k0(θ),

−Mk ≤ β(θ)−Mk0(θ),

in which M is a so large constant that

M ≥ −bθ(θ, 0).

Applying the maximum principles in hyperbolic differential equations in [25] to k−k, we

have

k(θ, t)− k ≥ 0 in [0, 2π]× [0, T0),

in which T0 ≤ T . We can deduce that the curve γ(u, t) is convex for all t ∈ [0,Ω) and

k ≥ ξ = min
S1

k0(θ). The proof is completed.

Next we will give the evolution equation for the length of the curve.

Lemma 3.1. The evolution equation of the length L(t) of γ(u, t) is

dL(t)

dt
=

∫ 2π

0
htdθ,

and
d2L(t)

dt2
=

∫ 2π

0

[
kh2θt + k−1 − c

]
dθ.

Proof. Since

L(t) =

∫ 2π

0
g(θ, t)dθ,

and ∂g
∂t = kgσ̃, by a direct calculation, we get

dL(t)

dt
=

∫ 2π

0

∂g

∂t
dθ =

∫ 2π

0
kgσ̃dθ =

∫ 2π

0
σ̃(θ, t)dθ =

∫ 2π

0
htdθ,

and
d2L(t)

dt2
=

∫ 2π

0
httdθ =

∫ 2π

0
(kh2θt + k−1 − c)dθ,

The proof is completed.

By Example 3.1, the behavior for an evolving convex closed curves under (1.1) is

complicated. However, we can obtain the limit behavior of the flow (1.1) by Proposition

3.1, 3.2 and Lemma 3.1.
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Theorem 3.1 Assume that γ0 is a strictly convex closed curve, its curvature k0(θ)

satisfies

0 < ξ = min
θ∈[0,2π]

k0(θ) ≤ k0(θ) ≤ ς = max
θ∈[0,2π]

k0(θ).

Then the solution γ(u, t) of the flow (1.1) exists for all t ∈ [0,Ω), in which 0 < Ω ≤ ∞.

Furthermore, we get

(I) if ς−1 + min
u∈S1

f(u) > c, then Ω = ∞;

(II) if ξ−1 +max
u∈S1

f(u) < c < ς−1, then Ω < ∞. Moreover, if ξ−1Ω +max
u∈S1

f(u) ≤ cΩ,

there are two subcases:

• the evolving curve γ(·, t) shrinks to a point as t → Ω, which means the curvature

k(u,Ω) is unbounded;

• the curvature k(u,Ω) is discontinuous, i.e., the evolving curve γ(u, t) shrinks to a

piecewise smooth curve.

Proof. Suppose that [0,Ω) is the maximal time interval of the flow (1.1). According

to Proposition 3.2, the strictly convexity of the curve γ(·, t) is preserved for all t ∈ [0,Ω)

and the curvature of k ≥ ξ > 0. There are two cases:

(I) ς−1 + min
u∈S1

f(u) > c.

In terms of ς = max
θ∈[0,2π]

k0(θ) ≥ ξ > 0, the initial γ0 is contained by a circle ℓ0 with

radius ς−1. Assume the initial normal velocity of ℓ0 is min
u∈S1

f(u), then the circle ℓ0 specified

by the flow (1.1) has a unique solution ℓ(u, t). In terms of Example 3.1, the curve ℓ(u, t)

exists for all t ∈ [0,∞). Applying Proposition 3.1, the curve ℓ(u, t) always lies in the

curve γ(u, t) for all t ∈ [0,Ω), which means Ω = ∞.

(II) ξ−1 +max
u∈S1

f(u) < c < ς−1.

In terms of ξ = min
θ∈[0,2π]

k0(θ) > 0, enclose the initial γ0 by a large enough circle ℓ1

with radius ξ−1. Evolving ℓ1 with initial velocity max
u∈S1

f(u) specified by the flow (1.1),

we get a solution ℓ̃1(u, t). According to Example 3.1, the circle ℓ̃1(u, t) exists for a finite

time interval [0, ω) and ℓ̃1(u, t) converges to a single point as t → ω. By Proposition 3.1,

eγ(u, t) lies in the domain enclosed by ℓ̃1(u, t) for all t ∈ [0, ω). Therefore, we know that

evolving curve γ(u, t) must be singular at some time Ω ≤ ω.

According to containment principle, if t1 < t2, then γ(u, t1) always enclose γ(u, t2)

under the flow (1.1). In other words, γ(u, t) is shrinking. By the Blaschke Selection

Theorem in the convex geometry [26], we deduce that γ(u, t) converges to a weakly

convex curve γ(·,Ω) (maybe degenerate and nonsmooth) in the Hausdorff metric.

We deduce that γ(u,Ω) is either a single point or a limit curve with the discontinuous
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curvature. According to Lemma 3.1, for all t ∈ [0,Ω), we get

d2L(t)

dt2
=

∫ 2π

0

[
k

(
∂σ̃

∂θ

)2

+ k−1 − c

]
dθ ≥ (ς−1 − c)2π > 0.

Furthermore,

σ̃(θ, t) = f(u) +

∫ t

0
[k−1(u, ι)− c]dι

≤ (ξ−1 − c)t+max
u∈S1

f(u) ≤ ξ−1Ω+max
u∈S1

f(u)− cΩ < 0,

which means
dL(t)

dt
=

∫ 2π

0
σ̃dθ < 0.

Therefore we get
dL(t)

dt
< 0,

d2L(t)

dt2
> 0,

Then L(t) decreases to zero as t → T∗ < ∞, i.e., L(T∗) = 0. There are two cases as

follows:

• T∗ ≤ Ω. According to Theorem 2.1, the flow (1.1) exists a unique classical solution

γ(·, t) on [0, T∗). However, According to L(T∗) = 0, we have

lim
t→T∗

k(u, t) = ∞,

which means that the solution blows up at T∗. Hence, we deduce that T∗ = Ω. So, the

solution γ(·, t) converges to a point as t → Ω.

• T∗ > Ω. In this case, L(Ω) > 0, the solution γ(·,Ω) is a non-smooth curve. There

are three cases:

(1) ∥γ(u,Ω)∥ = sup |γ(u,Ω)| = ∞. But by Proposition 3.1, γ(·,Ω) lies in the circle

ℓ1, we deduce that ∥γ(u,Ω)∥ < ∞. This is impossible.

(2) ∥γu(u,Ω)∥ = ∞. If so, the length L(Ω) satisfies

L(Ω) = lim
t→Ω

∫
γ(u,t)

ds

= lim
t→Ω

∫
γ
|γu|du

=

∫
γ
lim
t→Ω

|γu(u, t)|du

= ∞

which is a contradiction, because L(Ω) < L0. Therefore, this is not true.

(3) The curvature of the limit curve γ(·,Ω) is discontinuous. Because the above two

possibilities are impossible, then case (3) is true. The proof is completed.
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