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ABSTRACT 

Error-in-variables model (EVM) methods require information about input and output measurement 

variances when estimating model parameters.  In EVM, using replicate experiments for estimating 

output measurement variances is complicated because true values of inputs may be different when 

multiple attempts are made to repeat an experiment.  To address this issue, we categorize attempted 

replicate experiments as: i) true replicates (TRs) when uncertain inputs are the same in replicated 

runs and ii) pseudo replicates (PRs) when measured inputs are the same, but unknown true values 

of inputs are different. We propose methodologies to obtain output measurement variance 

estimates and associated parameter estimates for both situations.  We also propose bootstrap 

methods for obtaining joint-confidence information for the resulting parameter estimates.  A 

copolymerization case study is used to illustrate the proposed techniques. We show that different 

assumptions noticeably affect the uncertainties in the resulting reactivity-ratio estimates.  

Keywords: Error-in-variables model (EVM), Replicate experiments, Reactivity-ratio estimation, 

Copolymerization, Mayo-Lewis equation  
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INTRODUCTION 

Fundamental mathematical models are widely used for chemical process development and 

improvement. These models usually contain unknown parameters that require estimation.1,2 In 

conventional parameter-estimation methodologies such as weighted least-squares (WLS) 

estimation, the model inputs are assumed to be perfectly known (i.e., measured without error), 

while random measurement errors are considered for the model outputs.3,4 Nevertheless, there are 

important situations where model inputs are not perfectly known, but contain significant 

uncertainties. The Error-in-Variables Model (EVM) technique was developed to account for 

measurement uncertainties in both inputs and outputs during parameter estimation.5,6  In EVM, the 

true values of the measured inputs are estimated along with the model parameters. EVM7-30 has 

been used in a variety of chemical engineering modeling studies (see Table 1 and Table 2).   

The following single-response model can be used to illustrate assumptions that are made during 

an EVM parameter estimation wherein 𝑛𝑖 replicated experiments have been attempted at 𝑁 

different target operating conditions (for 𝑖 = 1,… ,𝑁): 

𝑌𝑖𝑗 = 𝑔(𝑢𝑖𝑗 , 𝒙𝒊, 𝜽) + 𝜀𝑌,𝑖𝑗                  (1) 

𝑈𝑖𝑗 = 𝑢𝑖𝑗 + 𝜀𝑈,𝑖𝑗                                 (2) 

In Equation (1), 𝑌𝑖𝑗 is the measured value of the response for the 𝑗𝑡ℎ (𝑗 = 1,…, 𝑛𝑖) run conducted 

using the 𝑖𝑡ℎ target experimental condition, 𝑔 is a solution of nonlinear model equation(s), 𝑢𝑖𝑗 is 

the true value of the uncertain input for the 𝑗𝑡ℎ run at the 𝑖𝑡ℎ target condition, 𝒙𝒊 ∈ 𝑹
𝑵𝒙 is a vector 

containing any perfectly-known model inputs for the 𝑖𝑡ℎ experimental condition, 𝜽 ∈ 𝑹𝑵𝜽 is the 

vector of model parameters, and 𝜀𝑌,𝑖𝑗 is the random  measurement noise for the response 

𝑔(𝑢𝑖𝑗 , 𝒙𝒊, 𝜽).  In Equation (2), 𝑈𝑖𝑗 is the measured value of the uncertain input and 𝜀𝑈,𝑖𝑗 is the 
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corresponding random measurement noise. We assume that 𝜀𝑌,𝑖𝑗 and 𝜀𝑈,𝑖𝑗 in Equations (1) and (2) 

are independent random variables with 𝜀𝑌,𝑖𝑗~𝑁(0, σ𝑌
2) and 𝜀𝑈,𝑖𝑗~𝑁(0, σ𝑈

2 ). 

Based on the model in Equations (1) and (2), a maximum-likelihood approach can be used to 

obtain the following objective function for use in EVM parameter estimation:31  

𝐽𝐸𝑉𝑀 = ∑ ∑ [
(𝑦𝑚,𝑖𝑗−𝒈(𝒙𝒊,𝑢𝑖𝑗,𝜽)

𝟐

𝜎𝑌
2  +

(𝑢𝒎,𝒊𝒋−𝑢𝒊𝒋)
2

σ𝑈
2 ]

𝑟𝑖
𝑗=1

𝑁
𝑖=1      (3) 

where 𝑦𝑚,𝑖𝑗is the measured value of output from the 𝑗𝑡ℎ run conducted using the 𝑖𝑡ℎ target run 

condition, and 𝑢𝑚,𝑖𝑗 is the measured value of the corresponding uncertain input. The objective 

function in Equation (3) is minimized to simultaneously determine the parameter estimates 𝜽̂ and 

estimates 𝑢̂𝑖𝑗 for the true values of the uncertain inputs. As shown in Equation (3), variances of 

the measured model inputs 𝜎𝑈
2 and outputs 𝜎𝑌

2 are weighting factors in the EVM objective function 

and therefore influence the parameter estimates. Also, confidence intervals for the parameters 

depend on these variances.31   

In conventional WLS parameter-estimation studies, where inputs are perfectly known, 

measurement variances are often estimated from replicate experiments.32-34 The influence of all 

uncertainties and disturbances associated with setup of the equipment, measurement and mixing 

of reactants, conduct of the experiments, collection of any samples for analysis, and measurement 

of the desired responses is lumped together and treated as part of the output uncertainty.34 

However, when some of the inputs are acknowledged to contain important uncertainties, so that 

EVM parameter estimation is required, the issue of replicate experiments and output variance 

estimation is more complex.  In some situations, the experimentalist may believe that true replicate 

experiments have been conducted (i.e., all experiments conducted at the ith target run condition 

have the same unknown value of 𝑢𝑖𝑗). For example, the modeler will have true replicates when 
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repeated experiments are conducted using the same batch of input material that has uncertain 

properties.  In other situations, it may not be appropriate to assume that  𝑢𝑖𝑗 is the same for all runs 

conducted at the 𝑖𝑡ℎ target condition (e.g., when attempted replicate experiments use different 

batches of input material with uncertain compositions).  In the current article, we refer to these 

runs with the same target settings, but different values of 𝑢𝑖𝑗 as pseudo-replicate runs.  When a 

modeler is confronted with pseudo-replicate experiments, the issue of estimating 𝜎𝑌
2 from data 

becomes complicated because the measured values 𝑦𝑚,𝑖𝑗 are influenced by random errors in the 

inputs as well as the corresponding output. 

 Table 1 and Table 2  summarize previous EVM studies in the chemical engineering literature where 

data from experiments with uncertain inputs were used for parameter estimation.4,7-

12,14,16,17,19,22,24,25,27,30,35-55 Studies in Table 1 involve reactivity-ratio estimation in copolymerization 

and terpolymerization studies. The authors used EVM for these studies because important model 

inputs (i.e., initial feed compositions or comonomer concentrations in the reactor) have significant 

uncertainties compared to the measurement uncertainty in the resulting copolymer or terpolymer 

composition. Other studies involving different types of chemical engineering models are 

summarized in Table 2. These studies are related to vapour-liquid-equilibrium, gas-phase catalytic 

hydrogenation, gas-solid adsorption, oxygen consumption in wastewater, water gas-shift reaction, 

ion-exchange equilibrium, gas purification, mass-transfer in liquid mixtures, a low-density 

polyethylene reactor, and a natural gas network. The uncertain inputs in these systems include 

measured inlet temperatures, inlet flowrates, inlet mole fractions, partial pressures, and liquid-

phase concentrations.  

 In most EVM parameter-estimation studies, variances of the uncertain model inputs are estimated 

from data or are assumed to be known based on previous studies.2,7,9,22,30,39,47-50,54  Users of EVM 
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can usually obtain reliable values of σ𝑈
2  for use in their objective functions, but it is much more 

difficult to obtain a reliable estimate of 𝜎𝑌
2. Repeating measurements of the same output sample 

only captures the portion of the variability that is attributable to noise in the analytical device. 

Other types of variability that should be included in 𝜎𝑌
2 (e.g., due to equipment set up and 

experimental procedures) can only be detected when full experiments are repeated. This difficult 

issue has not received adequate consideration in the EVM literature.  

As shown in Table 1 and Table 2, values of 𝜎𝑌
2 were reported in 29 of the 39 studies, while the 

remaining authors were silent about the weighting factors used for parameter estimation.  Authors 

from 23 of the 39 studies assumed that 𝜎𝑌
2 was known a priori (indicated using AK in the 4𝑡ℎ 

columns), while 14 studies were silent about how 𝜎𝑌
2 was obtained (indicated using ? in the 4th 

columns). In three of the 39 studies, the authors estimated 𝜎𝑌
2 from replicate data (indicated using 

R in the 4𝑡ℎ columns). Replicate experimental results were reported in 16 out of the 39 EVM 

studies. In one of these 16 studies, it is clear that  true replicate experiments were conducted so 

that 𝜎𝑌
2 was relatively easy to estimate.47  In this study, Keeler and Reilly purchased several 

standard ethylene/propylene copolymer samples and used them to fit a calibration curve between 

IR (the model input) and NMR (the model output) measurements.  Repeated measurements of the 

NMR response were obtained for each standard sample, which has a constant composition and 

therefore a fixed true value of the unknown (noise-free) IR response. In another of the 16 studies, 

it is clear that Scott and Penlidis obtained pseudo-replicate data.44 In this terpolymerization study, 

they made multiple solutions of monomers with the same target concentrations and used them to 

repeat some experiments.  As such, their reported input measurements might have different true 

values, even though the corresponding reported input values are the same.44 In the remaining 14 

studies with replicates, the authors do not provide sufficient details about how the repeated runs 
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were conducted, so it is difficult to ascertain whether true replicates or pseudo replicates were 

performed (indicated using R? in the 5th columns).10,12,14,16,17,38 Based on the articles summarized 

in Table 1 and Table 2, it is apparent that users of EVM are not attempting to obtain reliable 

estimates of 𝜎𝑌
2 from data.  Note that EVM parameter estimation has been used by engineers and 

scientists in a variety of fields beyond chemical engineering.(e.g.,56-62)  To our knowledge, reliable 

methods for estimating 𝜎𝑌
2 from data have not been reported in these other EVM studies. 

 Researchers who perform EVM parameter estimation are interested in quantifying the 

uncertainties in their parameter estimates.  As shown in Table 1, all research groups who estimated 

reactivity ratios obtained joint confidence regions (JCRs) and/or confidence intervals (CIs) for 

their parameters.  Only three of the 28 studies in Table 1 provide details about how their parameter 

uncertainty information was obtained.7,9,39 All three studies relied on the assumption that output 

measurement variances were perfectly known.   

The objectives of the current study are: i) to propose approaches for estimating 𝜎𝑌
2 from true-

replicate and pseudo-replicate data, ii) to use a copolymerization case study to illustrate how 𝜎𝑌
2 

can be reliably estimated in situations involving true replicates and pseudo replicates, and iii) to 

estimate joint confidence (JC) information for the estimated parameters in the copolymerization 

model. The remainder of the article is organized as follows. First, we describe three different 

situations involving replicate experiments in EVM and provide information about suitable EVM 

objective functions. Next, methods for calculating 𝜎̂𝑌
2  in EVM situations involving different types 

of replicate data are explained. Finally, copolymerization of n-butyl methacrylate and n-butyl 

acrylate is used as a case study to show how 𝜎𝑌
2 and 𝜽 should be estimated in EVM situations 

involving true replicates and pseudo replicates.  We also propose a bootstrapping method to obtain 

JC information for reactivity-ratio estimates, based on the estimated value for  𝜎̂𝑌
2. 
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Table 1- Summary of Studies where EVM used for Reactivity-ratio Estimation  

Authors Monomers Variance 

estimates 

reported 

How 

variances 

obtained 

Type of 

replicate 

experiments 

Parameter 

uncertainty 

estimates 

Dube et al. 14,35 Styrene/butyl acrylate  Yes ? R? JCR 

Brar et al. 4 Styrene/butyl acrylate Yes AK None JCR and CIs 

Brar and 

Charan36 

Vinyl acetate/methyl acrylate No ? None CIs 

Brar and 

Charan37 

Vinyl acetate/ethyl methacrylate Yes AK None CIs 

Dube and 

Penlidis38; Scott 

and Penlidis39 

Butyl acrylate/methyl methacrylate, 

butyl acrylate/ vinyl acetate, and 

methyl methacrylate/vinyl acetate  

Yes AK R? JCR and CIs 

Schoonbrood et 

al. 25 

Styrene/2-Hydroxyethyl 

methacrylate  

No ? None JCR and CIs 

Brar et al. 40 Acrylonitrile/methacrylic acid  Yes ? None JCR and CIs 

Brar and 

Malhorta41 

Vinylidene chloride/methyl acrylate Yes ? None CIs 

McManus and 

Penlidis 42; Scott 

and Penlidis39 

Styrene/ethyl acrylate  Yes AK R? JCR 

Suddaby et al. 16 Methyl methacrylate/n-butyl 

methacrylate  

Yes AK R? JCR  

Brar et al. 27 Acrylonitrile/glycidyl methacrylate   No ? None JCR and CIs 

Hakim et al. 43 Butyl acrylate/methyl methacrylate  No ? R? JCR 

Baradie et al. 17 Tetrafluoroethylene/ vinyl acetate, 

chlorotrifluoroethylene/ vinyl 

acetate, and vinylidene fluoride/ 

vinyl acetate 

Yes R R? JCR and CIs 

Kazemi et al.8 Acrylonitile/methyl acrylate  Yes AK None JCR 

Zhang and 

Dube11 

N-Butyl Methacrylate/d-limonene  No ? R? JCR 

Kazemi et al. 12 N9-(4-vinylbenzyl)-

9Hcarbazole/methyl methacrylate  

Yes AK R? JCR 

Mathew and 

Duever7 

Di-n-butyl itaconate (DBI)/methyl 

methacrylate  

Yes AK None JCR 

Ren et al.2 N-Butyl acrylate/n-Butyl 

methacrylate  

Yes AK R? JCR 

Scott and 

Penlidis39 

2-methylene-1,3-dioxepane/vinyl 

acetate  

Yes AK None JCR 

Scott and 

Penlidis44 

2-acrylamido-2-methylpropane 

sulfonic acid/acrylamide /acrylic 

acid  

No ? Pseudo  

replicate 

JCR 

Gabriel and 

Dube45 

N-Butyl Acrylate/2-Ethylhexyl 

Acrylate/Methyl Methacrylate 

No ? R? JCR 

Yousefi et al.10 Triisopropylsilyl Acrylate/ Methyl 

Methacrylate/ Butyl Acrylate 

No ? R? JCR 

Krieger et al. 46  Itaconic Acid/N-Vinyl-2-

Pyrrolidone 

No ? None JCR  

Santos et al.9 Styrene/VeoVa-10 

copolymerization 

Yes AK None JCR and CIs 
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Table 2- Summary of Studies Involving other Chemical Engineering Models where EVM used for 

Parameter Estimation 

Authors Model of study Variance 

estimates are 

reported  

How variances 

were 

determined 

Type of 

replicate 

experiments 

reported 

Keeler and 

Reilly47 

Copolymer composition calibration between 

IR and NMR measurements 

No R True replicate 

Sutton and 

MacGregor30 

Vapour-liquid equilibrium for ethanol-

isooctane and benzene- heptane systems 

Yes AK None 

Duever et al.24 Vapor-liquid equilirium Yes AK None 

Rod and 

Hancil48 

Gas-phase hydrogenation of phenol on a 

palladium catalyst 

Yes AK None 

High and 

Danner 22 

Gas-solid adsorption Yes AK None 

Valko and 

Vajda49 

Biological oxygen consumption and 

chemical oxygen consumption relationship 

in a wastewater 

Yes AK None 

Kim et al.50 Vapour-liquid equilibrium for methanol and 

1,2-dichloroethane 

Yes AK None 

Bardow and 

Marquardt 51 

Liquid-liquid diffusion Yes AK None 

Kim et al.52 Water-gas shift reaction  Yes AK None 

Vamos and 

Haas53 

Binary ion-exchange equilibrium Yes R R? 

Faber and 

Wozny54 

Coke-oven-gas purification process Yes AK None 

Zavala and 

Biegler19 

Low-density polyethylene tubular reactor No ? None 

Leung et al.55 Gas lateral network of TransCanada 

Pipeline system 

Yes AK None 

 

PROPOSED CLASSIFICATION OF REPLICATE EXPERIMENTS IN EVM 

Table 3 and Table 4 provide information about model equations and objective functions 

corresponding to three different sets of assumptions about replicate (or nearly replicated) 

experiments. The first two classifications, TR1 and TR2, correspond to “true replicate” 

experiments.  By true replicates, we mean that, when several experiments are conducted using the 

same target settings, the true values of the uncertain inputs can be assumed the same for the 

replicated runs.  The third classification corresponds to “pseudo-replicate” experiments, denoted 

by PR.  By pseudo-replicate runs, we mean that the true values for the uncertain inputs are 

different when several experiments are conducted using the same target conditions.  Two different 
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situations are considered for true replicates because sometimes modelers will have only one 

measured value for an uncertain input used in the repeated runs (situation TR1) and sometimes 

modelers will have new measured values for uncertain inputs in each replicated run, even though 

the modeler assumes that the underlying true values have not changed.   

Equation (3.1) in Table 3 is the model equation used to describe the measured outputs for situations 

TR1 and TR2.  Here 𝒀𝒊𝒋 ∈ 𝑅
𝑁𝑌 is the vector of measured responses for the 𝑗𝑡ℎ replicate experiment 

conducted at the 𝑖𝑡ℎ target run condition, where 𝑁 is the number of distinct run conditions in the 

data set (i.e., 𝑖 = 1,… ,𝑁) and 𝑛𝑖 is the number of repeated runs performed at the 𝑖𝑡ℎ target run 

condition (i.e., 𝑗 = 1,…, 𝑛𝑖).  In Equation (3.1),  𝒈 ∈ 𝑅𝑁𝑌 is a vector of solutions of nonlinear 

equations, 𝒖𝑖 ∈ 𝑅
𝑁𝑈 is the vector of unknown true values for the uncertain model inputs for the 

𝑖𝑡ℎ target condition and  𝜺𝒀𝒊𝒋 ∈ 𝑅
𝑁𝑌  is a vector of random noise for the corresponding vector of 

output measurements 𝒀𝑖𝑗.  Equation (3.2) in  

 

 

 is the model equation used to describe the measured values of the uncertain inputs in situation 

TR1. 𝑼𝒊 is the vector of uncertain input measurements for the 𝑖𝑡ℎ target experimental condition 

and 𝜺𝑼𝒊 ∈ 𝑅
𝑁𝑈 is the corresponding vector of random measurement noise. In theTR1 situation, 

only one measurement is obtained for each uncertain input. As a result, the vector of input 

measurement noise 𝜺𝑼𝒊 in Equation (3.1) has a single index 𝑖. However, the symbol for the vector 

of output measurement random noise 𝜺𝒀𝒊𝒋 has two indices, because 𝑛𝑖 measurements are obtained 

for the model outputs at each target condition.     

 Similarly, Equation (3.3) is used to describe measured values of the uncertain inputs for situation 

TR2. Here 𝑼𝒊𝒋 is the 𝑗𝑡ℎ vector of uncertain input measurements for the 𝑖𝑡ℎ target experimental 
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condition, and 𝜺𝑼𝒊𝒋 is the corresponding vector of measurement noise. The extra subscript j 

compared with Equation (3.2) appears because, in situation TR2, each repeated run has its own set 

of measurements for the unknown inputs. Equations (3.4) and (3.5) are the model equations for 

the measured outputs and measured uncertain inputs for the situation where pseudo-replicate runs 

have been conducted. Notice that Equation (3.4) is the same as Equation (3.1) except that the 

vector of true values for the uncertain inputs 𝒖𝑖𝑗 has an extra subscript, j. Here, the modeler 

assumes that the true inputs are different for each attempted replicate experiment. As a result, 

Equation (3.5) also contains the vector 𝒖𝑖𝑗. 

 Objective functions for parameter estimation using the three different assumptions about 

replicates are provided in Table 4. The objective function in Equation (4.1) is minimized to 

simultaneously to obtain the vector of parameter estimates 𝜽̂ and the estimates of uncertain inputs 

in vector 𝒖̂𝒊 for each target run condition.  In objective function (4.1), 𝒚𝒎,𝒊𝒋 is the vector of output 

measurements from the 𝑗𝑡ℎ run conducted using the 𝑖𝑡ℎ target condition, and 𝒖𝒎,𝒊 is the vector of 

uncertain input measurements for the 𝑖𝑡ℎ target run. Note that the lower-case letters y and u in  

𝒚𝒎,𝒊𝒋 and 𝒖𝒎,𝒊, respectively, are used to show that these quantities are samples obtained from 

random variables 𝒀𝒊𝒋 and 𝑼𝒊. The total number of data values used for parameter estimation in 

situation TR1 is 𝑁𝑌 ∑ 𝑛𝑖
𝑁
𝑖=1 + 𝑁𝑁𝑈 as shown in the 3rd column of Table 3. Similarly, Equation 

(4.2) is the objective function for situation TR2, where  𝒖𝒎,𝒊𝒋 is the vector of uncertain input 

measurements for the 𝑗𝑡ℎ run using the 𝑖𝑡ℎ experimental target. The total number of data values in 

situation TR2 is larger than in TR1 because more uncertain input measurements are available.  

Equation (4.3) is used when true inputs are assumed to be different whenever replicate experiments 

are attempted.  As a result, more unknown input values (in vectors 𝒖𝒊𝒋) require estimation than in 
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situations TR1 and TR2.  As shown in Table 3, the PR situation requires estimation of 𝑁𝑈 ∑ 𝑟𝑖
𝑁
𝑖=1  

unknown input values, while situations TR1 and TR2 require estimation of 𝑁𝑁𝑈 unknown inputs. 

 

 

 

Table 3- Error-in-Variables Model Equations for Different Assumptions about Replicate Runs 

Case EVM Equations Number of Data Values Number of parameters and 

inputs requiring estimation 

TR1 

 

𝒀𝒊𝒋 = 𝒈(𝒙𝑖 , 𝒖𝑖 , 𝜽) + 𝜺𝒀,𝒊𝒋               (3.1) 

𝑼𝒊 = 𝒖𝒊 +  𝜺𝑼,𝒊                              (3.2) 

 

𝑁𝑌 ∑ 𝑛𝑖
𝑁
𝑖=1 + 𝑁𝑁𝑈  

 

 

𝑁𝜃 + 𝑁𝑁𝑈 

TR2  𝒀𝒊𝒋 = 𝒈(𝒙𝑖 , 𝒖𝑖 , 𝜽) + 𝜺𝒀,𝒊                (3.1) 

𝑼𝒊𝒋 = 𝒖𝒊 +  𝜺𝑼,𝒊𝒋                             (3.3) 

 

∑ 𝑛𝑖
𝑁
𝑖=1 (𝑁𝑌 +𝑁𝑈) 

 

 

𝑁𝜃 + 𝑁𝑁𝑈 

PR 𝒀𝒊𝒋 = 𝒈(𝒙𝑖 , 𝒖𝑖𝑗 , 𝜽) + 𝜺𝒀,𝒊𝒋             (3.4) 

𝑼𝒊 = 𝒖𝒊𝒋 +  𝜺𝑼,𝒊𝒋                            (3.5) 

∑ 𝑛𝑖
𝑁
𝑖=1 (𝑁𝑌 +𝑁𝑈)  

𝑁𝜃 + 𝑁𝑈∑𝑟𝑖

𝑁

𝑖=1

 

 

 

Table 4- Objective Functions for Parameter Estimation in Error-in-Variables Models with 

Different Assumptions about Replicate Runs 

Case EVM objective function 

TR1 𝐽𝑇𝑅1 = ∑ ∑ (𝒚𝒎,𝒊𝒋 − 𝒈(𝒙𝒊, 𝒖𝒊, 𝜽))
𝑻
𝚺𝒀
−1(𝒚𝒎,𝒊𝒋 − 𝒈(𝒙𝒊, 𝒖𝒊, 𝜽))  + ∑ (𝒖𝒎𝒊 − 𝒖𝒊)

𝑇𝚺𝑼
−1(𝒖𝒎𝒊 − 𝒖𝒊)

𝑁
𝑖=1

𝑛𝑖
𝑗=1

𝑁
𝑖=1  

(4.1) 

TR2 𝐽𝑇𝑅2 = ∑ ∑ [(𝒚𝒎,𝒊𝒋 − 𝒈(𝒙𝒊, 𝒖𝒊, 𝜽))
𝐓
 𝚺𝒀
−1(𝒚𝒎,𝒊𝒋 − 𝒈(𝒙𝒊, 𝒖𝒊, 𝜽)) + (𝒖𝒎𝒊𝒋 − 𝒖𝒊)

𝑇
𝚺𝑼
−1(𝒖𝒎𝒊𝒋 − 𝒖𝒊) ]

𝑛𝑖
𝑗=1

𝑁
𝑖=1  

(4.2) 

PR 𝐽𝑃𝑅 = ∑ ∑ [(𝒚𝒎,𝒊𝒋 − 𝒈(𝒙𝒊, 𝒖𝒊𝒋, 𝜽))
𝐓
 𝚺𝒀
−1(𝒚𝒎,𝒊𝒋 − 𝒈(𝒙𝒊, 𝒖𝒊𝒋, 𝜽)) + (𝒖𝒎𝒊 − 𝒖𝒊𝒋)

𝑇
𝚺𝑼
−1(𝒖𝒎𝒊 − 𝒖𝒊𝒋) ]

𝑛𝑖
𝑗=1

𝑁
𝑖=1  

(4.3) 
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PROPOSED OUTPUT MEASUREMENT-VARIANCE ESTIMATION IN SITUATIONS 

INVOLVING REPLICATE EXPERIMENTS 

In this section, methods for estimation of output measurement variances are proposed for situations 

involving data values from replicate or pseudo-replicate runs. In situations TR1 and TR2, where 

true replicate experiments have been performed, the methods for calculation of variance estimates 

are similar. The estimated variance in the measurements for the 𝑘𝑡ℎ model output obtained using 

the 𝑖𝑡ℎ run condition is:  

𝜎̂𝑌𝑖𝑘
2 =

∑ (𝑦𝑚,𝑖𝑗𝑘−𝑦̅𝑚,𝑖𝑘)
𝒏𝒊
𝒋=𝟏

𝑟𝑖−1
         (𝑖 = 1, … , 𝑁 and 𝑘 = 1, … ,𝑁𝑌)     (4) 

where 𝑦𝑚,𝑖𝑗𝑘  is a measured value obtained from the 𝑗𝑡ℎ  replicate run and 𝑦̅𝑚,𝑖𝑘  is the 

corresponding average for the measurements obtained from the 𝑛𝑖 repeated runs. For situations 

TR1 and TR2, measurement variances for each model output can be estimated by pooling 

variances obtained from different run conditions:  

𝜎̂𝑌𝑘
2 =

∑ (𝑛𝑖−1)𝜎̂𝑌𝑖𝑘
2𝑁

𝑖=1

∑ (𝑛𝑖
𝑁
𝑖=1 −1)

      (𝑘 = 1, …, 𝑁𝑌)                          (5) 

When pseudo replicates are conducted, variance estimates obtained from Equations (4) and (5) 

could be too large, because uncertainties associated with the different true inputs may inflate the 

variability of the measured outputs at each target condition.  

  We propose a linearization-based approach for the PR situation so that more-accurate estimates 

of 𝜎𝑌𝑘
2  can be computed. Using a Taylor-series expansion and Equation (3.4) in Table 3, the kth 

element of measurement vector 𝒀𝒊𝒋 can be estimated:  

𝑌𝑖𝑗𝑘 ≈ 𝑔𝑘(𝒙𝒊, 𝒖𝒎,𝒊, 𝜽) +
𝜕𝑔𝑘

𝜕𝒖
|
𝒖𝒎,𝒊,𝒙𝒊,𝜽

(𝒖𝒊𝒋 − 𝒖𝒎,𝒊) + 𝜀𝑌𝑖𝑗𝑘        (6) 
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by linearizing around measured values 𝒖𝒎,𝒊 from a PR run.  In Equation (6), the Jacobian 

𝜕𝑔𝑘

𝜕𝒖
|
𝒖𝒎,𝒊,𝒙𝒊,𝜽

 is a row vector with 𝑁𝑈 columns, which contains derivatives of model predictions for 

the kth response variable with respect to each of the uncertain inputs and 𝜀𝑌𝑖𝑗𝑘is the random noise 

for the measurements of the 𝑘𝑡ℎ output obtained at the 𝑗𝑡ℎreplicate of the 𝑖𝑡ℎ target condition.  

Taking variances of both sides of Equation (6) gives: 

𝜎𝑃𝑅,𝑖𝑘
2 ≈ (

𝜕𝑔𝑘

𝜕𝒖
|
𝒖𝒎,𝒊,𝒙𝒊,𝜽

)𝚺𝑼 (
𝜕𝒈𝒌

𝜕𝒖
|
𝒖𝒎,𝒊,𝒙𝒊,𝜽

)

𝑇

 + 𝜎𝑌𝑖𝑘
2                   (7) 

assuming that uncertainties in measured inputs and outputs are independent. In Equation (7),  

𝜎𝑃𝑅,𝑖𝑘
2  is the variance of the 𝑘𝑡ℎ model output due to variability in both inputs and outputs, whereas 

𝜎𝑌𝑖𝑘
2 is the measurement variance for the 𝑘𝑡ℎ response variable. 

In PR situations, 𝜎̂𝑌𝑖𝑘
2  in Equation (4) provides an estimate of the overall output variance 𝜎𝑃𝑅,𝑖𝑘

2 . 

Substituting this expression for 𝜎𝑃𝑅,𝑖𝑘
2  in Equation (7), replacing 𝜽 with 𝜽̂, and rearranging gives:  

𝜎̂𝑌𝑖𝑘
2 =

∑ (𝑦𝑚,𝑖𝑗𝑘−𝑦̅𝑚,𝑖𝑘)
𝒏𝒊
𝒋=𝟏

𝑛𝑖−1
− (

𝜕𝑔𝑘

𝜕𝒖
|
𝒖𝒎,𝒊,𝒙𝒊,𝜽̂ 

)𝚺𝑼 (
𝜕𝒈𝒌

𝜕𝒖
|
𝒖𝒎,𝒊,𝒙𝒊,𝜽̂ 

)

𝑇

             (8) 

In our experience, occasionally 𝜎̂𝑌𝑖𝑘
2  computed using Equation (8) can be a negative number, 

especially if it is computed using a small number of pseudo-replicate runs, and uncertainties in the 

model inputs are relatively large. َ  As a result, we recommend a cut-off value 𝛿𝑘 be used, based on 

the modeler’s knowledge about a reasonable size for the output measurement variance: 

𝜎̂𝑌𝑖𝑘
2 = max (

∑ (𝑦𝑚,𝑖𝑗𝑘−𝑦̅𝑚,𝑖𝑘)
𝒏𝒊
𝒋=𝟏

𝑛𝑖−1
− (

𝜕𝑔𝑘

𝜕𝒖
|
𝒖𝒎𝒊,𝒙𝒊,𝜽̂ 

)𝚺𝑼 (
𝜕𝒈𝒌

𝜕𝒖
|
𝒖𝒎𝒊,𝒙𝒊,𝜽̂ 

)
𝑇

, 𝛿𝑘)     (𝑘 = 1, …, 𝑁𝑌)            (9) 

 Equation (5) can then be used to pool these output-measurement variance estimates, resulting in 

an appropriate value of 𝜎̂𝑌𝑘
2 for use in EVM parameter estimation. 
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Because parameter estimates 𝜽̂ are required to calculate the Jacobian matrix 
𝜕𝑔𝑘

𝜕𝒖
 in Equation (9), a 

procedure that updates 
𝜕𝑔𝑘

𝜕𝒖
|
𝒖𝒎,𝒊,𝒙𝒊,𝜽̂ 

based on the most recent estimate 𝜽̂ is recommended. Table 5 

provides suggested steps for this iterative procedure.  In Steps 2 and 3, initial estimates for the 

output variances and parameters are obtained by neglecting the influence of the uncertain inputs.  

Steps 4 to 6 involve iterations that improve these estimates by taking the input uncertainties into 

account.  

Table 5- Procedure for EVM Parameter Estimation Using Pseudo-Replicate Data 

1- Assign appropriate cut-off values 𝛿𝑘 (𝑘 = 1,… ,𝑁𝑌) for each of the measured outputs 

variances. Set the step counter to s=0. 

2- Obtain an initial guess for the output measurement variances using Equations (4) and 

(5). 

3- Obtain initial parameter estimates 𝜽̂(0) using weighted-least squares parameter 

estimation. 

4- For each PR target condition and measured output, calculate 𝜎̂𝑌𝑖𝑘
2 from Equation (9) using 

the most-recent parameter estimates  𝜽̂(𝑠). 
5- Use Equation (5) to pool the variance estimates obtained in step 4. 

6- Use 𝐽𝑃𝑅 in Table 4 to perform an EVM parameter estimation, using the 𝜎̂𝑌𝑘
2   as diagonal 

elements of  𝚺̂𝒀, resulting in updated parameter estimates 𝜽̂(𝑠+1). 

7- Calculate the relative change in the parameter values 𝑒 = √∑ (
𝜃̂𝑝
(𝑠+1)

−𝜃̂𝑝
(𝑠)

𝜽̂𝒑
(𝒔) )

𝟐
𝑵𝜽
𝒑=𝟏  where 

subscript 𝑝 denotes the 𝑝𝑡ℎ element in 𝜽̂. If 𝑒 is smaller than a tolerance set by the user, 

stop and report the parameter values.  Otherwise, increase the value of s by one and 

return to step 4. 

 

CASE STUDY:  EVM REACTIVITY-RATIO ESTIMATION USING MAYO-LEWIS 

EQUATION 

The Mayo-Lewis equation describes the relationship between instantaneous comonomer 

composition in the reaction medium 𝑓1 and the corresponding copolymer composition 𝐹1: 

𝐹1 =
𝑟1𝑓1

2+𝑓1(1−𝑓1)

𝑟1𝑓1
2+2𝑓1(1−𝑓1)+𝑟2(1−𝑓1)

2
            (10) 
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Many researchers have used the Mayo-Lewis equation to estimate reactivity ratios from low-

conversion batch-reactor data (i.e., at conversions below 10%), where the initial monomer 

composition and cumulative copolymer composition are assumed to be similar to the instantaneous 

compositions 𝑓1 and 𝐹1 in Equation (10), respectively.35,63 Reactivity ratios 𝑟1 and 𝑟2 are used to 

account for the relative rates of the four propagation reactions shown in Table 6, where 𝑅1
• and 𝑅2

•  

are growing polymer chains with terminal monomers 𝑀1 and 𝑀2, respectively:  

   𝑟1 =
𝑘11

𝑘12
                    (11) 

                                                                     𝑟2 =
𝑘22

𝑘21
                 (12) 

Table 6- Important reactions corresponding to a free-radical copolymerization terminal model 

𝑅1
• +𝑀1

𝑘11
→ 𝑅1

• 
(6.1) 

𝑅1
• +𝑀2

𝑘12
→ 𝑅2

•  
(6.2) 

𝑅2
• +𝑀1

𝑘21
→ 𝑅1

• 
(6.3) 

𝑅2
• +𝑀2

𝑘22
→ 𝑅2

•  
(6.4) 

 

In the current case study, copolymerization data provided by Ren et al., with n-butyl methacrylate 

as component 1 and n-butyl acrylate as component 2, are used to estimate reactivity ratios 𝑟1 and 

𝑟2 in situations involving different assumptions about the replicate runs.2 Data values obtained by 

Ren et al. are provided in Table 7.2 Their data set contains replicate data at two initial monomer 

feed compositions (i.e., 𝑓1 = 0.487 and 𝑓1 = 0.196, respectively). The information provided by 

Ren et al. about how they conducted their experiments is not sufficiently detailed so that we can 

ascertain whether their replicated experiments are true replicates or pseudo replicates. 

Nevertheless, because the reported measured inputs at each replicate condition are the same, either 
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a TR1 or PR situation is plausible. A TR2 situation would usually lead to different reported values 

of 𝑓1 when replicate experiments are attempted.   

 

 

 

 

 

 

 

Table 7- The experimental data collected for copolymerization of n-Butyl Methacrylate and n-

Butyl Acrylate from Ren et al.2 

𝑓1 𝐹1 

0.100 0.187 

0.200 0.335 

0.300 0.459 

0.410 0.620 

0.501 0.668 

0.601 0.762 

0.700 0.820 

0.801 0.882 

0.897 0.968 

0.487 0.656 

0.487 0.654 

0.487 0.651 

0.487 0.655 

0.196 0.334 

0.196 0.348 

0.196 0.344 

0.196 0.353 

 

Based on the results in Table 7, Ren et al. might have prepared a mixture of comonomers and used 

it to run four copolymerization experiments at the corresponding replicate condition where 𝑓1 =

0.487, resulting in situation TR1.  Alternatively, they might have run four copolymerization 
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experiments at that target replicate condition using four different monomer mixtures, after making 

some adjustments to ensure that the corresponding measured values of  𝑓1 are the same, resulting 

in a PR situation. When estimating reactivity ratios from their data, Ren et al. assumed that the 

input and output measurement variances were both already known (AK). They did not explicitly 

estimate 𝜎𝑦
2 using their replicate experiments.  

Below we demonstrate how to obtain output measurement variance estimates from the replicates 

provided by Ren et al. in two different ways: i) assuming that replicate data in Table 7. are true 

replicates of type 1, and ii) assuming that pseudo replicates were performed.  In our analysis, we 

make the common assumption (used by Ren et al.) that random errors in the measured comonomer 

feed composition and copolymer composition are multiplicative rather than additive (i.e., the 

anticipated percentage error is constant, so that larger measured values tend to have larger 

errors).12,63 Writing the model equation in terms of natural logarithms of the measured inputs and 

responses results in additive random-error terms with constant variances.  Model Equations (8.1) 

and (8.2) in Table 8 are used for situations where the output measurement variance is assumed 

known (indicated by AK in the first column of Table 8). In this situation, we do not need to pay 

attention to whether replicates have been conducted or not, and each pair of (𝑓1, 𝐹1) values can be 

treated as if it were obtained at a distinct run condition. In Equations (8.1) and (8.2) the index 𝑖, 

where 𝑖 = 1…17, is the index for the 17 experimental runs listed in Table 7. On the left-hand side 

of Equation (8.1), we use a capital L in the symbol 𝐿𝑛𝐹1,𝑖 to indicate that the natural logarithm of 

the 𝑖𝑡ℎ measured output is a random variable due to the random measurement error 𝜀𝐿𝑛𝐹1 ,𝑖. On the 

right-hand side of Equation (8.1), lower-case symbols 𝑟1, 𝑟2 and 𝑓1,𝑖 are used to indicate unknown 

true values of the reactivity ratios and the input comonomer compositions that require estimation.  



Process Systems Engineering 

 

18 

Similarly, in Equation (8.2), 𝐿𝑛𝑓1,𝑖 is a random variable, l𝑛𝑓1,𝑖 on the right-hand side is the 

corresponding true value, and 𝜀𝐿𝑛𝑓1,𝑖 is the random measurement error.   

The third row of Table 8 shows the EVM equations for the situation where TR1 replicates are 

conducted. In this situation, there are 11 unique experimental conditions (i.e., 𝑖 = 1,… ,11). Data 

from replicated runs are shown for the last two target conditions (i.e., 𝑛10 = 𝑛11 = 4).  In equation 

(8.3), 𝐿𝑛𝐹1,𝑖𝑗 is the output for the 𝑗𝑡ℎ replicate at the 𝑖𝑡ℎ target condition. Equation (8.2) shows the 

relationship between input measurements and their corresponding true values in the TR1 situation. 

The difference between Equation (8.2) when it is used for the TR1 and AK situations is that, in the 

TR1 situation, the index 𝑖 has the values from 1 to 11, whereas it has the values from 1 to 17 in 

the AK situation.  Equations (8.4) and (8.5) are used for the PR situation.  

Table 8- EVM Mayo-Lewis for the AK, TR1 and PR situations 

Case EVM equation Counter values 

AK 
Ln𝐹1,𝑖 = ln (

𝑟1𝑓1,𝑖
2 +𝑓1,𝑖(1−𝑓1,𝑖)

𝑟1𝑓1,𝑖
2 +2𝑓1,𝑖(1−𝑓1,𝑖)+𝑟2(1−𝑓1,𝑖)

2) +𝜀Ln𝐹1,𝑖  (8.1) 

𝐿𝑛𝑓1,𝑖 = ln𝑓1,𝑖 + 𝜀𝐿𝑛𝑓1,𝑖    (8.2) 

𝑖 = 1,… ,17 

TR1 
Ln𝐹1,𝑖𝑗 = ln (

𝑟1𝑓1,𝑖
2 +𝑓1,𝑖(1−𝑓1,𝑖)

𝑟1𝑓1,𝑖
2 +2𝑓1,𝑖(1−𝑓1,𝑖)+𝑟2(1−𝑓1,𝑖)

2) +𝜀Ln𝐹1,𝑖𝑗  (8.3) 

𝐿𝑛𝑓1,𝑖 = ln𝑓1,𝑖 + 𝜀𝐿𝑛𝑓1,𝑖    (8.2) 

𝑖 = 1, … ,11 , 𝑗 = 1,… , 𝑛𝑖  

𝑛𝑖 = {
1          𝑖𝑓 1 ≤ 𝑖 ≤ 9
4     𝑖𝑓 10 ≤ 𝑖 ≤ 11

 

PR 
Ln𝐹1,𝑖𝑗 = ln (

𝑟1𝑓1,𝑖𝑗
2 +𝑓1,𝑖𝑗(1−𝑓1,𝑖𝑗)

𝑟1𝑓1,𝑖𝑗
2 +2𝑓1,𝑖𝑗(1−𝑓1,𝑖𝑗)+𝑟2(1−𝑓1,𝑖𝑗)

2) +𝜀Ln𝐹1,𝑖𝑗 (8.4) 

𝐿𝑛𝑓1,𝑖 = ln𝑓1,𝑖𝑗 + 𝜀𝐿𝑛𝑓1,𝑖𝑗 (8.5) 

𝑖 = 1, … ,11 , 𝑗 = 1,… , 𝑛𝑖  

𝑛𝑖 = {
1         𝑖𝑓 1 ≤ 𝑖 ≤ 9
4     𝑖𝑓 10 ≤ 𝑖 ≤ 11

 

 

 The corresponding objective functions for the models in Table 8 are provided in Table 9. Equation 

(9.1) is the objective function when the output variance is assumed known, where 𝐹1𝑚,𝑖 and 

𝑓1𝑚,𝑖 are measurements for copolymer composition and comonomer composition, respectively.  A 

lower-case letter 𝑙 is used in 𝑙𝑛𝐹1𝑚,𝑖 and 𝑙𝑛𝑓1𝑚,𝑖, because they are numerical values obtained from 

an experiment rather than random variables.  Equations (9.2) and (9.3) are the corresponding 
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objective functions for the TR1 and PR situations. In all of the objective functions, we assume a 

known variance for the inputs 𝜎𝐿𝑛𝑓1
2 = 1 × 10−4, which was reported by Ren et al.2  In the AK 

situation, we also use their assumed output measurement variance 𝜎𝑙𝑛𝐹1
2 = 2.5 × 10−3. For the 

TR1 and PR situations, we estimate the output measurement variances using the proposed 

methodology, obtaining the results shown in Table 10. The estimate of 𝜎̂𝐿𝑛𝐹1
2 for the PR situation 

is 47% smaller than the estimate for the TR1 situation.  This result makes sense because, in the PR 

situation, some of the variation in the measured outputs is attributed to uncertainties in  𝑙𝑛𝑓1,𝑚. 

However, in the TR1 situation, all of the variation in the measured outputs for the true replicate 

runs is assigned to output measurement noise (and to common-cause variation not associated with 

𝑓1).  

Table 9- EVM-based Objective Functions for Reactivity-ratio Estimation Corresponding to the 

AK, TR1 and PR Situations  

Case Objective function 

AK 
𝐽𝐴𝐾 = ∑ [

(𝑙𝑛 𝐹1𝑚,𝑖−𝑙𝑛𝐹1,𝑖)

𝜎𝐿𝑛𝐹1
2

2

+
(𝑙𝑛 𝑓1𝑚,𝑖−𝑙𝑛𝑓1,𝑖)

2

𝜎Ln𝑓1
2 ]17

𝑖=1      (9.1) 

TR1 
𝐽𝑇𝑅1 = ∑ ∑

(𝑙𝑛 𝐹1𝑚,𝑖𝑗−𝑙𝑛𝐹1,𝑖)

𝜎̂𝐿𝑛𝐹1
2

2

+ ∑
(𝑙𝑛 𝑓1𝑚,𝑖−𝑙𝑛𝑓1,𝑖)

2

𝜎Ln𝑓1
2

11
𝑖=1

𝑛𝑖
𝑗=1

11
𝑖=1    (9.2) 

                   where 𝑛𝑖 = {
1               𝑖𝑓 1 ≤ 𝑖 ≤ 9
4          𝑖𝑓 10 ≤ 𝑖 ≤ 11

 

PR 
𝐽𝑃𝑅 = ∑ ∑

(𝑙𝑛𝐹1𝑚,𝑖𝑗−𝑙𝑛𝐹1,𝑖𝑗)
2

𝜎̂𝑙𝑛𝐹1
2 + ∑ ∑

(𝑙𝑛 𝑓1𝑚,𝑖−𝑙𝑛𝑓1,𝑖𝑗)
2

𝜎𝑙𝑛𝑓1
2

𝑛𝑖
𝑗=1

11
𝑖=1

𝑛𝑖
𝑗=1

11
𝑖=1    (9.3) 

where 𝑛𝑖 = {
1               𝑖𝑓 1 ≤ 𝑖 ≤ 9
4          𝑖𝑓 10 ≤ 𝑖 ≤ 11

 

 

Estimated values of the parameters obtained using three different assumptions about uncertainties 

are shown in columns 3 and 4 of Table 10. The estimated values of the reactivity ratios for the 

different situations are similar.  However, uncertainties in these parameter estimates are noticeably 



Process Systems Engineering 

 

20 

different.  Figure 1a shows a linearization-based 95% JCR (the red ellipse) corresponding to the 

AK situation.  Detailed information about how this JCR was computed is provided in Appendix 

A.  We obtained the red ellipse by extending a methodology developed by Hamilton64 who 

obtained JCRs for important subsets of model parameters in nonlinear least-squares regression.  

While constructing these JCRs, Hamilton accounted for uncertainties in nuisance parameters that 

were not part of the important subsets.  In our proposed method, described in Appendix A, the 

uncertain inputs  𝑓1 are treated as nuisance parameters and 𝑟1 and 𝑟2 are important parameters.  The 

JCR shown in Figure 1a is constructed using a chi-squared distribution with 2 degrees of freedom 

(corresponding to the 2 important parameters being estimated). 

When output measurement variances are not assumed known, it is appropriate to use an F 

distribution for computing the corresponding JCR.  However, it is not obvious how a modeler 

should determine the denominator degrees of freedom for this F distribution (corresponding to the 

degrees of freedom for the estimated parameter covariance matrix). As a result, we opted to use 

an empirical bootstrapping technique to obtain information about parameter uncertainties.   

Information about the proposed bootstrapping algorithm is provided in Appendix B. In this 

method, we generate bootstrap composition measurements and use them to determine plausible 

reactivity-ratio estimates, which are shown by green dots in Figures 1a), 1b), and 1c).  We validated 

the proposed bootstrapping method by comparing the results obtained for the AK situation with 

the red ellipse. Bootstrapping results are in good agreement with this analytical result, because 

only 4 out of 100 bootstrap estimates falls outside of the linearization-based 95% JCR.  Using 

10000 random seeds for bootstrapping resulted in 533 plausible parameter estimates falling outside 

of the red ellipse. We attribute the small deviation between 533/10000 and the theoretical value of 

5.0% to nonlinearity of the model in Equation (8.1).   
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Results obtained using the proposed bootstrap methods for the TR1 and PR situations are shown 

by the green dots in Figures 1b) and Figure 1c), respectively, based on the corresponding estimates 

of 𝜎̂𝐿𝑛𝐹1
2  shown in Table 10.   The resulting reactivity-ratio uncertainties are noticeably smaller 

than for the AK situation (the red ellipse for the AK situation is repeated in Figures 1b) and 1c) 

for comparison). It makes sense that cloud of green dots obtained using the PR assumption is 

smaller than the corresponding cloud for the TR1 assumption, because the variance estimate 

obtained using the PR assumption is smaller. These results reveal that experimentalists should be 

careful when they make assumptions about uncertainties and repeated experiments in EVM 

parameter estimation. These assumptions can have an important influence on the resulting 

parameter uncertainties.   

Table 10- Estimated (assumed) Values of Measurement Variance 𝜎𝐿𝑛𝐹1
2   and Estimated Reactivity 

Ratios Corresponding to EVM Situations with Different Underlying Assumptions 

Case Estimated (Assumed) output variance 𝑟1 𝑟2 
AK 2.5 × 10−3 2.0121 0.4615 

TR1 8.1 × 10−5 2.0556 0.4749 

PR 4.3 × 10−5 2.0081 0.4612 
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Figure 1.  JC information for reactivity ratios obtained using data from Table 7 and different 

uncertainty assumptions.  Different reactivity-ratio estimate, indicated by ▪ are obtained for 

situations where a) the output measurement variance 𝜎𝐿𝑛𝐹1
2 = 2.5 × 10−3 is assumed known, b)  

the output measurement variance 𝜎̂𝐿𝑛𝐹1
2  is estimated from true replicate runs and c) the output 

measurement variance 𝜎̂𝐿𝑛𝐹1
2  is estimated assuming pseudo replicate runs.  The red ellipse shown 

in all three plots is the linearization-based JCR obtained by assuming that 𝜎𝐿𝑛𝐹1
2  is perfectly known.  
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This ellipse is repeated in b) and c) as a helpful reference for comparison purposes.  Green dots in 

a), b) and c) are plausible alternative reactivity-ratio estimates obtained using bootstrapping. 

 

CONCLUSIONS 

Conducting replicate experiments is complicated in error-in-variables (EVM) situations. 

Depending on how the experiments are performed, the true values of the uncertain inputs may or 

may not be the same for multiple runs conducted at the same target conditions. We call replicate 

experiments “true replicates”, when true values of uncertain inputs are assumed to be the same for 

all runs conducted at a target condition. When measured values of uncertain inputs are the same 

for repeated runs, but the underlying true inputs may be different, we call these experiments pseudo 

replicates.  

Obtaining accurate estimates of output measurement variances is important in EVM parameter 

estimation because these variance estimates appear in the EVM objective function, thereby 

influencing the parameter estimates. It is relatively straightforward to obtain output measurement 

variance estimates from true replicates, but situations involving pseudo replicates are more 

complex. In the current study, a linearization-based approach is proposed to estimate output 

measurement variances in pseudo-replicate (PR) situations.   

We use a Mayo-Lewis case study involving literature data2 for n-butyl methacrylate and n-butyl 

acrylate copolymerization to illustrate the proposed methodology. Reactivity-ratio parameters in 

the Mayo-Lewis equation are estimated using a data set containing replicate runs. We estimate the 

reactivity ratios making three different assumptions: i) output measurement variance is assumed 

known, ii) output measurement variance is unknown and replicate data are true replicates, and iii) 

output measurement variance is unknown and replicate data are pseudo replicates.  We show 

similar point estimates for the reactivity ratios are obtained in all three situations. 
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To obtain information about parameter uncertainties, we extend a linearization-based method to 

obtain JCRs in situations where the output measurement variance is assumed known and we show 

that the parameter results are consistent with those from a proposed bootstrapping method.  We 

develop variations for this bootstrapping technique to provide parameter uncertainty information 

for true-replicate and pseudo-replicate situations. The results of these bootstrapping calculations 

reveal that parameter uncertainty estimates are influenced to a great extent by the assumed type of 

replicates.  In the current case study, uncertainties in the parameters are larger when true replicates 

are assumed than when pseudo replicates are assumed, because of the noticeable difference (by a 

factor of ~2) in the corresponding estimates for the output measurement variance.  
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NOTATION USED IN MANUSCRIPT AND SUPPLEMENTARY INFORMATION 

Abbreviations 

AK = Assumed known 

CI = Confidence interval 

EVM = Error-in-variables model 

JC= Joint confidence 

JCR = Joint confidence region 

PR = Pseudo replicate 

TR1 = True replicate of type 1 
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TR2  = True replicate of type 2 

WLS = Weighted least squares 

Symbols 

 𝑏= Counter for the iterations of the bootstrapping algorithm 

𝑏𝑚𝑎𝑥= Maximum number of the bootstrapping algorithm 

 𝑒 = The relative change of parameter estimates in two subsequent iterations of the algorithm         

used in PR situations to estimate output measurement variances 

𝑓1 = Composition for comonomer 1 

𝑓1,𝑖 = True value for the composition of the comonomer of type 1 at the 𝑖𝑡ℎ target condition 

𝑓1,𝑖𝑗 =The 𝑗𝑡ℎ true value for the composition of comonomer type 1 at the 𝑖𝑡ℎ target condition  

𝑓1𝑚,𝑖= The measured value of for the composition of the comonomer type 1 obtained at the 𝑖𝑡ℎ 

target experimental condition 

𝐹1 = The copolymer composition for component 1 

𝐹1,𝑖𝑗= The 𝑗𝑡ℎ  repeated value of the copolymer composition of type 1 obtained at the 𝑖𝑡ℎ target 

condition 

𝐹1𝑚,𝑖𝑗= The 𝑗𝑡ℎ measurement for the copolymer composition of type 1 at the 𝑖𝑡ℎ target 

experimental condition 

𝒈= A vector of solutions for the model predictions of a multi-output model 

𝑔= A solution for the model prediction of a single-output model 

𝒈𝒂𝒖𝒈,𝒔 = Scaled augmented model prediction vector containing scaled output and scaled input 

predictions  

𝑔𝑘 = Solution for the prediction of the 𝑘𝑡ℎ output 

𝐼𝑁= An identity matrix of size 𝑁 
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𝐽𝑇𝑅1= EVM-based objective function corresponding to the experiments involving true replicates 

of type 1 

𝐽𝑇𝑅2 = EVM-based objective function corresponding to the experiments involving true replicates 

of type 2 

𝐽𝑃𝑅= EVM-based objective function corresponding to the data set obtained from a pseudo-

replicate situation  

 𝑱̂𝜽𝒑= The Jacobian matrix of the model predictions with respect to the primary parameters 

𝑘11= Rate coefficient for the reaction between the growing polymer of type 1 and the comonomer 

of type 1 

𝑘22= Rate coefficient for the reaction between the growing polymer of type 2 and the comonomer 

of type 2 

𝑘12= Rate coefficient for the reaction between the growing polymer of type 1 and the comonomer 

of type 2 

𝑘21= Rate coefficient for the reaction between the growing polymer of type 2 and the comonomer 

of type 1 

𝑀1 = Monomer of type 1 

𝑀2= Monomer of type 2 

𝑁 = Number of target experimental condition 

𝑁𝑈= Number of uncertain model input  

𝑁𝑌= Number of output predictions at each experimental condition 

𝑁𝜃= Number of parameters 

𝑛𝑖= Number of replicate experiments at the 𝑖𝑡ℎ run condition 

𝑝 = Counter for the elements of parameter vector θ 
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𝑸̂ = The weighting matrix for computing the covariance matrix of the primary parameters 

𝑅1
•= Macroradical with terminal monomer of type 1 

𝑅2
•= Macroradical with terminal monomer of type 2 

𝑈𝑖𝑗= Input measurements random variable for a model with a single uncertain input for the 𝑗𝑡ℎ      

replicate run at the 𝑖𝑡ℎ experimental condition    

𝑼𝒊𝒋= Vector of uncertain input measurements random variable for the 𝑗𝑡ℎ replicate at the 𝑖𝑡ℎ 

experimental condition 

𝑟1= Reactivity ratio indicating the relative tendency of macroradical type 1 to react with 

monomers type 1 and type 2 

𝑟2= Reactivity ratio indicating the relative tendency of macroradical type 2 to react with 

monomers type 1 and type 2 

𝑠= Iteration counter in calculating the output measurement variance using pseudo-replicate data 

𝑢𝑖𝑗 = True value of the input for 𝑗𝑡ℎ replicate run of the 𝑖𝑡ℎ target condition 

𝒖𝒊𝒋= Vector of true values of uncertain inputs for the 𝑗𝑡ℎ replicate run of 𝑖𝑡ℎ target condition 

𝒖𝒎𝒊= Vector of measured values for uncertain inputs obtained from the 𝑖𝑡ℎ experimental     

condition 

𝒙𝒊= Vector of perfectly-known model inputs for the 𝑖𝑡ℎ target condition   

𝑌𝑖𝑗= Output measurement random variable corresponding to a single-output model for the 

𝑗𝑡ℎ replicate run at the  𝑖𝑡ℎ experimental target condition 

𝑌𝑖𝑗𝑘= Output measurement corresponding for the 𝑘𝑡ℎoutput of a multi-output model obtained for 

the 𝑗𝑡ℎreplicate run at the 𝑖𝑡ℎexperimental target condition  

𝒚𝒎,𝒊𝒋= Vector of measured values of outputs for the 𝑗𝑡ℎ replicate run at the 𝑖𝑡ℎ condition 
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𝑦𝑚,𝑖𝑗𝑘= Output measurement value for the 𝑘𝑡ℎ model output obtained from the 𝑗𝑡ℎ replicate run 

at the 𝑖𝑡ℎ  condition 

𝑦̅𝑚,𝑖𝑘= The average of the 𝑘𝑡ℎ model output measurements for replicate runs conducted at the 

𝑖𝑡ℎ target condition 

Subscripts 

𝑖= Counter for the unique target experimental conditions 

𝑗= Counter for the repeated replicate experiments at each condition 

𝑘= Counter for the elements of a model-output vector in a multi-output model 

𝑛= Nuisance parameters 

𝑝 = Primary parameters 

Greek symbols 

𝛿𝑘= Cut-off value for the estimates of variance for the 𝑘𝑡ℎ output measurement   

𝜀 = Random measurement noise for a single-output model with perfectly known inputs 

𝜀𝑙𝑛𝑓1,𝑖= Random measurement noise at the 𝑖𝑡ℎ experimental condition for the natural logarithm 

of the measurements for the comonomer type 1 composition  

𝜀𝑙𝑛𝑓1,𝑖𝑗= Random measurement noise for the 𝑗𝑡ℎ pseudo-replicated run at the 𝑖𝑡ℎ experimental 

condition for the natural logarithm of the measurements for the comonomer type 1 composition  

𝜀𝑙𝑛𝐹1,𝑖= Random measurement noise for the natural logarithm of the measurements of the 

copolymer composition at the 𝑖𝑡ℎ experimental condition 

𝜀𝑙𝑛𝐹1,𝑖𝑗= Random measurement noise for the natural logarithm of the 𝑗𝑡ℎ replicated measurement 

of the copolymer composition at the 𝑖𝑡ℎ experimental condition 

𝜺𝑼,𝒊𝒋= Vector of random measurement noises for the input measurements  

𝜀𝑈,𝑖𝑗= Random noise for the input measurements of a model with a single uncertain input 
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𝜺𝒀,𝒊𝒋 = Vector of output random measurement noise for the 𝑗𝑡ℎ replicated run at the 𝑖𝑡ℎ 

experimental condition 

𝜀𝑌,𝑖𝑗= Random measurement noise for the  𝑗𝑡ℎ output measurement of a single-output model at 

the 𝑖𝑡ℎ experimental condition 

𝜀𝑌𝑖𝑗𝑘= Random noise for the 𝑘𝑡ℎ model output measurement obtained for the  𝑗𝑡ℎ replicated run 

at the 𝑖𝑡ℎ target condition 

𝜽 = Vector of true values of parameters 

𝜎𝑌
2= Output measurement random noise for a single-output model 

𝜎̂𝑌𝑘
2 = Estimate of variance for the 𝑘𝑡ℎ model output  

𝜎̂𝑌𝑖𝑘
2 = Variance estimate for the 𝑘𝑡ℎ model output obtained from measurements of replicate data 

corresponding to the 𝑖𝑡ℎ experimental data 

𝜎𝑙𝑛𝑓1
2 = Variance for the natural logarithm of the comonomer type 1 composition measurements  

𝜎𝑙𝑛𝐹1
2 = Variance for the natural logarithm of the copolymer composition measurements 

𝜎𝑃𝑅,𝑖𝑘
2 = Variance of the 𝑘𝑡ℎ output measurements at the 𝑖𝑡ℎ target condition arising from output 

measurement noises and input uncertainties 

 𝚺̂(𝑟̂1,𝑟̂2)= Covariance matrix for the reactivity ratio value estimates 

𝜮𝑼= Covariance matrix for the uncertain input 

𝜮𝒀=Covariance matrix for the model outputs 

𝚺̂𝜽𝒑= Covariance matrix estimate for the primary parameters 
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