References
Ancin-Murguzur, F. J., Munoz, L., Monz, C., & Hausner, V. H. (2020). Drones as a tool to monitor human impacts and vegetation changes in parks and protected areas. Remote Sensing in Ecology and Conservation, 6 , 105-113. doi:10.1002/rse2.127
Anderegg, W. R. L., Abatzoglou, J. T., Anderegg, L. D. L., Bielory, L., Kinney, P. L., & Ziska, L. (2021). Anthropogenic climate change is worsening North American pollen seasons. Proc Natl Acad Sci U S A, 118 (7). doi:10.1073/pnas.2013284118
Andres, K. J., Sethi, S. A., Lodge, D. M., & Andres, J. (2021). Nuclear eDNA estimates population allele frequencies and abundance in experimental mesocosms and field samples. Molecular Ecology, 30 (3), 685-697. doi:10.1111/mec.15765
Arstingstall, K. A., DeBano, S. J., Li, X., Wooster, D. E., Rowland, M. M., Burrows, S., & Frost, K. (2021). Capabilities and limitations of using DNA metabarcoding to study plant-pollinator interactions.Mol Ecol . doi:10.1111/mec.16112
Aziz, A. N., & Sauve, R. J. (2008). Genetic mapping of Echinacea purpurea via individual pollen DNA fingerprinting. Molecular Breeding, 21 (2), 227-232. doi:10.1007/s11032-007-9123-9
Baksay, S., Pornon, A., Burrus, M., Mariette, J., Andalo, C., & Escaravage, N. (2020). Experimental quantification of pollen with DNA metabarcoding using ITS1 and trnL. Scientific Reports, 10 (1), 4020. doi:10.1038/s41598-020-61198-6
Baldock, K. C., Goddard, M. A., Hicks, D. M., Kunin, W. E., Mitschunas, N., Osgathorpe, L. M., . . . Memmott, J. (2015). Where is the UK’s pollinator biodiversity? The importance of urban areas for flower-visiting insects. Proc Biol Sci, 282 (1803), 20142849. doi:10.1098/rspb.2014.2849
Bänsch, S., Tscharntke, T., Wunschiers, R., Netter, L., Brenig, B., Gabriel, D., & Westphal, C. (2020). Using ITS2 metabarcoding and microscopy to analyze shifts in pollen diets of honey bees and bumble bees along a mass-flowering crop gradient. Molecular Ecology, 29 (24), 5003-5018.
Bartomeus, I., Ascher, J. S., Wagner, D., Danforth, B. N., Colla, S., Kornbluth, S., & Winfree, R. (2011). Climate-associated phenological advances in bee pollinators and bee-pollinated plants. Proceedings of the National Academy of Sciences, 108 (51), 20645-20649. doi:10.1073/pnas.1115559108
Bell, K. L., Batchelor, K. L., Bradford, M., McKeown, A., Macdonald, S. L., & Westcott, D. (2021). Optimisation of a pollen DNA metabarcoding method for diet analysis of flying-foxes (<i>Pteropus</i> spp.).Australian Journal of Zoology , -. doi:https://doi.org/10.1071/ZO20085
Bell, K. L., Burgess, K. S., Botsch, J. C., Dobbs, E. K., Read, T. D., & Brosi, B. J. (2019). Quantitative and qualitative assessment of pollen DNA metabarcoding using constructed species mixtures. InMolecular Ecology (Vol. 28, pp. 431-455): Wiley/Blackwell (10.1111).
Bell, K. L., de Vere, N., Keller, A., Richardson, R. T., Gous, A., Burgess, K. S., & Brosi, B. J. (2016). Pollen DNA barcoding: current applications and future prospects. Genome, 59 (9), 629-640. doi:10.1139/gen-2015-0200
Bell, K. L., Petit, R. A., Cutler, A., Dobbs, E. K., Macpherson, J. M., Read, T. D., . . . Brosi, B. J. (2021). Comparing whole‐genome shotgun sequencing and DNA metabarcoding approaches for species identification and quantification of pollen species mixtures. Ecology and Evolution . doi:10.1002/ece3.8281
Bennett, K., & Parducci, Y. (2006). DNA from pollen: principles and potential. In The Holocene (Vol. 16, pp. 1031-1034).
Berry, D., Mahfoudh, K. B., Wagner, M., & Loy, A. (2011). Barcoded Primers Used in Multiplex Amplicon Pyrosequencing Bias Amplification.Applied and Environmental Microbiology, 77 (21), 7846-7849. doi:doi:10.1128/AEM.05220-11
Bista, I., Carvalho, G. R., Tang, M., Walsh, K., Zhou, X., Hajibabaei, M., . . . Creer, S. (2018). Performance of amplicon and shotgun sequencing for accurate biomass estimation in invertebrate community samples. In Molecular Ecology Resources (Vol. 18, pp. 1020-1034).
Bolyen, E., Rideout, J. R., Dillon, M. R., Bokulich, N. A., Abnet, C. C., Al-Ghalith, G. A., . . . Caporaso, J. G. (2019). Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnology, 37 (8), 852-857. doi:10.1038/s41587-019-0209-9
Bosch, J., Gonzalez, A. M., Rodrigo, A., & Navarro, D. (2009). Plant-pollinator networks: adding the pollinator’s perspective.Ecol Lett, 12 (5), 409-419. doi:10.1111/j.1461-0248.2009.01296.x
Bourel, B., Marchant, R., de Garidel-Thoron, T., Tetard, M., Barboni, D., Gally, Y., & Beaufort, L. (2020). Automated recognition by multiple convolutional neural networks of modern, fossil, intact and damaged pollen grains. Computers & Geosciences, 140 , 104498. doi:10.1016/j.cageo.2020.104498
Bowler, D. E., Bjorkman, A. D., Dornelas, M., Myers‐Smith, I. H., Navarro, L. M., Niamir, A., . . . Fish, R. (2020). Mapping human pressures on biodiversity across the planet uncovers anthropogenic threat complexes. People and Nature, 2 (2), 380-394. doi:10.1002/pan3.10071
Boyer, F., Mercier, C., Bonin, A., Le Bras, Y., Taberlet, P., & Coissac, E. (2016). obitools: a unix-inspired software package for DNA metabarcoding. Molecular Ecology Resources, 16 (1), 176-182. doi:10.1111/1755-0998.12428
Breitwieser, F. P., Pertea, M., Zimin, A. V., & Salzberg, S. L. (2019). Human contamination in bacterial genomes has created thousands of spurious proteins. Genome Research, 29 (954-960). doi:10.1101/gr.245373.118
Brennan, G. L., Potter, C., de Vere, N., Griffith, G. W., Skjoth, C. A., Osborne, N. J., . . . Creer, S. (2019). Temperate airborne grass pollen defined by spatio-temporal shifts in community composition. Nature Ecology & Evolution, 3 (5), 750-754. doi:10.1038/s41559-019-0849-7
Brosi, B. J. (2016). Pollinator specialization: from the individual to the community. New Phytologist, 210 (4), 1190-1194. doi:10.1111/nph.13951
Brosi, B. J., & Briggs, H. M. (2013). Single pollinator species losses reduce floral fidelity and plant reproductive function.Proceedings of the National Academy of Sciences, 110 (32), 13044-13048. doi:10.1073/pnas.1307438110
Bruni, I., Galimberti, A., Caridi, L., Scaccabarozzi, D., De Mattia, F., Casiraghi, M., & Labra, M. (2015). A DNA barcoding approach to identify plant species in multiflower honey. In Food chemistry (Vol. 170, pp. 308-315).
Burkle, L. A., Marlin, J. C., & Knight, T. M. (2013). Plant-pollinator interactions over 120 years: Loss of species, co-occurrence, and function. Science, 339 (6127), 1611-1615.
Butchart, S. H. M., Walpole, M., Collen, B., van Strien, A., Scharlemann, J. P. W., Almond, R. E. A., . . . Watson, R. (2010). Global biodiversity: Indicators of recent declines. Science, 328 (5982), 1164-1168.
Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J., & Holmes, S. P. (2016). DADA2: High-resolution sample inference from Illumina amplicon data. Nature Methods, 13 (7), 581-583. doi:10.1038/nmeth.3869
Campbell, B. C., Al Kouba, J., Timbrell, V., Noor, M. J., Massel, K., Gilding, E. K., . . . Davies, J. M. (2020). Tracking seasonal changes in diversity of pollen allergen exposure: Targeted metabarcoding of a subtropical aerobiome. Science of The Total Environment, 747 , 141189. doi:10.1016/j.scitotenv.2020.141189
Capo, E., Giguet-Covex, C., Rouillard, A., Nota, K., Heintzman, P. D., Vuillemin, A., . . . Parducci, L. (2021). Lake Sedimentary DNA Research on Past Terrestrial and Aquatic Biodiversity: Overview and Recommendations. Quaternary, 4 (1), 6. doi:10.3390/quat4010006
Casanelles‐Abella, J., Müller, S., Keller, A., Aleixo, C., Alós Orti, M., Chiron, F., . . . Moretti, M. (2021). How wild bees find a way in European cities: Pollen metabarcoding unravels multiple feeding strategies and their effects on distribution patterns in four wild bee species. Journal of Applied Ecology . doi:10.1111/1365-2664.14063
CBOL Plant Working Group, Hollingsworth, P. M., Forrest, L. L., Spouge, J. L., Hajibabaei, M., Ratnasingham, S., . . . Little, D. P. (2009). A DNA barcode for land plants. Proceedings of the National Academy of Sciences, 106 (31), 12794-12797. doi:10.1073/pnas.0905845106
Chang, H., Guo, J., Fu, X., Liu, Y., Wyckhuys, K., Hou, Y., & Wu, K. (2018). Molecular-Assisted Pollen Grain Analysis Reveals Spatiotemporal Origin of Long-Distance Migrants of a Noctuid Moth. InInternational Journal of Molecular Sciences (Vol. 19, pp. 567): Multidisciplinary Digital Publishing Institute.
Cohen, H., Smith, G. P., Sardiñas, H., Zorn, J. F., McFrederick, Q. S., Woodard, S. H., & Ponisio, L. C. (2021). Mass-flowering monoculture attracts bees, amplifying parasite prevalence. Proceedings of the Royal Society B: Biological Sciences, 288 (1960), 20211369. doi:doi:10.1098/rspb.2021.1369
Courtin, J., Andreev, A. A., Raschke, E., Bala, S., Biskaborn, B. K., Liu, S., . . . Herzschuh, U. (2021). Vegetation Changes in Southeastern Siberia During the Late Pleistocene and the Holocene. Frontiers in Ecology and Evolution, 9 . doi:10.3389/fevo.2021.625096
Cristescu, M. E. (2014). From barcoding single individuals to metabarcoding biological communities: towards an integrative approach to the study of global biodiversity. In Trends in Ecology & Evolution (Vol. 29, pp. 566-571): Elsevier Ltd.
Cullen, N., Xia, J., Wei, N., Kaczorowski, R., Arceo-Gómez, G., O’Neill, E., . . . Ashman, T.-L. (2021). Diversity and composition of pollen loads carried by pollinators are primarily driven by insect traits, not floral community characteristics. Oecologia, 196 (1), 131-143. doi:10.1007/s00442-021-04911-0
da Rocha‐Filho, L. C., Montagnana, P. C., Araújo, T. N., Moure‐Oliveira, D., Boscolo, D., & Garófalo, C. A. (2021). Pollen analysis of cavity‐nesting bees (Hymenoptera: Anthophila) and their food webs in a city. Ecological Entomology . doi:10.1111/een.13097
Damschen, E. I., Brudvig, L. A., Burt, M. A., Fletcher, R. J., Haddad, N. M., Levey, D. J., . . . Tewksbury, J. J. (2019). Ongoing accumulation of plant diversity through habitat connectivity in an 18-year experiment. Science, 365 (6460), 1478-1480. doi:doi:10.1126/science.aax8992
Danner, N., Keller, A., Härtel, S., & Steffan-Dewenter, I. (2017). Honey bee foraging ecology: Season but not landscape diversity shapes the amount and diversity of collected pollen. In W. Blenau (Ed.),PLoS one (Vol. 12, pp. e0183716): Springer New York.
Darling, J. A., Pochon, X., Abbott, C. L., Inglis, G. J., & Zaiko, A. (2020). The risks of using molecular biodiversity data for incidental detection of species of concern. Diversity and Distributions, 26 (9), 1116-1121. doi:10.1111/ddi.13108
Davis, N. M., Proctor, D. M., Holmes, S. P., Relman, D. A., & Callahan, B. J. (2018). Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. InMicrobiome (Vol. 6, pp. 226): BioMed Central.
de Manincor, N., Hautekèete, N., Mazoyer, C., Moreau, P., Piquot, Y., Schatz, B., . . . Massol, F. (2020). How biased is our perception of plant-pollinator networks? A comparison of visit- and pollen-based representations of the same networks. Acta Oecologica, 105 , 103551. doi:10.1016/j.actao.2020.103551
de Vere, N., Jones, L. E., Gilmore, T., Moscrop, J., Lowe, A., Smith, D., . . . Ford, C. R. (2017). Using DNA metabarcoding to investigate honey bee foraging reveals limited flower use despite high floral availability. In Scientific Reports (Vol. 7, pp. 42838).
Deagle, B. E., Thomas, A. C., McInnes, J. C., Clarke, L. J., Vesterinen, E. J., Clare, E. L., . . . Eveson, J. P. (2019). Counting with DNA in metabarcoding studies: How should we convert sequence reads to dietary data? Molecular Ecology, 28 (2), 391-406. doi:10.1111/mec.14734
Dharampal, P. S., Carlson, C., Currie, C. R., & Steffan, S. A. (2019). Pollen-borne microbes shape bee fitness. Proceedings of the Royal Society B: Biological Sciences, 286 (1904), 20182894. doi:10.1098/rspb.2018.2894
Didham, R. K., Tylianakis, J. M., Gemmell, N. J., Rand, T. A., & Ewers, R. M. (2007). Interactive effects of habitat modification and species invasion on native species decline. Trends Ecol Evol, 22 (9), 489-496. doi:10.1016/j.tree.2007.07.001
Diehn, S., Zimmermann, B., Tafintseva, V., Bağcıoğlu, M., Kohler, A., Ohlson, M., . . . Kneipp, J. (2020). Discrimination of grass pollen of different species by FTIR spectroscopy of individual pollen grains.Analytical and Bioanalytical Chemistry, 412 (24), 6459-6474. doi:10.1007/s00216-020-02628-2
Donkersley, P., Rhodes, G., Pickup, R. W., Jones, K. C., Power, E. F., Wright, G. A., & Wilson, K. (2017). Nutritional composition of honey bee food stores vary with floral composition. Oecologia, 185 (4), 749-761. doi:10.1007/s00442-017-3968-3
Dorazio, R. M., & Erickson, R. A. (2018). eDNAoccupancy: An R package for multiscale occupancy modelling of environmental DNA data.Molecular Ecology Resources, 18 (2), 368-380. doi:10.1111/1755-0998.12735
Douglas, M. R., Sponsler, D. B., Lonsdorf, E. V., & Grozinger, C. M. (2020). County-level analysis reveals a rapidly shifting landscape of insecticide hazard to honey bees (Apis mellifera ) on US farmland.Scientific Reports, 10 (1), 797. doi:10.1038/s41598-019-57225-w
Douglas, M. R., & Tooker, J. F. (2015). Large-Scale Deployment of Seed Treatments Has Driven Rapid Increase in Use of Neonicotinoid Insecticides and Preemptive Pest Management in U.S. Field Crops.Environmental Science & Technology, 49 (8), 5088-5097. doi:10.1021/es506141g
Dunker, S., Motivans, E., Rakosy, D., Boho, D., Mäder, P., Hornick, T., & Knight, T. M. (2021). Pollen analysis using multispectral imaging flow cytometry and deep learning. New Phytologist, 229 (1), 593-606. doi:10.1111/nph.16882
Dunn, J. C., Stockdale, J. E., Moorhouse-Gann, R. J., McCubbin, A., Hipperson, H., Morris, A. J., . . . Symondson, W. O. C. (2018). The decline of the Turtle Dove: Dietary associations with body condition and competition with other columbids analysed using high-throughput sequencing. Molecular Ecology, 27 , 3386-3407. doi:10.1111/mec.14766
Edgar, R. C. (2010). Search and clustering orders of magnitude faster than BLAST. Bioinformatics, 26 (19), 2460-2461. doi:10.1093/bioinformatics/btq461
Edgar, R. C. (2018). Accuracy of taxonomy prediction for 16S rRNA and fungal ITS sequences. PeerJ, 6 , e4652. doi:10.7717/peerj.4652
Elliott, B., Wilson, R., Shapcott, A., Keller, A., Newis, R., Cannizzaro, C., . . . Wallace, H. M. (2020). Pollen diets and niche overlap of honey bees and native bees in protected areas. In Basic and Applied Ecology .
Ellis, E. C., Klein Goldewijk, K., Siebert, S., Lightman, D., & Ramankutty, N. (2010). Anthropogenic transformation of the biomes, 1700 to 2000. Global Ecology and Biogeography, 19 , 589-606. doi:10.1111/j.1466-8238.2010.00540.x
Engel, P., Kwong, W. K., McFrederick, Q., Anderson, K. E., Barribeau, S. M., Chandler, J. A., . . . Dainat, B. (2016). The Bee Microbiome: Impact on Bee Health and Model for Evolution and Ecology of Host-Microbe Interactions. mBio, 7 (2), e02164-02115. doi:10.1128/mBio.02164-15
Esling, P., Lejzerowicz, F., & Pawlowski, J. (2015). Accurate multiplexing and filtering for high-throughput amplicon-sequencing.Nucleic Acids Research, 43 (5), 2513-2524. doi:10.1093/nar/gkv107
Forrest, J. R. K. (2015). Plant-pollinator interactions and phenological change: What can we learn about climate impacts from experiments and observations? Oikos (4-13).
Galimberti, A., De Mattia, F., Bruni, I., Scaccabarozzi, D., Sandionigi, A., Barbuto, M., . . . Labra, M. (2014). A DNA barcoding approach to characterize pollen collected by honeybees. In PLoS one (Vol. 9, pp. e109363).
Garrido-Sanz, L., Senar, M. A., & Pinol, J. (2021). Relative species abundance estimation in artificial mixtures of insects using mito-metagenomics and a correction factor for the mitochondrial DNA copy number. Mol Ecol Resour . doi:10.1111/1755-0998.13464
Garrido-Sanz, L., Senar, M. À., & Piñol, J. (2020). Estimation of the relative abundance of species in artificial mixtures of insects using low-coverage shotgun metagenomics. In Metabarcoding and Metagenomics (Vol. 4, pp. e48281).
Gonçalves, A. B., Souza, J. S., da Silva, G. G., Cereda, M. P., Pott, A., Naka, M. H., & Pistori, H. (2016). Feature extraction and machine learning for the classification of Brazilian savannah pollen grains.PLoS one, 11 (6), e0157044. doi:10.1371/journal.pone.0157044
Gouker, F. E., Guo, Y., & Pooler, M. R. (2020). Using acetone for rapid PCR-amplifiable DNA extraction from recalcitrant woody plant taxa.Applications in Plant Sciences, 8 (12), e11403.
Gous, A., Eardley, C. D., Johnson, S. D., Swanevelder, D. Z. H., & Willows-Munro, S. (2021). Floral hosts of leaf-cutter bees (Megachilidae) in a biodiversity hotspot revealed by pollen DNA metabarcoding of historic specimens. PLoS one, 16 (1), e0244973. doi:10.1371/journal.pone.0244973
Gous, A., Swanevelder, D. Z. H., Eardley, C. D., & Willows-Munro, S. (2019). Plant-pollinator interactions over time: Pollen metabarcoding from bees in a historic collection. In Evolutionary Applications(Vol. 12, pp. 187-197): Wiley/Blackwell (10.1111).
Grab, H., Brokaw, J., Anderson, E., Gedlinske, L., Gibbs, J., Wilson, J., . . . Diamond, S. (2019). Habitat enhancements rescue bee body size from the negative effects of landscape simplification. Journal of Applied Ecology, 56 (9), 2144-2154. doi:10.1111/1365-2664.13456
Gresty, C. E. A., Clare, E., Devey, D. S., Cowan, R. S., Csiba, L., Malakasi, P., . . . Willis, K. J. (2018). Flower preferences and pollen transport networks for cavity-nesting solitary bees: Implications for the design of agri-environment schemes. Ecology and Evolution, 8 (15), 7574-7587. doi:10.1002/ece3.4234
Hall, D. M., Camilo, G. R., Tonietto, R. K., Ollerton, J., Ahrné, K., Arduser, M., . . . Threlfall, C. G. (2017). The city as a refuge for insect pollinators. Conserv Biol, 31 (1), 24-29. doi:10.1111/cobi.12840
Hansen, J., Reudy, R., Sato, M., & Lo, K. (2010). Global surface temperature change. Reviews of Geophysics, 48 (RG4004), 2010RG000345.
Hasegawa, Y., Suyama, Y., & Seiwa, K. (2009). Pollen donor composition during the early phases of reproduction revealed by DNA genotyping of pollen grains and seeds of Castanea crenata. New Phytologist, 182 (4), 994-1002. doi:10.1111/j.1469-8137.2009.02806.x
Hawkins, J., de Vere, N., Griffith, A., Ford, C. R., Allainguillaume, J., Hegarty, M. J., . . . Adams-Groom, B. (2015). Using DNA Metabarcoding to Identify the Floral Composition of Honey: A New Tool for Investigating Honey Bee Foraging Preferences. In PLoS one(Vol. 10, pp. e0134735): Public Library of Science.
He, C., Liu, Z., Gou, S., Zhang, Q., Zhang, J., & Xu, L. (2019). Detecting global urban expansion over the last three decades using a fully convolutional network. Environmental Research Letters, 14 (3), 034008. doi:10.1088/1748-9326/aaf936
Hirota, S. K., Nitta, K., Suyama, Y., Kawakubo, N., Yasumoto, A. A., & Yahara, T. (2013). Pollinator-Mediated Selection on Flower Color, Flower Scent and Flower Morphology of Hemerocallis: Evidence from Genotyping Individual Pollen Grains On the Stigma. PLoS one, 8 (12), e85601. doi:10.1371/journal.pone.0085601
Hornick, T., Richter, A., Harpole, W. S., Bastl, M., Bohlmann, S., Bonn, A., . . . Dunker, S. (2021). An integrative environmental pollen diversity assessment and its importance for the Sustainable Development Goals. Plants, People, Planet . doi:10.1002/ppp3.10234
Hulme, P. E. (2009). Trade, transport and trouble: managing invasive species pathways in an era of globalization. Journal of Applied Ecology, 46 (1), 10-18. doi:https://doi.org/10.1111/j.1365-2664.2008.01600.x
Isagi, Y., & Suyama, Y. (2011). Single-Pollen Genotyping . Tokyo: Springer.
Ito, M., Suyama, Y., Ohsawa, T. A., & Watano, Y. (2008). Airborne-pollen pool and mating pattern in a hybrid zone betweenPinus pumila and P. parviflora var. pentaphylla .Molecular Ecology, 17 (23), 5092-5103. doi:10.1111/j.1365-294X.2008.03966.x
Jayaprakash, P. (2018). Pollen Germination in vitro. In P. W. Mokwala (Ed.), Pollination in Plants : IntechOpen.
Jensen, M. R., Sigsgaard, E. E., Liu, S., Manica, A., Bach, S. S., Hansen, M. M., . . . Thomsen, P. F. (2021). Genome-scale target capture of mitochondrial and nuclear environmental DNA from water samples.Molecular Ecology Resources, 21 (3), 690-702. doi:10.1111/1755-0998.13293
Jones, L., Brennan, G. L., Lowe, A., Creer, S., Ford, C. R., & de Vere, N. (2021). Shifts in honeybee foraging reveal historical changes in floral resources. Communications Biology, 4 (1), 37. doi:10.1038/s42003-020-01562-4
Jones, L., Twyford, A. D., Ford, C. R., Rich, T. C. G., Davies, H., Forrest, L. L., . . . de Vere, N. (2021). Barcode UK: A complete DNA barcoding resource for the flowering plants and conifers of the United Kingdom. Mol Ecol Resour, 21 (6), 2050-2062. doi:10.1111/1755-0998.13388
Judd, H. J., Huntzinger, C., Ramirez, R., & Strange, J. P. (2020). A 3D Printed Pollen Trap for Bumble Bee (Bombus ) Hive Entrances.JoVE (161), e61500. doi:10.3791/61500
Kaluza, B. F., Wallace, H., Keller, A., Heard, T. A., Jeffers, B., Drescher, N., . . . Leonhardt, S. D. (2017). Generalist social bees maximize diversity intake in plant species-rich and resource-abundant environments. In Ecosphere (Vol. 8, pp. e01758).
Keller, A., Brandel, A., Becker, M. C., Balles, R., Abdelmohsen, U. R., Ankenbrand, M. J., & Sickel, W. (2018). Wild bees and their nests host Paenibacillus bacteria with functional potential of avail.Microbiome, 6 (1), 229. doi:10.1186/s40168-018-0614-1
Keller, A., Danner, N., Grimmer, G., Ankenbrand, M. J., von der Ohe, K., von der Ohe, W., . . . Steffan-Dewenter, I. (2015). Evaluating multiplexed next-generation sequencing as a method in palynology for mixed pollen samples. Plant Biology, 17 (2), 558-566. doi:10.1111/plb.12251
Keller, A., Hohlfeld, S., Kolter, A., Schultz, J., Gemeinholzer, B., & Ankenbrand, M. J. (2020). BCdatabaser: on-the-fly reference database creation for (meta-)barcoding. Bioinformatics, 36 (8), 2630-2631. doi:10.1093/bioinformatics/btz960
Keller, A., McFrederick, Q. S., Dharampal, P., Steffan, S., Danforth, B. N., & Leonhardt, S. D. (2021). (More than) Hitchhikers through the network: the shared microbiome of bees and flowers. Current Opinion in Insect Science, 44 , 8-15. doi:10.1016/j.cois.2020.09.007
Kembel, S. W., Wu, M., Eisen, J. A., & Green, J. L. (2012). Incorporating 16S Gene Copy Number Information Improves Estimates of Microbial Diversity and Abundance. PLOS Computational Biology, 8 (10), e1002743. doi:10.1371/journal.pcbi.1002743
Khansaritoreh, E., Salmaki, Y., Ramezani, E., Akbari Azirani, T., Keller, A., Neumann, K., . . . Behling, H. (2020). Employing DNA metabarcoding to determine the geographical origin of honey.Heliyon, 6 (11), e05596. doi:10.1016/j.heliyon.2020.e05596
Klimczak, L. J., Ebner von Eschenbach, C., Thompson, P. M., Buters, J. T. M., & Meuller, G. A. (2020). Mixture analyses of air-sampled pollen extracts can accurately differentiate pollen taxa. Atmospheric Environment, 243 , 117746. doi:10.1016/j.atmosenv.2020.117746
Kolter, A., & Gemeinholzer, B. (2021). Internal transcribed spacer primer evaluation for vascular plant metabarcoding. Metabarcoding and Metagenomics, 5 , e68155. doi:10.3897/mbmg.5.68155
Kortsch, S., Primicerio, R., Fossheim, M., Dolgov, A. V., & Aschan, M. (2015). Climate change alters the structure of arctic marine food webs due to poleward shifts of boreal generalists. Proceedings of the Royal Society B: Biological Sciences, 282 , 20151546. doi:10.1098/rspb.2015.1546
Kraaijeveld, K., de Weger, L. A., Ventayol Garcia, M., Buermans, H., Frank, J., Hiemstra, P. S., & den Dunnen, J. T. (2014). Efficient and sensitive identification and quantification of airborne pollen using next-generation DNA sequencing. Molecular Ecology Resources, 15 (1), 8-16. doi:10.1111/1755-0998.12288
Kratschmer, S., Petrović, B., Curto, M., Meimberg, H., & Pachinger, B. (2020). Pollen availability for the Horned mason bee (
Osmia cornuta
) in regions of different land use and landscape structures.Ecological Entomology, 45 (3), 525-537. doi:10.1111/een.12823
Kron, P., Loureiro, J., Castro, S., & Čertner, M. (2021). Flow cytometric analysis of pollen and spores: An overview of applications and methodology. Cytometry Part A, 99 (4), 348-358. doi:10.1002/cyto.a.24330
Kurganskiy, A., Creer, S., Vere, N. d., Griffith, G. W., Osborne, N. J., Wheeler, B. W., . . . Skjøth, C. A. (2021). Predicting the severity of the grass pollen season and the effect of climate change in Northwest Europe. Science Advances, 7 (13), eabd7658. doi:10.1126/sciadv.abd7658
Kuzmina, M. L., Braukmann, T. W. A., Fazekas, A. J., Graham, S. W., Dewaard, S. L., Rodrigues, A., . . . Hebert, P. D. N. (2017). Using herbarium-derived DNAs to assemble a large-scale DNA barcode library for the vascular plants of Canada. Applications in Plant Sciences, 5 (12), apps.1700079. doi:10.3732/apps.1700079
Lamb, P. D., Hunter, E., Pinnegar, J. K., Creer, S., Davies, R. G., & Taylor, M. I. (2019). How quantitative is metabarcoding: A meta-analytical approach. Molecular Ecology, 28 (2), 420-430. doi:10.1111/mec.14920
Lang, D., Tang, M., Hu, J., & Zhou, X. (2019). Genome‐skimming provides accurate quantification for pollen mixtures. In Molecular Ecology Resources (Vol. 19, pp. 1433-1446): John Wiley & Sons, Ltd (10.1111).
Lark, T. J., Meghan Salmon, J., & Gibbs, H. K. (2015). Cropland expansion outpaces agricultural and biofuel policies in the United States. Environmental Research Letters, 10 (4), 044003. doi:10.1088/1748-9326/10/4/044003
Lark, T. J., Spawn, S. A., Bougie, M., & Gibbs, H. K. (2020). Cropland expansion in the United States produces marginal yields at high costs to wildlife. Nature Communications, 11 (1), 4295. doi:10.1038/s41467-020-18045-z
Lau, P., Bryant, V., Ellis, J. D., Huang, Z. Y., Sullivan, J., Schmehl, D. R., . . . Rangel, J. (2019). Seasonal variation of pollen collected by honey bees (Apis mellifera) in developed areas across four regions in the United States. PLoS one, 14 (6), e0217294. doi:10.1371/journal.pone.0217294
Leontidou, K., Vernesi, C., De Groeve, J., Cristofolini, F., Vokou, D., & Cristofori, A. (2018). DNA metabarcoding of airborne pollen: new protocols for improved taxonomic identification of environmental samples. In Aerobiologia (Vol. 34, pp. 63-74): Springer Netherlands.
Leontidou, K., Vokou, D., Sandionigi, A., Bruno, A., Lazarina, M., De Groeve, J., . . . Cristofori, A. (2021). Plant biodiversity assessment through pollen DNA metabarcoding in Natura 2000 habitats (Italian Alps).Scientific Reports, 11 , 18226.
Lewin, H. A., Robinson, G. E., Kress, W. J., Baker, W. J., Coddington, J., Crandall, K. A., . . . Zhang, G. (2018). Earth BioGenome Project: Sequencing life for the future of life. Proceedings of the National Academy of Sciences, 115 (17), 4325-4333. doi:10.1073/pnas.1720115115
Liu, S., Li, K., Jia, W., Stoof-Leichsenring, K. R., Liu, X., Cao, X., & Herzschuh, U. (2021). Vegetation Reconstruction From Siberia and the Tibetan Plateau Using Modern Analogue Technique–Comparing Sedimentary (Ancient) DNA and Pollen Data. Frontiers in Ecology and Evolution, 9 , 668611. doi:10.3389/fevo.2021.668611
Loeza‐Quintana, T., Abbott, C. L., Heath, D. D., Bernatchez, L., & Hanner, R. H. (2020). Pathway to Increase Standards and Competency of eDNA Surveys (PISCeS)—Advancing collaboration and standardization efforts in the field of eDNA. Environmental DNA, 2 (3), 255-260. doi:10.1002/edn3.112
Lowenstein, D. M., Matteson, K. C., & Minor, E. S. (2018). Evaluating the dependence of urban pollinators on ornamental, non-native, and ‘weedy’ floral resources. Urban Ecosystems, 22 (2), 293-302. doi:10.1007/s11252-018-0817-z
Lucas, A., Bodger, O., Brosi, B. J., Ford, C. R., Forman, D. W., Greig, C., . . . Vere, N. d. (2018). Floral resource partitioning by individuals within generalised hoverfly pollination networks revealed by DNA metabarcoding. In Scientific Reports (pp. 1-11): Springer US.
Lucas, A., Bodger, O., Brosi, B. J., Ford, C. R., Forman, D. W., Greig, C., . . . de Vere, N. (2018). Generalisation and specialisation in hoverfly (Syrphidae) grassland pollen transport networks revealed by DNA metabarcoding. In N. Sanders (Ed.), Journal of Animal Ecology .
Lucek, K., Galli, A., Gurten, S., Hohmann, N., Maccagni, A., Patsiou, T., & Willi, Y. (2019). Metabarcoding of honey to assess differences in plant-pollinator interactions between urban and non-urban sites.Apidologie, 50 (3), 317-329. doi:10.1007/s13592-019-00646-3
MacGregor, C. J., Kitson, J. J. N., Fox, R., Hahn, C., Lunt, D. H., Pocock, M. J. O., & Evans, D. M. (2019). Construction, validation, and application of nocturnal pollen transport networks in an agro-ecosystem: a comparison using light microscopy amd DNA metabarcoding.Ecological Entomology, 44 (1), 17-29. doi:10.1111/een.12674
Mander, L., & Punyasena, S. W. (2014). On the taxonomic resolution of pollen and spore records of earth’s vegetation. International Journal of Plant Sciences, 175 (8), 931-945. doi:10.1086/677680
Marcos, J. V., Nava, R., Cristobal, G., Redondo, R., Escalante-Ramirez, B., Bueno, G., . . . Rodriguez, T. (2015). Automated pollen identification using microscopic imaging and texture analysis.Micron, 68 , 36-46. doi:10.1016/j.micron.2014.09.002
Mata, V. A., Rebelo, H., Amorim, F., McCracken, G. F., Jarman, S., & Beja, P. (2019). How much is enough? Effects of technical and biological replication on metabarcoding dietary analysis. In Molecular Ecology (Vol. 28, pp. 165-175).
Mathiasson, M. E., & Rehan, S. M. (2020). Wild bee declines linked to plant‐pollinator network changes and plant species introductions.Insect Conservation and Diversity, 13 (6), 595-605. doi:10.1111/icad.12429
MATSUKI, Y., ISAGI, Y., & SUYAMA, Y. (2007). The determination of multiple microsatellite genotypes and DNA sequences from a single pollen grain. In Molecular Ecology Notes (Vol. 7, pp. 194-198).
Matsuki, Y., Tateno, R., Shibata, M., & Isagi, Y. (2008). Pollination efficiencies of flower-visiting insects as determined by direct genetic analysis of pollen origin. American Journal of Botany, 95 (8), 925-930. doi:10.3732/ajb.0800036
McFrederick, Q. S., & Rehan, S. M. (2016). Characterization of pollen and bacterial community composition in brood provisions of a small carpenter bee. In Molecular Ecology (Vol. 25, pp. 2302-2311).
Milla, E., Bovill, J., Schmidt-Lebuhn, A. N., & Encinas-Viso, F. (in press). Monitoring of honey bee floral resources with pollen DNA metabarcoding as a complementary tool to vegetation surveys.Ecological Solutions and Evidence, in press .
Moorhouse-Gann, R. J., Dunn, J. C., de Vere, N., Goder, M., Cole, N., Hipperson, H., & Symondson, W. O. C. (2018). New universal ITS2 primers for high-resolution herbivory analyses using DNA metabarcoding in both tropical and temperate zones. In Scientific Reports (Vol. 8, pp. 8542).
Muthreich, F., Zimmermann, B., Birks, H. J. B., Vila‐Viçosa, C. M., & Seddon, A. W. R. (2020). Chemical variations in Quercus pollen as a tool for taxonomic identification: Implications for long-term ecological and biogeographical research. Journal of Biogeography, 47 (6), 1298-1309. doi:10.1111/jbi.13817
Nakazawa, F., Uetake, J., Suyama, Y., Kaneko, R., Takeuchi, N., Fujita, K., . . . Kanda, H. (2013). DNA analysis for section identification of individual Pinus pollen grains from Belukha glacier, Altai Mountains, Russia. Environmental Research Letters, 8 , 014032. doi:10.1088/1748-9326/8/1/014032
Nichols, R. V., Vollmers, C., Newsom, L. A., Wang, Y., Heintzman, P. D., Leighton, M., . . . Shapiro, B. (2018). Minimizing polymerase biases in metabarcoding. In Molecular Ecology Resources : Wiley/Blackwell (10.1111).
Niemeyer, B., Epp, L. S., Stoof-Leichsenring, K. R., Pestryakova, L. A., & Herzschuh, U. (2017). A comparison of sedimentary DNA and pollen from lake sediments in recording vegetation composition at the Siberian treeline. In Molecular Ecology Resources (Vol. 17, pp. e46-e62).
Nürnberger, F., Keller, A., Härtel, S., & Steffan‐Dewenter, I. (2019). Honey bee waggle dance communication increases diversity of pollen diets in intensively managed agricultural landscapes. Molecular Ecology, 28 (15), 3602-3611. doi:10.1111/mec.15156
O’Donnell, J. L., Kelly, R. P., Lowell, N. C., & Port, J. A. (2016). Indexed PCR Primers Induce Template-Specific Bias in Large-Scale DNA Sequencing Studies. PLoS one, 11 (3), e0148698. doi:10.1371/journal.pone.0148698
Olsson, O., Karlsson, M., Persson, A. S., Smith, H. G., Varadarajan, V., Yourstone, J., . . . Freckleton, R. (2021). Efficient, automated and robust pollen analysis using deep learning. Methods in Ecology and Evolution, 12 (5), 850-862. doi:10.1111/2041-210x.13575
Otto, C. R. V., Roth, C. L., Carlson, B. L., & Smart, M. D. (2016). Land-use change reduces habitat suitability for supporting managed honey bee colonies in the Northern Great Plains. Proceedings of the National Academy of Sciences, 113 (37), 10430-10435. doi:10.1073/pnas.1603481113
Paffetti, D., Vettori, C., Caramelli, D., Vernesi, C., Lari, M., Paganelli, A., . . . Giannini, R. (2007). Unexpected presence of Fagus orientalis complex in Italy as inferred from 45,000-year-old DNA pollen samples from Venice lagoon. BMC Evolutionary Biology, 7 (2), S6. doi:10.1186/1471-2148-7-S2-S6
Parducci, L., Alsos, I. G., Unneberg, P., Pedersen, M. W., Han, L., Lammers, Y., . . . Wohlfarth, B. (2019). Shotgun Environmental DNA, Pollen, and Macrofossil Analysis of Lateglacial Lake Sediments From Southern Sweden. In Frontiers in Ecology and Evolution (Vol. 7, pp. 189): Frontiers.
Parducci, L., Bennett, K. D., Ficetola, G. F., Alsos, I. G., Suyama, Y., Wood, J. R., & Pedersen, M. W. (2017). Ancient plant DNA in lake sediments. In New Phytologist (Vol. 214, pp. 924-942).
Parducci, L., Nota, K., & Wood, J. R. (2019). Reconstructing Past Vegetation Communities Using Ancient DNA from Lake Sediments. In C. Lindqvist & O. P. Rajora (Eds.), Paleogenomics: Genome-Scale Analysis of Ancient DNA (pp. 163-187). Cham: Springer International Publishing.
Parducci, L., Suyama, Y., Lascoux, M., & Bennett, K. D. (2005). Ancient DNA from pollen: a genetic record of population history in Scots pine. In Molecular Ecology (Vol. 14, pp. 2873-2882).
Parsons, K. M., Everett, M., Dahlheim, M., & Park, L. (2018). Water, water everywhere: environmental DNA can unlock population structure in elusive marine species. Royal Society Open Science, 5 (8), 180537. doi:10.1098/rsos.180537
Pawluczyk, M., Weiss, J., Links, M. G., Egaña Aranguren, M., Wilkinson, M. D., & Egea-Cortines, M. (2015). Quantitative evaluation of bias in PCR amplification and next-generation sequencing derived from metabarcoding samples. Analytical and Bioanalytical Chemistry, 407 (7), 1841-1848. doi:10.1007/s00216-014-8435-y
Pedersen, M. W., De Sanctis, B., Saremi, N. F., Sikora, M., Puckett, E. E., Gu, Z., . . . Willerslev, E. (2021). Environmental genomics of Late Pleistocene black bears and giant short-faced bears. Current Biology, 31 (12), 2728-2736.e2728. doi:10.1016/j.cub.2021.04.027
Peel, N., Dicks, L. V., Clark, M. D., Heavens, D., Percival-Alwyn, L., Cooper, C., . . . Yu, D. W. (2019). Semi-quantitative characterisation of mixed pollen samples using MinION sequencing and Reverse Metagenomics (RevMet). Methods in Ecology and Evolution, 10 (10), 1690-1701. doi:10.1111/2041-210X.13265
Pereira, S. G., Guedes, A., Abreu, I., & Ribeiro, H. (2021). Testing the Raman parameters of pollen spectra in automatic identification.Aerobiologia, 37 (1), 15-28. doi:10.1007/s10453-020-09669-1
Peters, M. K., Hemp, A., Appelhans, T., Becker, J. N., Behler, C., Classen, A., . . . Steffan-Dewenter, I. (2019). Climate-land-use interactions shape tropical mountain biodiversity and ecosystem functions. Nature, 568 (7750), 88-92. doi:10.1038/s41586-019-1048-z
Petersen, G., Johansen, B., & Seberg, O. (1996). PCR and sequencing from a single pollen grain. In Plant Molecular Biology (Vol. 31, pp. 189-191).
Piko, J., Keller, A., Geppert, C., Batáry, P., Tscharntke, T., Westphal, C., & Hass, A. L. (2021). Effects of three flower field types on bumblebees and their pollen diets. Basic and Applied Ecology, 52 , 95-108. doi:10.1016/j.baae.2021.02.005
Pimm, S. L., & Joppa, L. N. (2015). How many plant species are there, where are they, and what rate are they going extinct? Annals of the Missouri Botanical Garden, 100 (170-176).
Piñol, J., Senar, M. A., & Symondson, W. O. C. (2019). The choice of universal primers and the characteristics of the species mixture determine when DNA metabarcoding can be quantitative. In Molecular Ecology (Vol. 28, pp. 407-419): Wiley/Blackwell (10.1111).
Polling, M., Li, C., Cao, L., Verbeek, F., de Weger, L. A., Belmonte, J., . . . Gravendeel, B. (2021). Neural networks for increased accuracy of allergenic pollen monitoring. Scientific Reports, 11 (1), 11357. doi:10.1038/s41598-021-90433-x
Polling, M., Sin, M., de Weger, L. A., Speksnijder, A. G. C. L., Koenders, M. J. F., de Boer, H., & Gravendeel, B. (2022). DNA metabarcoding using nrITS2 provides highly qualitative and quantitative results for airborne pollen monitoring. Science of The Total Environment, 806 , 150468. doi:https://doi.org/10.1016/j.scitotenv.2021.150468
Pompanon, F., Deagle, B. E., Symondson, W. O., Brown, D. S., Jarman, S. N., & Taberlet, P. (2012). Who is eating what: diet assessment using next generation sequencing. Molecular Ecology, 21 (8), 1931-1950. doi:10.1111/j.1365-294X.2011.05403.x
Popic, T. J., Wardle, G. M., & Davila, Y. C. (2013). Flower-visitor networks only partially predict the function of pollen transport by bees. Austral Ecology, 38 (1), 76-86. doi:10.1111/j.1442-9993.2012.02377.x
Pornon, A., Andalo, C., Burrus, M., & Escaravage, N. (2017). DNA metabarcoding data unveils invisible pollination networks. InScientific Reports (Vol. 7, pp. 16828).
Pornon, A., Escaravage, N., Burrus, M., Holota, H., Khimoun, A., Mariette, J., . . . Andalo, C. (2016). Using metabarcoding to reveal and quantify plant-pollinator interactions. In Scientific Reports(Vol. 6, pp. 27282).
Portman, Z. M., Tepedino, V. J., Tripodi, A. D., Szalanski, A. L., & Durham, S. L. (2018). Local extinction of a rare plant pollinator in Southern Utah (USA) associated with invasion by Africanized honey bees.Biological Invasions, 20 (3), 593-606. doi:10.1007/s10530-017-1559-1
Potter, C., de Vere, N., Jones, L. E., Ford, C. R., Hegarty, M. J., Hodder, K. H., . . . Franklin, E. L. (2019). Pollen metabarcoding reveals broad and species-specific resource use by urban bees.PeerJ, 7 , e5999. doi:10.7717/peerj.5999
Potts, S. G., Biesmeijer, J. C., Kremen, C., Neumann, P., Schweiger, O., & Kunin, W. E. (2010). Global pollinator declines: trends, impacts and drivers. Trends Ecol Evol, 25 (6), 345-353. doi:10.1016/j.tree.2010.01.007
Pyšek, P., Hulme, P. E., Simberloff, D., Bacher, S., Blackburn, T. M., Carlton, J. T., . . . Richardson, D. M. (2020). Scientists’ warning on invasive alien species. Biological Reviews, 95 (6), 1511-1534. doi:https://doi.org/10.1111/brv.12627
Quaresma, A., Brodschneider, R., Gratzer, K., Gray, A., Keller, A., Kilpinen, O., . . . Pinto, M. A. (2021). Preservation methods of honey bee-collected pollen are not a source of bias in ITS2 metabarcoding.Environmental Monitoring and Assessment, 193 (12), 785. doi:10.1007/s10661-021-09563-4
Reilly, J. R., Artz, D. R., Biddinger, D., Bobiwash, K., Boyle, N. K., Brittain, C., . . . Winfree, R. (2020). Crop production in the USA is frequently limited by a lack of pollinators. Proceedings of the Royal Society B: Biological Sciences, 287 (1931), 20200922. doi:10.1098/rspb.2020.0922
Revilla, T. A., Encinas-Viso, F., & Loreau, M. (2015). Robustness of mutualistic networks under phenological change and habitat destruction.Oikos, 124 , 22-32. doi:10.1111/OIK.01532
Richardson, R. T., Curtis, H. R., Matcham, E. G., Hua Lin, C., Suresh, S., Sponsler, D. B., . . . Johnson, R. M. (2018). Quantitative multi-locus metabarcoding and waggle dance interpretation reveal honey bee spring foraging patterns in Midwest agroecosystems. Molecular Ecology, 28 (3), 686-697. doi:10.1111/mec.14975
Richardson, R. T., Eaton, T. D., Lin, C. H., Cherry, G., Johnson, R. M., & Sponsler, D. B. (2021). Application of plant metabarcoding to identify diverse honeybee pollen forage along an urban–agricultural gradient. In Molecular Ecology (Vol. 30, pp. 310-323).
Richardson, R. T., Lin, C.-H., Quijia, J. O., Riusech, N. S., Goodell, K., & Johnson, R. M. (2015). Rank-Based Characterization of Pollen Assemblages Collected by Honey Bees Using a Multi-Locus Metabarcoding Approach. In Applications in Plant Sciences (Vol. 3, pp. 1500043).
Richardson, R. T., Sponsler, D. B., McMinn‐Sauder, H., & Johnson, R. M. (2020). MetaCurator: A hidden Markov model‐based toolkit for extracting and curating sequences from taxonomically‐informative genetic markers.Methods in Ecology and Evolution, 11 (1), 181-186. doi:10.1111/2041-210x.13314
Rognes, T., Flouri, T., Nichols, B., Quince, C., & Mahe, F. (2016). VSEARCH: a versatile open source tool for metagenomics. PeerJ, 4 , e2584. doi:10.7717/peerj.2584
Rowney, F. M., Brennan, G. L., Skjoth, C. A., Griffith, G. W., McInnes, R. N., Clewlow, Y., . . . Creer, S. (2021). Environmental DNA reveals links between abundance and composition of airborne grass pollen and respiratory health. Current Biology, 31 (9), 1995-2003 e1994. doi:10.1016/j.cub.2021.02.019
Samuelson, A. E., Gill, R. J., & Leadbeater, E. (2020). Urbanisation is associated with reduced Nosema sp. infection, higher colony strength and higher richness of foraged pollen in honeybees. Apidologie, 51 (5), 746-762. doi:10.1007/s13592-020-00758-1
Schmidt, B. R., Kéry, M., Ursenbacher, S., Hyman, O. J., Collins, J. P., & Yoccoz, N. (2013). Site occupancy models in the analysis of environmental DNA presence/absence surveys: a case study of an emerging amphibian pathogen. Methods in Ecology and Evolution, 4 (7), 646-653. doi:10.1111/2041-210x.12052
Sepulveda, A. J., Nelson, N. M., Jerde, C. L., & Luikart, G. (2020). Are Environmental DNA Methods Ready for Aquatic Invasive Species Management? Trends Ecol Evol, 35 (8), 668-678. doi:10.1016/j.tree.2020.03.011
Sevillano, V., Holt, K., & Aznarte, J. L. (2020). Precise automatic classification of 46 different pollen types with convolutional neural networks. PLoS one, 15 (6), e0229751. doi:10.1371/journal.pone.0229751
Sickel, W., Ankenbrand, M. J., Grimmer, G., Holzschuh, A., Härtel, S., Lanzen, J., . . . Keller, A. (2015). Increased efficiency in identifying mixed pollen samples by meta-barcoding with a dual-indexing approach. InBMC Ecology (Vol. 15, pp. 20).
Sigsgaard, E. E., Nielsen, I. B., Bach, S. S., Lorenzen, E. D., Robinson, D. P., Knudsen, S. W., . . . Thomsen, P. F. (2016). Population characteristics of a large whale shark aggregation inferred from seawater environmental DNA. Nature Ecology & Evolution, 1 (1), 0004. doi:10.1038/s41559-016-0004
Simanonok, M. P., Otto, C. R. V., Cornman, R. S., Iwanowicz, D. D., Strange, J. P., & Smith, T. A. (2021). A century of pollen foraging by the endangered rusty patched bumble bee (Bombus affinis): inferences from molecular sequencing of museum specimens. Biodiversity and Conservation, 30 , 123-137. doi:10.1007/s10531-020-02081-8
Smith, C., Weinman, L., Gibbs, J., & Winfree, R. (2019). Specialist foragers in forest bee communities are small, social or emerge early.Journal of Animal Ecology, 88 (8), 1158-1167. doi:10.1111/1365-2656.13003
Smith, M. R., Singh, G. M., Mozaffarian, D., & Myers, S. S. (2015). Effects of decreases of animal pollinators on human nutrition and global health: a modelling analysis. The Lancet, 386 (10007), 1964-1972. doi:10.1016/s0140-6736(15)61085-6
Song, X.-P., Hansen, M. C., Stehman, S. V., Potapov, P. V., Tyukavina, A., Vermote, E. F., & Townshend, J. R. (2018). Global land change from 1982 to 2016. Nature, 560 (7720), 639-643. doi:10.1038/s41586-018-0411-9
Sponsler, D. B., Shump, D., Richardson, R. T., & Grozinger, C. M. (2020). Characterizing the floral resources of a North American metropolis using a honey bee foraging assay. Ecosphere, 11 (4), e03102.
Stillman, E. C., & Flenley, J. R. (1996). The needs and prospects for automation in palynology. Quaternary Science Reviews, 15 (1), 1-5. doi:10.1016/0277-3791(95)00076-3
Suanno, C., Aloisi, I., Fernández-González, D., & Del Duca, S. (2021). Monitoring techniques for pollen allergy risk assessment.Environmental Research, 197 , 111109. doi:https://doi.org/10.1016/j.envres.2021.111109
Suchan, T., Talavera, G., Saez, L., Ronikier, M., & Vila, R. (2019). Pollen metabarcoding as a tool for tracking long-distance insect migrations. Molecular Ecology Resources, 19 (1), 149-162. doi:10.1111/1755-0998.12948
Suyama, Y. (2011). Procedure for Single-Pollen Genotyping. In Y. Isagi & Y. Suyama (Eds.), Single-Pollen Genotyping (pp. 7-15). Tokyo: Springer Japan.
Suyama, Y., Kawamuro, K., Kinoshita, I., Yoshimura, K., Tsumura, Y., & Takahara, H. (1996). DNA sequence from a fossil pollen of <i>Abies</i> spp. from Pleistocene peat. Genes & Genetic Systems, 71 (3), 145-149. doi:10.1266/ggs.71.145
Swenson, S. J., & Gemeinholzer, B. (2021). Testing the effect of pollen exine rupture on metabarcoding with Illumina sequencing. In B. Heinze (Ed.), PLoS one (Vol. 16, pp. e0245611).
Taberlet, P., Coissac, E., Pompanon, F., Brochmann, C., & Willerslev, E. (2012). Towards next-generation biodiversity assessment using DNA metabarcoding. In Molecular Ecology (Vol. 21, pp. 2045-2050).
Tanaka, K., Nozaki, A., Nakadai, H., Shiwa, Y., & Shimizu-Kadota, M. (2020). Using pollen DNA metabarcoding to profile nectar sources of urban beekeeping in Kōtō-ku, Tokyo. In.
Threlfall, C. G., Walker, K., Williams, N. S. G., Hahs, A. K., Mata, L., Stork, N., & Livesley, S. J. (2015). The conservation value of urban green space habitats for Australian native bee communities.Biological Conservation, 187 , 240-248. doi:10.1016/j.biocon.2015.05.003
Tommasi, N., Ferrari, A., Labra, M., Galimberti, A., & Biella, P. (2021). Harnessing the Power of Metabarcoding in the Ecological Interpretation of Plant-Pollinator DNA Data: Strategies and Consequences of Filtering Approaches. Diversity, 13 (9), 437.
Tremblay, É. D., Duceppe, M.-O., Thurston, G. B., Gagnon, M.-C., Côté, M.-J., & Bilodeau, G. J. (2019). High-resolution biomonitoring of plant pathogens and plant species using metabarcoding of pollen pellet contents collected from a honey bee hive. In Environmental DNA : John Wiley & Sons, Ltd.
Trinkl, M., Kaluza, B. F., Wallace, H., Heard, T. A., Keller, A., & Leonhardt, S. D. (2020). Floral Species Richness Correlates with Changes in the Nutritional Quality of Larval Diets in a Stingless Bee.Insects, 11 (2). doi:10.3390/insects11020125
Tur, C., Vigalondo, B., Trojelsgaard, K., Olesen, J. M., & Traveset, A. (2014). Downscaling pollen-transport networks to the level of individuals. Journal of Animal Ecology, 83 (1), 306-317. doi:10.1111/1365-2656.12130
Turo, K. J., & Gardiner, M. M. (2019). From potential to practical: conserving bees in urban public green spaces. Frontiers in Ecology and the Environment, 17 (3), 167-175. doi:10.1002/fee.2015
Uetake, J., Tobo, Y., Kobayashi, S., Tanaka, K., Watanabe, S., DeMott, P. J., & Kreidenweis, S. M. (2021). Visualization of the seasonal shift of a variety of airborne pollens in western Tokyo. In Science of The Total Environment (Vol. 788, pp. 147623).
Vannette, R. L. (2020). The Floral Microbiome: Plant, Pollinator, and Microbial Perspectives. Annual Review of Ecology, Evolution, and Systematics, 51 (1), 363-386. doi:10.1146/annurev-ecolsys-011720-013401
Vaudo, A. D., Biddinger, D. J., Sickel, W., Keller, A., & López-Uribe, M. M. (2020). Introduced bees (Osmia cornifrons ) collect pollen from both coevolved and novel host-plant species within their family-level phylogenetic preferences. Royal Society Open Science, 7 , 200225. doi:10.1098/rsos.200225
10.6084/m9.figshare.c
Voulgari-Kokota, A., Grimmer, G., Steffan-Dewenter, I., & Keller, A. (2018). Bacterial community structure and succession in nests of two megachilid bee genera. FEMS Microbiology Ecology, 95 (1). doi:10.1093/femsec/fiy218
Voulgari-Kokota, A., Steffan-Dewenter, I., & Keller, A. (2020). Susceptibility of Red Mason Bee Larvae to Bacterial Threats Due to Microbiome Exchange with Imported Pollen Provisions. Insects, 11 (6), 373. doi:10.3390/insects11060373
Vuong, H. Q., & McFrederick, Q. S. (2019). Comparative Genomics of Wild Bee and Flower Isolated Lactobacillus Reveals Potential Adaptation to the Bee Host. Genome Biology and Evolution, 11 (8), 2151-2161. doi:10.1093/gbe/evz136
Wagemaker, C. A. M., Mommer, L., Visser, E. J. W., Weigelt, A., van Gurp, T. P., Postuma, M., . . . de Kroon, H. (2021). msGBS: A new high-throughput approach to quantify the relative species abundance in root samples of multispecies plant communities. Mol Ecol Resour, 21 (4), 1021-1036. doi:10.1111/1755-0998.13278
Wenzel, A., Grass, I., Belavadi, V. V., & Tscharntke, T. (2020). How urbanization is driving pollinator diversity and pollination - A systematic review. Biological Conservation, 241 , 108321. doi:10.1016/j.biocon.2019.108321
Wilmshurst, J. M., Moar, N. T., Wood, J. R., Bellingham, P. J., Findlater, A. M., Robinson, J. J., & Stone, C. (2014). Use of pollen and ancient DNA as conservation baselines for offshore islands in New Zealand. Conservation Biology, 28 (1), 202-212. doi:10.1111/cobi.12150
Wilson, R. S., Keller, A., Shapcott, A., Leonhardt, S. D., Sickel, W., Hardwick, J. L., . . . Wallace, H. M. (2021). Many small rather than few large sources identified in long-term bee pollen diets in agroecosystems. In Agriculture, Ecosystems & Environment (Vol. 310, pp. 107296).
Yilmaz, P., Kottmann, R., Field, D., Knight, R., Cole, J. R., Amaral-Zettler, L., . . . Glockner, F. O. (2011). Minimum information about a marker gene sequence (MIMARKS) and minimum information about any (x) sequence (MIxS) specifications. Nature Biotechnology, 29 (5), 415-420. doi:10.1038/nbt.1823
Zemenick, A. T., Vannette, R. L., & Rosenheim, J. A. (2021). Linked networks reveal dual roles of insect dispersal and species sorting for bacterial communities in flowers. Oikos, 130 , 697-707. doi:10.1101/847376
Zhang, J., Kobert, K., Flouri, T., & Stamatakis, A. (2014). PEAR: a fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics, 30 (5), 614-620. doi:10.1093/bioinformatics/btt593
Zhao, Y. H., Lázaro, A., Ren, Z. X., Zhou, W., Li, H. D., Tao, Z. B., . . . Wang, H. (2018). The topological differences between visitation and pollen transport networks: a comparison in species rich communities of the Himalaya–Hengduan Mountains. Oikos, 128 (4), 551-562. doi:10.1111/oik.05262
Zimmermann, B. (2018). Chemical characterization and identification of Pinaceae pollen by infrared microspectroscopy. Planta, 247 (1), 171-180. doi:10.1007/s00425-017-2774-9