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Abstract. In this article, we consider the blowup phenomenon of smooth solutions to the
isentropic compressible quantum hydrodynamic model(QHD) with the initial density of compact
support in arbitrary space dimensions. This result is an evolution of Xin’s work [1].
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1 Introduction

In this article, we consider the blowup phenomenon of smooth solutions to the isentropic
compressible quantum hydrodynamic model(QHD):

pt + div(pu) =0, (1.1)

2
(pu) + div(pu @ u) + VP = 2/)V(A\/\g'f)), (1.2)

with the particle density p(x,t), the velocity u(x,t), the pressure P(p), the scaled Planck con-

NV
2.

stant € and the quantum Bohm potential
The initial condition of compressible quantum hydrodynamic model
(p,u)(x,t:()) = (p0($),UO($)) € Hm(Rd)a (13)
d
whered > 1, m > [5] + 2, and the pressure can be expressed as (a > 0 and > 1 are constants)

P(p) =ap”. (1.4)
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There have been numerous works on the blowup of solutions to the compressible fluid. For
the three dimensional compressible Euler equation, Sideris[2] in 1985 firstly presented that the
life span of the C! solution is bounded if the initial velocity is large enough in some region
with compact support. However, for the compressible Navier-Stokes equations without heat
conduction, Xin[l] firstly proved the finite time blow up of smooth solution with the initial
density has compact support. Then, Cho and Jin[3] obtained the blow up of strong solution
of viscous heat-conducting flow when the initial density is compactly supported, which is an
extension of Xin’s results[1]. Later, in 2008, Rozanoval[4] obtained that any smooth solutions
to the compressible Navier-Stokes under rapidly decay assumptions will still blow up in finite
time. And Du[5] proved that the blow up of smooth solutions to one or two dimensional the
compressible isothermal case with the symmetric assumptions. However, Gambal[6] obtained
that the smooth solution to compressible quantum hydrodynamic model will blow up in finite
time for some boundary condition in a bounded domain. Recently, Guo[7] proved the blow up of
smooth solution to the initial value problem of the compressible quantum hydrodynamic model
in R?. Motivated by [4], we get the Theorem 1.1 and we extend Xin’s results[1] to the Theorem
1.2.

We introduce the following several physical quantities:

m(t) = /]Rd p(x,t)dx, (1.5)
M(t)—/Rd o, 1) |2da, (1.6)

F(t) = /Rd p(x, t)u(z,t) - zdz, (1.7)

. 1 2 1 e 25 - A
B(O) = [ 5ol + Pl + 1TVl - > Ei) (1.8)

which represent the total mass, momentum of inertia, momentum weight and total energy,
respectively. We assume that all the above initial data are finite and assume the initial density
po has compact support, so there exists a positive constant Ry for

supppo(x) C By, (1.9)

where Bp, denotes the ball in R? centered at origin with radius Rg. In the space C''([0,T], H™(R%)),
we still investigate the solutions to QHD for 7" > 0. And now we know the density p(x,t) has
compact support from the equation (1.1), and then

R(t) = inf{r|suppp(z,t) C B,} (1.10)

is well-defined and finite for ¢ € [0,7]. Our main result in the paper that presents a sufficient
condition on the blowup of smooth solutions to the isentropic compressible QHD in arbitrary
space dimensions with initial density of compact support. Now, we state main results as follows:

d
Theorem 1.1 Assume (p,u)(z,t) € C*([0,T], H™(R?))(m > [5] +2) is a solution to the com-

pressible QHD with (1.3) satisfying (1.9). Furthermore, assume that there exist two constants
6,0<6<1, Cy >0 independent of T such that

R(t) < C1(1+ )P vt € [0,T]. (1.11)
Then, the life span of the solution (p,u) is finite.



Theorem 1.2 Let T > 0 and (p,u)(z,t) € C*([0,T], H™(R?)) be a solution to the compressible
QHD with initial data (1.3) satisfying (1.9). Assume that R(t) satisfies the condition (1.11).
Then

T < Ti(v), (1.12)
where
1
M) = 20(0) + 2500 (7 =T = B)d, < y<14 2
Ti(y) = Gz, ! (113)
M(0),3~(y ~1)pd 2 :
M(0) I+><y<1l+—
(=, ) : A=<t
with /2
2 _ _
m e Mg, = 119

where E(0) denotes the initial total energy. Especially, any smooth solution to the compressible
QHD problem satisfies (1.9), will be blowup as long as the (1.11) hold.

2 Proof of Theorem 1.1

The main prove of this subsection contains Lemma 2.1 and lemma 2.2. From the lemma 2.1,
we can know that the law of conservation of mass and the law of conservation of energy for the
isentropic compressible quantum hydrodynamic model. From the lemma 2.2, we can get the
estimate that the bound of the momentum of inertia M (t).

Lemma 2.1 Under the assumptions of Theorem 1.1, it holds that

m(t) =m(0), E(t) = E(0). (2.1)
Proof. From the continuity equation (1.1), we have

im(t) = / prdx = —/ div(pu)dx = 0, (2.2)
dt Rd Rd

which implies m(t) = m(0).

Then, multiplying the equation (1.2) by u and integrating it with respect to x in R¢ lead
to

2
VP(p)-udx = /Rd 2pV(%ﬁ) cudr.  (2.3)

We estimate the terms one by one, and from (1.1) and (1.2), we get that

/ (pu)t - udr + / div(pu @ u) - udx +
R4 R4 R4

d 1
/ (pu); - udx +/ div(pu @ u) - ude = — —plul®dz. (2.4)
Rd Rd dt Rd 2

Due to (1.1), the pressure P = ap” satisfies

P, + div(Pu) + (v — 1) Pdivu = 0. (2.5)



For the third term, and take (2.5) into consideration, we get that
1 d

VP(p) - udr = —/ P(p)divudx = L [P(p): + div(Pu)|de = ——— /Rd P(p)dx,

Rd Rd Y — 1 Rd vy — 1dt
(2.6)

and analogously, it follows from (1.1) and integrating by parts, we obtain

& gAY g [ AR AV
/prﬁ> dx = /Rde(p) w,)d—/Rdet WL .
d

2
9

— [ 2w avpdn =35 [ SIvyplas
Rd dt Rd 2

Combining (2.3)-(2.7), we get
d

@ R4
So by considering (1.8), which complete the proof that

E(t) = E(0).

1 1 g2
§p|u\2 + ﬁP(p) + E\V\/E\de =0. (2.8)

Lemma 2.2 Under the assumptions of Theorem 1.1, we have
M(t) > M(0) + 2F(0)t + min{2,d(y — 1)}E(0)t*, M(t) < (R(t))*m(0). (2.9)
Proof. We multiply the momentum equation (1.2) by = and integrate by parts, we have

d d
Lrt) =2 - xda = - zd
CF() dt/wpu vda /Rd@u)t rdz

g2 Ay/p
=— di -xdr — VP - zd —pV(—=) - zd
/[Rd iw(pu @ u) - xdx y xa:—k/Rd2p (\/ﬁ)xm (2.10)
3
=> L)
i=1
Based on integration by parts, we easily deduce that
Li(t)=— div(pu @ u) - xdr = / plu|?dz,
Rd Rd
and
Ir(t) = — VP - zdx = Pdivxdr = d/ Pdz,
Rd R Rd

and similarly, following from (1.1) and integrating by parts, we obtain

2 2
I5(t) = /Rd ZpV(A\/\%ﬁ)-mdaj - —/Rd %dz’v(px) : (A\/\?)d:c

_ _i/Rd[d. VAP + 1 2V /pApld

- i/Rd[dW\/W +2|Vy/pl* + z - VIV /p|*]da
=5 [ AV VaR + 209 v e

= 2 /Rd |V /p|?dz.



Gathering the identities of I;(i = 1,2, 3) into (2.10), we obtain

d

%F(t) = /d plul* + dP(p) + 2|V /p|*dx. (2.11)
R

Thus, integrating (2.11) with respect to ¢, we obtain

t
F@)=FO)+ [ [ ol +aple) + 9 e
0 JRd
t
= F(O) + / 2F + d(’y — 1)Ey + 2FE3dt,
0

which implies
F(t) > F(0) + min{2,d(y — 1)} E(t)t. (2.12)

By virtue of the continuity equation (1.1) and integrating by parts, we get

d d _
M) = = /Rd plz|?dz = 2F(t), (2.13)

next, integrating (2.13) with respect to t, we deduce
t

M(t) = M(0) +/ 2F(s)ds. (2.14)
0

From (2.12), (2.1) and (2.14), we get that

M(t) > M(0) + 2F(0)t + min{2,d(y — 1)} E(0)t*. (2.15)

However, because of (2.2), we know that

= l’2 T = 33'2 Xz 2 xXr = 2m = 2m . .
M) = [ delir= [ plafas < (@) [ pie = (@m0 = (RE)mO). (216)

BRr(t)
Then, we complete the prove of the lemma 2.1.

Proof of Theorem 1.1. Finally, by (2.15) and (2.16), we get that
(R(t))*m(0) > M(0) + 2F(0)t + min{2,d(y — 1)} E(0)t*. (2.17)
Taking (1.11) into consideration, we get that
C?m(0)(1 +t)%% > M(0) + 2F(0)t + min{2,d(y — 1)} E(0)¢2. (2.18)

Since 5 < 1,we can deduce from (2.18) that the lifespan of the smooth solution of QHD is finite
and we prove the Theorem 1.1.



3 Proof of Theorem 1.2

The solution (p,u) € C1([0,T]; H™(R%)) to the Cauchy problem of compressible QHD through
(1.9), as prescribed in Theorem 1.2. The Lemma 3.1 is a key estimate about the total pressure
to solve the Theorem 1.2.

Lemma 3.1 Let the pressure P(x,t) associate with the solution (p,u) € C1([0,T]; H™(R?)).
Then the following estimates hold:

-1 2
T2 (1 4+ 6)"O-VIAL(0) — 2F(0) + 2E(0)), 1<y <1+,
Pz, t)de < ¢ 42 9 d (3.1)
Rd ~——t72M(0), 1+ = <5< oo.
2 d
Remark. The lemma 3.1 holds for the general solution (p,u) € C([0, T]; H™(R?)) to the
QHD and (1.3), without the additional conditions (1.9) and (1.11) as long as M (0) is well-defined.

We study the following function, which can be used to prove lemma 3.1.

2 2
/ |z —u(t + 1) pdx + (t + 1) ﬁP(p) + 2| V/plPde, 1<y <1+ -
I’Y(t) = ¢ 2 R 7T 2
|z — ut|*pdx + t2/ —~—P(p) + *|V/p|*dz, 1+ <vy<o0.
Rd Rd Y — 1 d
(3.2)
2
When1<7<1+g,
2
Iy(t):/ |x—u(t—|—1)|2pdx+(t+1)2/ 2 p(p) + 2|V /p2dx
= / zpdr — 2(1 + ) / zpudr + (1 4+ t)z/ (pu? + P(p) + €4V /p|*)dz.
R Rd R4
So, it follows directly from (3.3) that
d
GO = [ @ = 20pido—20140) [ [alpu) - pu - Plp) — |V 5Pz
R4 R4
(1412 / (pu® + P(p) + 2|V /p|?)edz 5.4
Rd '
3
= Ji(t)
i=1

Next, we will calculate the right-hand side of (3.4) one by one.
For the first term, taking (1.1) into consideration and integrating by parts, we deduce

Ji(t) = / (2%p; — 2xpu)dz = 0.
R4



As for the second term, we use (1.2), (2.12), (2.13) and (2.14).
alt) == 20140 [ [alpu = pu = Plp) ~ 2V 7Pl
g2 Ay/p
:21+t/ div(pu ® u) + VP(p) — —pV(—=)| - zdx
(1+t) [ Jdivipu®u) (p) = 5p (ﬁ)]
2
+2(1+t)/ pluf2 + —2—P(p) + 2|V /5%da
Rd Y — 1
=2(1+) [ ~pluf’ - dP(p) - 9 ypfds
R4
2
2040 [ gl + 2P + 29 pPd
Rd Y — 1
2
:2(1—|-t)(71 —d) [ P(p)dx.

Y= R4

The third term, we use (1.1) and integrate it by parts that
2
T =402 [ (0 + = P(o)+ Vo
2
=(1+1) / peu’ 4 2pu - ug + TP( p)t +26%(V/p) - (V/p)i|dx

=1+ / —div(pu)u® — 2pu® - Vu — 2VP(p)u

t
+ <2V f) Jut 2P - 22 AV (Vs
t

=1+ / p)divu — 52(%5)div(pu) + 72_1P(p)t —2e%(Ap)(\/p)i]dx
2 Ap
(141 / dwuH—P( )i+ i ﬁ> E2(AVP)(vp)d
—(141)’ /R [T (Po) + 282(VP)e- AVE = 22X (AVR) (VP
=0.

Plugging the estimates of J;-J3 into (3.4), we arrive at
2

—d(y—1 2
d 2(1 +t)(7_’y) P(p)dz, 1<y<1+ -,
71— (t) _ 1 R4 d
) = — —
dt 2t2d(71)/ P(p)dz, 1+ 2 <y < oo.
v—1 Rd d

2
When v > 1+ 7 2—d(y—1) <0, thus I,(t) < I,(0) for ¢t € [0,T], which yields (3.1) in

this case immediately.

2
When 1 + g <7 < oo, we know that

<22d0 =N ), (3.5)



which, together with the Gronwall’s inequality, gives

1,(t) < (14 1>~40D L, (0),

2
which is easily obtained the the estimate (3.1) for 1 + y < v < o0, and complete the proof of
Lemma 3.1. 5
And when 1 <y <1+ 7 from (1.11) and (3.1), we get that

1,(0) > 2(1+t)(71)d/ P(p)da
v—1 R4

2 1
> 2 (1400 Dy, = / d
=5 1( + ) Br() VBR(t) a B prar
2
s (v—1)d v/ 1=
> po— (1+1) aVBR(t)
> 2 1a0{1—7)dvt_1;1—7m8/(1_i_t)('y—l)d(l—ﬁ)
"y _

.
myg

= Cy(1 + ¢)0~1d0=6)
where we have used the fact that

[
BR(s) B

R

platjdo = [ po(a)ds = m.
4 B

rd

2
This gives the desired estimate (1.12) through (1.14) for 1 <~y <1+ J immediately. The same

2 2
analysis yields (1.12) through (1.14) for 1 + p < v <1+ 3d’ This completes the proof of
Theorem 1.2.
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