References
Abramoff R, Xu X, Hartman M, O’Brien S, Feng W, Davidson E, Finzi A, Moorhead D, Schimel J, Torn M, Mayes MA. 2018. The Millennial model: in search of measurable pools and transformations for modeling soil carbon in the new century. Biogeochemistry 137 : 51–71. DOI: 10.1007/s10533-017-0409-7
Adu JK, Oades JM. 1978. Utilization of organic materials in soil aggregates by bacteria and fungi. Soil Biology and Biochemistry10 : 117–122. DOI: 10.1016/0038-0717(78)90081-0
Ai C, Zhang S, Zhang X, Guo D, Zhou W, Huang S. 2018. Distinct responses of soil bacterial and fungal communities to changes in fertilization regime and crop rotation. Geoderma 319 : 156–166. DOI: 10.1016/j.geoderma.2018.01.010
Álvaro-Fuentes J, Morell FJ, Madejón E, Lampurlanés J, Arrúe JL, Cantero-Martínez C. 2013. Soil biochemical properties in a semiarid Mediterranean agroecosystem as affected by long-term tillage and N fertilization. Soil and Tillage Research 129 : 69–74. DOI: 10.1016/j.still.2013.01.005
Apple JK, Del Giorgio PA, Kemp WM. 2006. Temperature regulation of bacterial production, respiration, and growth efficiency in a temperate salt-marsh estuary. Aquatic Microbial Ecology 43 : 243–254. DOI: 10.3354/ame043243
Averill C, Waring B. 2018. Nitrogen limitation of decomposition and decay: How can it occur? Global Change Biology 24 : 1417–1427. DOI: 10.1111/gcb.13980
Bärlocher F, Boddy L. 2016. Aquatic fungal ecology - How does it differ from terrestrial? Fungal Ecology 19 : 5–13. DOI: 10.1016/j.funeco.2015.09.001
Börjesson G, Sundh I, Tunlid A, Svensson BH. 1998. Methane oxidation in landfill cover soils, as revealed by potential oxidation measurements and phospholipid fatty acid analyses. Soil Biology and Biochemistry 30 : 1423–1433. DOI: 10.1016/S0038-0717(97)00257-5
Bradford MA, Keiser AD, Davies CA, Mersmann CA, Strickland MS. 2013. Empirical evidence that soil carbon formation from plant inputs is positively related to microbial growth. Biogeochemistry113 : 271–281. DOI: 10.1007/s10533-012-9822-0
Brockett BFT, Prescott CE, Grayston SJ. 2012. Soil moisture is the major factor influencing microbial community structure and enzyme activities across seven biogeoclimatic zones in western Canada. Soil Biology and Biochemistry 44 : 9–20. DOI: 10.1016/j.soilbio.2011.09.003
Caporaso. 2010. Intensity normalization improves color calling in SOLiD sequencing. Nature Methods 7 : 336–337. DOI: 10.1038/nmeth0510-336
Ceja-Navarro JA, Rivera-Orduña FN, Patiño-Zúñiga L, Vila-Sanjurjo A, Crossa J, Govaerts B, Dendooven L. 2010. Phylogenetic and multivariate analyses to determine the effects of different tillage and residue management practices on soil bacterial communities. Applied and Environmental Microbiology 76 : 3685–3691. DOI: 10.1128/AEM.02726-09
Chen H, Li D, Feng W, Niu S, Plante A, Luo Y, Wang K. 2018. Different responses of soil organic carbon fractions to additions of nitrogen.European Journal of Soil Science 69 : 1098–1104. DOI: 10.1111/ejss.12716
Chen J, Ji C, Fang J, He H, Zhu B. 2020a. Dynamics of microbial residues control the responses of mineral-associated soil organic carbon to N addition in two temperate forests. Science of the Total Environment 748 : 141318. DOI: 10.1016/j.scitotenv.2020.141318
Chen J, Xiao W, Zheng C, Zhu B. 2020b. Nitrogen addition has contrasting effects on particulate and mineral-associated soil organic carbon in a subtropical forest. Soil Biology and Biochemistry 142 : 107708. DOI: 10.1016/j.soilbio.2020.107708
Chen S, Wang W, Xu W, Wang Y, Wan H, Chen D, Tang Z. 2017. Plant diversity enhances productivity and soil carbon storage. 2017 . DOI: 10.1073/pnas.1700298114
Chen Y, Liu X, Hou Y, Zhou S, Zhu B. 2019. Particulate organic carbon is more vulnerable to nitrogen addition than mineral-associated organic carbon in soil of an alpine meadow. Plant and Soil . DOI: 10.1007/s11104-019-04279-4
Chowdhury TR, Dick RP. 2012. Standardizing methylation method during phospholipid fatty acid analysis to profile soil microbial communities.Journal of Microbiological Methods 88 : 285–291. DOI: 10.1016/j.mimet.2011.12.008
Cleveland CC, Liptzin D. 2007. C:N:P stoichiometry in soil: Is there a “Redfield ratio” for the microbial biomass? Biogeochemistry85 : 235–252. DOI: 10.1007/s10533-007-9132-0
Curtin D, Beare MH, Qiu W, Sharp J. 2019. Does Particulate Organic Matter Fraction Meet the Criteria for a Model Soil Organic Matter Pool?Pedosphere 29 : 195–203. DOI: 10.1016/S1002-0160(18)60049-9
De valença AW, Vanek SJ, Meza K, Ccanto R, Olivera E. 2017. Land use as a driver of soil fertility and biodiversity across agricultural landscape in the Central Peruvian Andes. 27 : 1138–1154. DOI: 10.1002/eap.1508
Domeignoz-Horta LA, Pold G, Liu XJA, Frey SD, Melillo JM, DeAngelis KM. 2020. Microbial diversity drives carbon use efficiency in a model soil.Nature Communications 11 : 1–10. DOI: 10.1038/s41467-020-17502-z
Fang Y, Singh BP, Cowie A, Wang W, Arachchi MH, Wang H, Tavakkoli E. 2019. Balancing nutrient stoichiometry facilitates the fate of wheat residue‑carbon in physically defined soil organic matter fractions.Geoderma 354 : 113883. DOI: 10.1016/j.geoderma.2019.113883
Fiorini A, Boselli R, Maris SC, Santelli S, Ardenti F, Capra F, Tabaglio V. 2020. May conservation tillage enhance soil C and N accumulation without decreasing yield in intensive irrigated croplands? Results from an eight-year maize monoculture. Agriculture, Ecosystems and Environment 296 : 106926. DOI: 10.1016/j.agee.2020.106926
Frostegård A, Bååth E. 1996. The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biology and Fertility of Soils 22 : 59–65. DOI: 10.1007/s003740050076
Gentile R, Vanlauwe B, Chivenge P, Six J. 2011. Trade-offs between the short- and long-term effects of residue quality on soil C and N dynamics. Plant and Soil 338 : 159–169. DOI: 10.1007/s11104-010-0360-z
Geyer KM, Dijkstra P, Sinsabaugh R, Frey SD. 2019. Clarifying the interpretation of carbon use efficiency in soil through methods comparison. Soil Biology and Biochemistry 128 : 79–88. DOI: 10.1016/j.soilbio.2018.09.036
Haddix ML, Paul EA, Cotrufo MF. 2016. Dual, differential isotope labeling shows the preferential movement of labile plant constituents into mineral-bonded soil organic matter. Global Change Biology22 : 2301–2312. DOI: 10.1111/gcb.13237
Herath HMSK, Camps-Arbestain M, Hedley M, Van Hale R, Kaal J. 2014. Fate of biochar in chemically- and physically-defined soil organic carbon pools. Organic Geochemistry 73 : 35–46. DOI: 10.1016/j.orggeochem.2014.05.001
Huang R, Zhang Z, Xiao X, Zhang N, Wang X, Yang Z, Xu K, Liang Y. 2019. Structural changes of soil organic matter and the linkage to rhizosphere bacterial communities with biochar amendment in manure fertilized soils.Science of the Total Environment 692 : 333–343. DOI: 10.1016/j.scitotenv.2019.07.262
Jenkinson DS, Brookes PC, Powlson DS. 2004. Measuring soil microbial biomass. Soil Biology and Biochemistry 36 : 5–7. DOI: 10.1016/j.soilbio.2003.10.002
Jha P, Hati KM, Dalal RC, Dang YP, Kopittke PM, Menzies NW. 2020. Soil carbon and nitrogen dynamics in a Vertisol following 50 years of no-tillage, crop stubble retention and nitrogen fertilization.Geoderma 358 : 113996. DOI: 10.1016/j.geoderma.2019.113996
Jumpponen A, Jones KL, Blair J. 2010. Vertical distribution of fungal communities in tallgrass prairie soil. Mycologia 102 : 1027–1041. DOI: 10.3852/09-316
Kallenbach CM, Wallenstein MD, Schipanksi ME, Stuart Grandy A. 2019. Managing agroecosystems for soil microbial carbon use efficiency: Ecological unknowns, potential outcomes, and a path forward.Frontiers in Microbiology 10 . DOI: 10.3389/fmicb.2019.01146
Keiblinger KM, Hall EK, Wanek W, Szukics U, Hämmerle I, Ellersdorfer G, Böck S, Strauss J, Sterflinger K, Richter A, Zechmeister-Boltenstern S. 2010. The effect of resource quantity and resource stoichiometry on microbial carbon-use-efficiency. FEMS Microbiology Ecology73 : 430–440. DOI: 10.1111/j.1574-6941.2010.00912.x
Keszthelyi A, Hamari Z, Pfeiffer I, Vágvölgyi C, Kucsera J. 2008. Comparison of killer toxin-producing and non-producing strains of Filobasidium capsuligenum: Proposal for two varieties.Microbiological Research 163 : 267–276. DOI: 10.1016/j.micres.2008.01.002
Lee SH, Malone C, Kemp PF. 1993. Use of multiple 16S rRNA-targeted fluorescent probes to increase signal strength and measure cellular RNA from natural planktonic bacteria. Marine Ecology Progress Series101 : 193–202. DOI: 10.3354/meps101193
Lee ZM, Schmidt TM. 2014. Bacterial growth efficiency varies in soils under different land management practices. Soil Biology and Biochemistry 69 : 282–290. DOI: 10.1016/j.soilbio.2013.11.012
Li J, Wang G, Allison SD, Mayes MA. 2014. Soil carbon sensitivity to temperature and carbon use efficiency compared across microbial-ecosystem models of varying complexity. 67–84. DOI: 10.1007/s10533-013-9948-8
Li J, Wang G, Mayes MA, Allison SD, Frey SD, Shi Z, Hu XM, Luo Y, Melillo JM. 2019a. Reduced carbon use efficiency and increased microbial turnover with soil warming. Global Change Biology 25 : 900–910. DOI: 10.1111/gcb.14517
Li S, Wu X, Liang G, Gao L, Wang B, Lu J, Abdelrhman AA, Song X, Zhang M, Zheng F, Degré A. 2020. Is least limiting water range a useful indicator of the impact of tillage management on maize yield? Soil and Tillage Research 199 : 104602. DOI: 10.1016/j.still.2020.104602
Li Y, Nie C, Liu Y, Du W, He P. 2019b. Soil microbial community composition closely associates with specific enzyme activities and soil carbon chemistry in a long-term nitrogen fertilized grassland.Science of the Total Environment 654 : 264–274. DOI: 10.1016/j.scitotenv.2018.11.031
Li Z, Liu M, Wu X, Han F, Zhang T. 2010. Effects of long-term chemical fertilization and organic amendments on dynamics of soil organic C and total N in paddy soil derived from barren land in subtropical China.Soil and Tillage Research 106 : 268–274. DOI: 10.1016/j.still.2009.12.008
Liu W, Qiao C, Yang S, Bai W, Liu L. 2018. Microbial carbon use efficiency and priming effect regulate soil carbon storage under nitrogen deposition by slowing soil organic matter decomposition.Geoderma 332 : 37–44. DOI: 10.1016/j.geoderma.2018.07.008
Liu X, Wu X, Liang G, Zheng F, Zhang M, Li S. 2021. A global meta-analysis of the impacts of no-tillage on soil aggregation and aggregate-associated organic carbon. Land Degradation & Development n/a . DOI: https://doi.org/10.1002/ldr.4109
Luan C, Xie L, Yang X, Miao H, Lv N, Zhang R, Xiao X, Hu Y, Liu Y, Wu N, Zhu Y, Zhu B. 2015. Dysbiosis of fungal microbiota in the intestinal mucosa of patients with colorectal adenomas. Scientific Reports5 : 1–9. DOI: 10.1038/srep07980
Manzoni S, Taylor P, Richter A, Porporato A, Ågren GI. 2012. Environmental and stoichiometric controls on microbial carbon-use efficiency in soils. New Phytologist 196 : 79–91. DOI: 10.1111/j.1469-8137.2012.04225.x
Mo F, Zhang YY, Liu Y, Liao YC. 2021. Microbial carbon-use efficiency and straw-induced priming effect within soil aggregates are regulated by tillage history and balanced nutrient supply. Biology and Fertility of Soils 57 : 409–420. DOI: 10.1007/s00374-021-01540-w
Morriën E, Hannula SE, Snoek LB, Helmsing NR, Zweers H, De Hollander M, Soto RL, Bouffaud ML, Buée M, Dimmers W, Duyts H, Geisen S, Girlanda M, Griffiths RI, Jørgensen HB, Jensen J, Plassart P, Redecker D, Schmelz RM, Schmidt O, Thomson BC, Tisserant E, Uroz S, Winding A, Bailey MJ, Bonkowski M, Faber JH, Martin F, Lemanceau P, De Boer W, Van Veen JA, Van Der Putten WH. 2017. Soil networks become more connected and take up more carbon as nature restoration progresses. Nature Communications 8 . DOI: 10.1038/ncomms14349
Novara A, Gristina L, Sala G, Galati A, Crescimanno M, Cerdà A, Badalamenti E, La T. 2017. Science of the Total Environment Agricultural land abandonment in Mediterranean environment provides ecosystem services via soil carbon sequestration. Science of the Total Environment 576 : 420–429. DOI: 10.1016/j.scitotenv.2016.10.123
Nunes MR, Karlen DL, Veum KS, Moorman TB, Cambardella CA. 2020. Biological soil health indicators respond to tillage intensity: A US meta-analysis. Geoderma 369 : 114335. DOI: 10.1016/j.geoderma.2020.114335
Omar SA, Ismail MA. 1999. Microbial populations, ammonification and nitrification in soil treated with urea and inorganic salts. Folia Microbiologica 44 : 205–212. DOI: 10.1007/BF02816244
Piazza G, Ercoli L, Nuti M, Pellegrino E. 2019. Interaction Between Conservation Tillage and Nitrogen Fertilization Shapes Prokaryotic and Fungal Diversity at Different Soil Depths: Evidence From a 23-Year Field Experiment in the Mediterranean Area. Frontiers in Microbiology10 : 1–20. DOI: 10.3389/fmicb.2019.02047
Qiao Y, Wang J, Liang G, Du Z, Zhou J, Zhu C. 2019. Global variation of soil microbial carbon-use efficiency in relation to growth temperature and substrate supply. 1–8. DOI: 10.1038/s41598-019-42145-6
Saiya-Cork KR, Sinsabaugh RL, Zak DR. 2002. The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil. Soil Biology and Biochemistry 34 : 1309–1315. DOI: 10.1016/S0038-0717(02)00074-3
Sauvadet M, Lashermes G, Alavoine G, Recous S, Chauvat M, Maron PA, Bertrand I. 2018. High carbon use efficiency and low priming effect promote soil C stabilization under reduced tillage. Soil Biology and Biochemistry 123 : 64–73. DOI: 10.1016/j.soilbio.2018.04.026
Sinsabaugh RL, Findlay S, Franchini P, Fischer D. 1997. Enzymatic analysis of riverine bacterioplankton production. Limnology and Oceanography 42 : 29–38. DOI: 10.4319/lo.1997.42.1.0029
Sinsabaugh RL, Shah JJF. 2012. Ecoenzymatic stoichiometry and ecological theory. Annual Review of Ecology, Evolution, and Systematics43 : 313–343. DOI: 10.1146/annurev-ecolsys-071112-124414
Sinsabaugh, Turner BL, Talbot JM, Waring BG, Powers JS, Kuske CR, Moorhead DL, Shah JJF. 2016. Stoichiometry of microbial carbon use efficiency in soils. Ecological Monographs 86 : 172–189. DOI: 10.1890/15-2110.1
Six J, Elliott ET, Paustian K, Doran JW. 1998. Aggregation and Soil Organic Matter Accumulation in Cultivated and Native Grassland Soils.Soil Science Society of America Journal 62 : 1367–1377. DOI: 10.2136/sssaj1998.03615995006200050032x
Six J, Frey SD, Thiet RK, Batten KM. 2006. Bacterial and Fungal Contributions to Carbon Sequestration in Agroecosystems. Soil Science Society of America Journal 70 : 555–569. DOI: 10.2136/sssaj2004.0347
Spohn M, Pötsch EM, Eichorst SA, Woebken D, Wanek W, Richter A. 2016. Soil microbial carbon use efficiency and biomass turnover in a long-term fertilization experiment in a temperate grassland. Soil Biology and Biochemistry 97 : 168–175. DOI: 10.1016/j.soilbio.2016.03.008
Stewart CE, Follett RF, Pruessner EG, Varvel GE, Vogel KP, Mitchell RB. 2016. N fertilizer and harvest impacts on bioenergy crop contributions to SOC. GCB Bioenergy 8 : 1201–1211. DOI: 10.1111/gcbb.12326
Su Y, He Z, Yang Y, Jia S, Yu M, Chen X, Shen A. 2020. Linking soil microbial community dynamics to straw-carbon distribution in soil organic carbon. Scientific Reports 10 : 1–12. DOI: 10.1038/s41598-020-62198-2
Sun R, Li W, Dong W, Tian Y, Hu C, Liu B. 2018. Tillage changes vertical distribution of soil bacterial and fungal communities. Frontiers in Microbiology 9 : 1–13. DOI: 10.3389/fmicb.2018.00699
Thierfelder C, Baudron F, Setimela P, Nyagumbo I, Mupangwa W, Mhlanga B, Lee N, Gérard B. 2018. Complementary practices supporting conservation agriculture in southern Africa. A review. Agronomy for Sustainable Development 38 . DOI: 10.1007/s13593-018-0492-8
Thiet RK, Frey SD, Six J. 2006. Do growth yield efficiencies differ between soil microbial communities differing in fungal:bacterial ratios? Reality check and methodological issues. Soil Biology and Biochemistry 38 : 837–844. DOI: 10.1016/j.soilbio.2005.07.010
Thomas RQ, Canham CD, Weathers KC, Goodale CL. 2010. Increased tree carbon storage in response to nitrogen deposition in the US.Nature Geoscience 3 : 13–17. DOI: 10.1038/ngeo721
Van Groenigen KJ, Forristal D, Jones M, Smyth N, Schwartz E, Hungate B, Dijkstra P. 2013. Using metabolic tracer techniques to assess the impact of tillage and straw management on microbial carbon use efficiency in soil. Soil Biology and Biochemistry 66 : 139–145. DOI: 10.1016/j.soilbio.2013.07.002
Verbruggen E, Toby Kiers E. 2010. Evolutionary ecology of mycorrhizal functional diversity in agricultural systems. Evolutionary Applications 3 : 547–560. DOI: 10.1111/j.1752-4571.2010.00145.x
Wagg C, Schlaeppi K, Banerjee S, Kuramae EE, van der Heijden MGA. 2019. Fungal-bacterial diversity and microbiome complexity predict ecosystem functioning. Nature Communications 10 : 1–10. DOI: 10.1038/s41467-019-12798-y
Waldrop MP, Firestone MK. 2004. Microbial community utilization of recalcitrant and simple carbon compounds: Impact of oak-woodland plant communities. Oecologia 138 : 275–284. DOI: 10.1007/s00442-003-1419-9
Wang B, Gao L, Yu W, Wei X, Li J, Li S, Song X, Liang G, Cai D, Wu X. 2019. Distribution of soil aggregates and organic carbon in deep soil under long-term conservation tillage with residual retention in dryland.Journal of Arid Land 11 : 241–254. DOI: 10.1007/s40333-019-0094-6
Wang C, Liu D, Bai E. 2018. Decreasing soil microbial diversity is associated with decreasing microbial biomass under nitrogen addition.Soil Biology and Biochemistry 120 : 126–133. DOI: 10.1016/j.soilbio.2018.02.003
Wang J, Bao J, Su J, Li X, Chen G, Ma X. 2015. Impact of inorganic nitrogen additions on microbes in biological soil crusts. Soil Biology and Biochemistry 88 : 303–313. DOI: 10.1016/j.soilbio.2015.06.004
Wang Y, Li C, Tu C, Hoyt GD, DeForest JL, Hu S. 2017. Long-term no-tillage and organic input management enhanced the diversity and stability of soil microbial community. Science of the Total Environment 609 : 341–347. DOI: 10.1016/j.scitotenv.2017.07.053
Wang Z, Li T, Li Y, Zhao D, Han J, Liu Y, Liao Y. 2020. Relationship between the microbial community and catabolic diversity in response to conservation tillage. Soil and Tillage Research 196 : 104431. DOI: 10.1016/j.still.2019.104431
Wetterstedt JAM, Agren GI. 2011. Quality or decomposer efficiency - Which is most important in the temperature response of litter decomposition? A modelling study using the GLUE methodology.Biogeosciences 8 : 477–487. DOI: 10.5194/bg-8-477-2011
White D, Stair J, Ringelberg D. 1996. Quantitative comparisons ofin situ microbial biodiversity by signature biomarker analysis. Journal of Industrial Microbiology & Biotechnology 17 : 185–196. DOI: 10.1007/bf01574692
Widdig M, Schleuss PM, Biederman LA, Borer ET, Crawley MJ, Kirkman KP, Seabloom EW, Wragg PD, Spohn M. 2020. Microbial carbon use efficiency in grassland soils subjected to nitrogen and phosphorus additions.Soil Biology and Biochemistry 146 : 107815. DOI: 10.1016/j.soilbio.2020.107815
Willers C, Jansen van Rensburg PJ, Claassens S. 2015. Phospholipid fatty acid profiling of microbial communities-a review of interpretations and recent applications. Journal of Applied Microbiology119 : 1207–1218. DOI: 10.1111/jam.12902
Witzgall K, Vidal A, Schubert DI, Höschen C, Schweizer SA, Buegger F, Pouteau V, Chenu C, Mueller CW. 2021. Particulate organic matter as a functional soil component for persistent soil organic carbon.Nature communications 12 : 4115. DOI: 10.1038/s41467-021-24192-8
Yang H, Wu G, Mo P, Chen S, Wang S, Xiao Y, Ma H ang, Wen T, Guo X, Fan G. 2020a. The combined effects of maize straw mulch and no-tillage on grain yield and water and nitrogen use efficiency of dry-land winter wheat (Triticum aestivum L.). Soil and Tillage Research197 . DOI: 10.1016/j.still.2019.104485
Yang Y, Cheng H, Gao H, An S. 2020b. Response and driving factors of soil microbial diversity related to global nitrogen addition. Land Degradation and Development 31 : 190–204. DOI: 10.1002/ldr.3439
Ye C, Chen D, Hall SJ, Pan S, Yan X, Bai T, Guo H, Zhang Y, Bai Y, Hu S. 2018. Reconciling multiple impacts of nitrogen enrichment on soil carbon: plant, microbial and geochemical controls. Ecology Letters 21 : 1162–1173. DOI: 10.1111/ele.13083
Yuan X, Qin W, Xu H, Zhang Z, Zhou H, Zhu B. 2020. Sensitivity of soil carbon dynamics to nitrogen and phosphorus enrichment in an alpine meadow. Soil Biology and Biochemistry 150 : 107984. DOI: 10.1016/j.soilbio.2020.107984
Zhou J, Deng Y, Luo F, He Z, Tu Q, Zhi X. 2010. Functional molecular ecological networks. mBio 1 : 1–10. DOI: 10.1128/mBio.00169-10
Zhou Z, Wang C, Zheng M, Jiang L, Luo Y. 2017. Patterns and mechanisms of responses by soil microbial communities to nitrogen addition.Soil Biology and Biochemistry 115 : 433–441. DOI: 10.1016/j.soilbio.2017.09.015
Zhou Z, Zhang H, Yuan Z, Gong R. 2020. The nutrient release rate accounts for the effect of organic matter type on soil microbial carbon use efficiency of a Pinus tabulaeformis forest in northern China.Journal of Soils and Sediments 20 : 352–364. DOI: 10.1007/s11368-019-02423-2Table 1 Soil physical and chemical properties in 0-25 cm layer in 2003.