References
Abramoff R, Xu X, Hartman M, O’Brien S, Feng W, Davidson E, Finzi A,
Moorhead D, Schimel J, Torn M, Mayes MA. 2018. The Millennial model: in
search of measurable pools and transformations for modeling soil carbon
in the new century. Biogeochemistry 137 : 51–71. DOI:
10.1007/s10533-017-0409-7
Adu JK, Oades JM. 1978. Utilization of organic materials in soil
aggregates by bacteria and fungi. Soil Biology and Biochemistry10 : 117–122. DOI: 10.1016/0038-0717(78)90081-0
Ai C, Zhang S, Zhang X, Guo D, Zhou W, Huang S. 2018. Distinct responses
of soil bacterial and fungal communities to changes in fertilization
regime and crop rotation. Geoderma 319 : 156–166. DOI:
10.1016/j.geoderma.2018.01.010
Álvaro-Fuentes J, Morell FJ, Madejón E, Lampurlanés J, Arrúe JL,
Cantero-Martínez C. 2013. Soil biochemical properties in a semiarid
Mediterranean agroecosystem as affected by long-term tillage and N
fertilization. Soil and Tillage Research 129 : 69–74.
DOI: 10.1016/j.still.2013.01.005
Apple JK, Del Giorgio PA, Kemp WM. 2006. Temperature regulation of
bacterial production, respiration, and growth efficiency in a temperate
salt-marsh estuary. Aquatic Microbial Ecology 43 :
243–254. DOI: 10.3354/ame043243
Averill C, Waring B. 2018. Nitrogen limitation of decomposition and
decay: How can it occur? Global Change Biology 24 :
1417–1427. DOI: 10.1111/gcb.13980
Bärlocher F, Boddy L. 2016. Aquatic fungal ecology - How does it differ
from terrestrial? Fungal Ecology 19 : 5–13. DOI:
10.1016/j.funeco.2015.09.001
Börjesson G, Sundh I, Tunlid A, Svensson BH. 1998. Methane oxidation in
landfill cover soils, as revealed by potential oxidation measurements
and phospholipid fatty acid analyses. Soil Biology and
Biochemistry 30 : 1423–1433. DOI:
10.1016/S0038-0717(97)00257-5
Bradford MA, Keiser AD, Davies CA, Mersmann CA, Strickland MS. 2013.
Empirical evidence that soil carbon formation from plant inputs is
positively related to microbial growth. Biogeochemistry113 : 271–281. DOI: 10.1007/s10533-012-9822-0
Brockett BFT, Prescott CE, Grayston SJ. 2012. Soil moisture is the major
factor influencing microbial community structure and enzyme activities
across seven biogeoclimatic zones in western Canada. Soil Biology
and Biochemistry 44 : 9–20. DOI: 10.1016/j.soilbio.2011.09.003
Caporaso. 2010. Intensity normalization improves color calling in SOLiD
sequencing. Nature Methods 7 : 336–337. DOI:
10.1038/nmeth0510-336
Ceja-Navarro JA, Rivera-Orduña FN, Patiño-Zúñiga L, Vila-Sanjurjo A,
Crossa J, Govaerts B, Dendooven L. 2010. Phylogenetic and multivariate
analyses to determine the effects of different tillage and residue
management practices on soil bacterial communities. Applied and
Environmental Microbiology 76 : 3685–3691. DOI:
10.1128/AEM.02726-09
Chen H, Li D, Feng W, Niu S, Plante A, Luo Y, Wang K. 2018. Different
responses of soil organic carbon fractions to additions of nitrogen.European Journal of Soil Science 69 : 1098–1104. DOI:
10.1111/ejss.12716
Chen J, Ji C, Fang J, He H, Zhu B. 2020a. Dynamics of microbial residues
control the responses of mineral-associated soil organic carbon to N
addition in two temperate forests. Science of the Total
Environment 748 : 141318. DOI: 10.1016/j.scitotenv.2020.141318
Chen J, Xiao W, Zheng C, Zhu B. 2020b. Nitrogen addition has contrasting
effects on particulate and mineral-associated soil organic carbon in a
subtropical forest. Soil Biology and Biochemistry 142 :
107708. DOI: 10.1016/j.soilbio.2020.107708
Chen S, Wang W, Xu W, Wang Y, Wan H, Chen D, Tang Z. 2017. Plant
diversity enhances productivity and soil carbon storage. 2017 .
DOI: 10.1073/pnas.1700298114
Chen Y, Liu X, Hou Y, Zhou S, Zhu B. 2019. Particulate organic carbon is
more vulnerable to nitrogen addition than mineral-associated organic
carbon in soil of an alpine meadow. Plant and Soil . DOI:
10.1007/s11104-019-04279-4
Chowdhury TR, Dick RP. 2012. Standardizing methylation method during
phospholipid fatty acid analysis to profile soil microbial communities.Journal of Microbiological Methods 88 : 285–291. DOI:
10.1016/j.mimet.2011.12.008
Cleveland CC, Liptzin D. 2007. C:N:P stoichiometry in soil: Is there a
“Redfield ratio” for the microbial biomass? Biogeochemistry85 : 235–252. DOI: 10.1007/s10533-007-9132-0
Curtin D, Beare MH, Qiu W, Sharp J. 2019. Does Particulate Organic
Matter Fraction Meet the Criteria for a Model Soil Organic Matter Pool?Pedosphere 29 : 195–203. DOI:
10.1016/S1002-0160(18)60049-9
De valença AW, Vanek SJ, Meza K, Ccanto R, Olivera E. 2017. Land use as
a driver of soil fertility and biodiversity across agricultural
landscape in the Central Peruvian Andes. 27 : 1138–1154. DOI:
10.1002/eap.1508
Domeignoz-Horta LA, Pold G, Liu XJA, Frey SD, Melillo JM, DeAngelis KM.
2020. Microbial diversity drives carbon use efficiency in a model soil.Nature Communications 11 : 1–10. DOI:
10.1038/s41467-020-17502-z
Fang Y, Singh BP, Cowie A, Wang W, Arachchi MH, Wang H, Tavakkoli E.
2019. Balancing nutrient stoichiometry facilitates the fate of wheat
residue‑carbon in physically defined soil organic matter fractions.Geoderma 354 : 113883. DOI:
10.1016/j.geoderma.2019.113883
Fiorini A, Boselli R, Maris SC, Santelli S, Ardenti F, Capra F, Tabaglio
V. 2020. May conservation tillage enhance soil C and N accumulation
without decreasing yield in intensive irrigated croplands? Results from
an eight-year maize monoculture. Agriculture, Ecosystems and
Environment 296 : 106926. DOI: 10.1016/j.agee.2020.106926
Frostegård A, Bååth E. 1996. The use of phospholipid fatty acid analysis
to estimate bacterial and fungal biomass in soil. Biology and
Fertility of Soils 22 : 59–65. DOI: 10.1007/s003740050076
Gentile R, Vanlauwe B, Chivenge P, Six J. 2011. Trade-offs between the
short- and long-term effects of residue quality on soil C and N
dynamics. Plant and Soil 338 : 159–169. DOI:
10.1007/s11104-010-0360-z
Geyer KM, Dijkstra P, Sinsabaugh R, Frey SD. 2019. Clarifying the
interpretation of carbon use efficiency in soil through methods
comparison. Soil Biology and Biochemistry 128 : 79–88.
DOI: 10.1016/j.soilbio.2018.09.036
Haddix ML, Paul EA, Cotrufo MF. 2016. Dual, differential isotope
labeling shows the preferential movement of labile plant constituents
into mineral-bonded soil organic matter. Global Change Biology22 : 2301–2312. DOI: 10.1111/gcb.13237
Herath HMSK, Camps-Arbestain M, Hedley M, Van Hale R, Kaal J. 2014. Fate
of biochar in chemically- and physically-defined soil organic carbon
pools. Organic Geochemistry 73 : 35–46. DOI:
10.1016/j.orggeochem.2014.05.001
Huang R, Zhang Z, Xiao X, Zhang N, Wang X, Yang Z, Xu K, Liang Y. 2019.
Structural changes of soil organic matter and the linkage to rhizosphere
bacterial communities with biochar amendment in manure fertilized soils.Science of the Total Environment 692 : 333–343. DOI:
10.1016/j.scitotenv.2019.07.262
Jenkinson DS, Brookes PC, Powlson DS. 2004. Measuring soil microbial
biomass. Soil Biology and Biochemistry 36 : 5–7. DOI:
10.1016/j.soilbio.2003.10.002
Jha P, Hati KM, Dalal RC, Dang YP, Kopittke PM, Menzies NW. 2020. Soil
carbon and nitrogen dynamics in a Vertisol following 50 years of
no-tillage, crop stubble retention and nitrogen fertilization.Geoderma 358 : 113996. DOI:
10.1016/j.geoderma.2019.113996
Jumpponen A, Jones KL, Blair J. 2010. Vertical distribution of fungal
communities in tallgrass prairie soil. Mycologia 102 :
1027–1041. DOI: 10.3852/09-316
Kallenbach CM, Wallenstein MD, Schipanksi ME, Stuart Grandy A. 2019.
Managing agroecosystems for soil microbial carbon use efficiency:
Ecological unknowns, potential outcomes, and a path forward.Frontiers in Microbiology 10 . DOI:
10.3389/fmicb.2019.01146
Keiblinger KM, Hall EK, Wanek W, Szukics U, Hämmerle I, Ellersdorfer G,
Böck S, Strauss J, Sterflinger K, Richter A, Zechmeister-Boltenstern S.
2010. The effect of resource quantity and resource stoichiometry on
microbial carbon-use-efficiency. FEMS Microbiology Ecology73 : 430–440. DOI: 10.1111/j.1574-6941.2010.00912.x
Keszthelyi A, Hamari Z, Pfeiffer I, Vágvölgyi C, Kucsera J. 2008.
Comparison of killer toxin-producing and non-producing strains of
Filobasidium capsuligenum: Proposal for two varieties.Microbiological Research 163 : 267–276. DOI:
10.1016/j.micres.2008.01.002
Lee SH, Malone C, Kemp PF. 1993. Use of multiple 16S rRNA-targeted
fluorescent probes to increase signal strength and measure cellular RNA
from natural planktonic bacteria. Marine Ecology Progress Series101 : 193–202. DOI: 10.3354/meps101193
Lee ZM, Schmidt TM. 2014. Bacterial growth efficiency varies in soils
under different land management practices. Soil Biology and
Biochemistry 69 : 282–290. DOI: 10.1016/j.soilbio.2013.11.012
Li J, Wang G, Allison SD, Mayes MA. 2014. Soil carbon sensitivity to
temperature and carbon use efficiency compared across
microbial-ecosystem models of varying complexity. 67–84. DOI:
10.1007/s10533-013-9948-8
Li J, Wang G, Mayes MA, Allison SD, Frey SD, Shi Z, Hu XM, Luo Y,
Melillo JM. 2019a. Reduced carbon use efficiency and increased microbial
turnover with soil warming. Global Change Biology 25 :
900–910. DOI: 10.1111/gcb.14517
Li S, Wu X, Liang G, Gao L, Wang B, Lu J, Abdelrhman AA, Song X, Zhang
M, Zheng F, Degré A. 2020. Is least limiting water range a useful
indicator of the impact of tillage management on maize yield? Soil
and Tillage Research 199 : 104602. DOI:
10.1016/j.still.2020.104602
Li Y, Nie C, Liu Y, Du W, He P. 2019b. Soil microbial community
composition closely associates with specific enzyme activities and soil
carbon chemistry in a long-term nitrogen fertilized grassland.Science of the Total Environment 654 : 264–274. DOI:
10.1016/j.scitotenv.2018.11.031
Li Z, Liu M, Wu X, Han F, Zhang T. 2010. Effects of long-term chemical
fertilization and organic amendments on dynamics of soil organic C and
total N in paddy soil derived from barren land in subtropical China.Soil and Tillage Research 106 : 268–274. DOI:
10.1016/j.still.2009.12.008
Liu W, Qiao C, Yang S, Bai W, Liu L. 2018. Microbial carbon use
efficiency and priming effect regulate soil carbon storage under
nitrogen deposition by slowing soil organic matter decomposition.Geoderma 332 : 37–44. DOI:
10.1016/j.geoderma.2018.07.008
Liu X, Wu X, Liang G, Zheng F, Zhang M, Li S. 2021. A global
meta-analysis of the impacts of no-tillage on soil aggregation and
aggregate-associated organic carbon. Land Degradation &
Development n/a . DOI: https://doi.org/10.1002/ldr.4109
Luan C, Xie L, Yang X, Miao H, Lv N, Zhang R, Xiao X, Hu Y, Liu Y, Wu N,
Zhu Y, Zhu B. 2015. Dysbiosis of fungal microbiota in the intestinal
mucosa of patients with colorectal adenomas. Scientific Reports5 : 1–9. DOI: 10.1038/srep07980
Manzoni S, Taylor P, Richter A, Porporato A, Ågren GI. 2012.
Environmental and stoichiometric controls on microbial carbon-use
efficiency in soils. New Phytologist 196 : 79–91. DOI:
10.1111/j.1469-8137.2012.04225.x
Mo F, Zhang YY, Liu Y, Liao YC. 2021. Microbial carbon-use efficiency
and straw-induced priming effect within soil aggregates are regulated by
tillage history and balanced nutrient supply. Biology and
Fertility of Soils 57 : 409–420. DOI:
10.1007/s00374-021-01540-w
Morriën E, Hannula SE, Snoek LB, Helmsing NR, Zweers H, De Hollander M,
Soto RL, Bouffaud ML, Buée M, Dimmers W, Duyts H, Geisen S, Girlanda M,
Griffiths RI, Jørgensen HB, Jensen J, Plassart P, Redecker D, Schmelz
RM, Schmidt O, Thomson BC, Tisserant E, Uroz S, Winding A, Bailey MJ,
Bonkowski M, Faber JH, Martin F, Lemanceau P, De Boer W, Van Veen JA,
Van Der Putten WH. 2017. Soil networks become more connected and take up
more carbon as nature restoration progresses. Nature
Communications 8 . DOI: 10.1038/ncomms14349
Novara A, Gristina L, Sala G, Galati A, Crescimanno M, Cerdà A,
Badalamenti E, La T. 2017. Science of the Total Environment Agricultural
land abandonment in Mediterranean environment provides ecosystem
services via soil carbon sequestration. Science of the Total
Environment 576 : 420–429. DOI:
10.1016/j.scitotenv.2016.10.123
Nunes MR, Karlen DL, Veum KS, Moorman TB, Cambardella CA. 2020.
Biological soil health indicators respond to tillage intensity: A US
meta-analysis. Geoderma 369 : 114335. DOI:
10.1016/j.geoderma.2020.114335
Omar SA, Ismail MA. 1999. Microbial populations, ammonification and
nitrification in soil treated with urea and inorganic salts. Folia
Microbiologica 44 : 205–212. DOI: 10.1007/BF02816244
Piazza G, Ercoli L, Nuti M, Pellegrino E. 2019. Interaction Between
Conservation Tillage and Nitrogen Fertilization Shapes Prokaryotic and
Fungal Diversity at Different Soil Depths: Evidence From a 23-Year Field
Experiment in the Mediterranean Area. Frontiers in Microbiology10 : 1–20. DOI: 10.3389/fmicb.2019.02047
Qiao Y, Wang J, Liang G, Du Z, Zhou J, Zhu C. 2019. Global variation of
soil microbial carbon-use efficiency in relation to growth temperature
and substrate supply. 1–8. DOI: 10.1038/s41598-019-42145-6
Saiya-Cork KR, Sinsabaugh RL, Zak DR. 2002. The effects of long term
nitrogen deposition on extracellular enzyme activity in an Acer
saccharum forest soil. Soil Biology and Biochemistry 34 :
1309–1315. DOI: 10.1016/S0038-0717(02)00074-3
Sauvadet M, Lashermes G, Alavoine G, Recous S, Chauvat M, Maron PA,
Bertrand I. 2018. High carbon use efficiency and low priming effect
promote soil C stabilization under reduced tillage. Soil Biology
and Biochemistry 123 : 64–73. DOI:
10.1016/j.soilbio.2018.04.026
Sinsabaugh RL, Findlay S, Franchini P, Fischer D. 1997. Enzymatic
analysis of riverine bacterioplankton production. Limnology and
Oceanography 42 : 29–38. DOI: 10.4319/lo.1997.42.1.0029
Sinsabaugh RL, Shah JJF. 2012. Ecoenzymatic stoichiometry and ecological
theory. Annual Review of Ecology, Evolution, and Systematics43 : 313–343. DOI: 10.1146/annurev-ecolsys-071112-124414
Sinsabaugh, Turner BL, Talbot JM, Waring BG, Powers JS, Kuske CR,
Moorhead DL, Shah JJF. 2016. Stoichiometry of microbial carbon use
efficiency in soils. Ecological Monographs 86 : 172–189.
DOI: 10.1890/15-2110.1
Six J, Elliott ET, Paustian K, Doran JW. 1998. Aggregation and Soil
Organic Matter Accumulation in Cultivated and Native Grassland Soils.Soil Science Society of America Journal 62 : 1367–1377.
DOI: 10.2136/sssaj1998.03615995006200050032x
Six J, Frey SD, Thiet RK, Batten KM. 2006. Bacterial and Fungal
Contributions to Carbon Sequestration in Agroecosystems. Soil
Science Society of America Journal 70 : 555–569. DOI:
10.2136/sssaj2004.0347
Spohn M, Pötsch EM, Eichorst SA, Woebken D, Wanek W, Richter A. 2016.
Soil microbial carbon use efficiency and biomass turnover in a long-term
fertilization experiment in a temperate grassland. Soil Biology
and Biochemistry 97 : 168–175. DOI:
10.1016/j.soilbio.2016.03.008
Stewart CE, Follett RF, Pruessner EG, Varvel GE, Vogel KP, Mitchell RB.
2016. N fertilizer and harvest impacts on bioenergy crop contributions
to SOC. GCB Bioenergy 8 : 1201–1211. DOI:
10.1111/gcbb.12326
Su Y, He Z, Yang Y, Jia S, Yu M, Chen X, Shen A. 2020. Linking soil
microbial community dynamics to straw-carbon distribution in soil
organic carbon. Scientific Reports 10 : 1–12. DOI:
10.1038/s41598-020-62198-2
Sun R, Li W, Dong W, Tian Y, Hu C, Liu B. 2018. Tillage changes vertical
distribution of soil bacterial and fungal communities. Frontiers
in Microbiology 9 : 1–13. DOI: 10.3389/fmicb.2018.00699
Thierfelder C, Baudron F, Setimela P, Nyagumbo I, Mupangwa W, Mhlanga B,
Lee N, Gérard B. 2018. Complementary practices supporting conservation
agriculture in southern Africa. A review. Agronomy for Sustainable
Development 38 . DOI: 10.1007/s13593-018-0492-8
Thiet RK, Frey SD, Six J. 2006. Do growth yield efficiencies differ
between soil microbial communities differing in fungal:bacterial ratios?
Reality check and methodological issues. Soil Biology and
Biochemistry 38 : 837–844. DOI: 10.1016/j.soilbio.2005.07.010
Thomas RQ, Canham CD, Weathers KC, Goodale CL. 2010. Increased tree
carbon storage in response to nitrogen deposition in the US.Nature Geoscience 3 : 13–17. DOI: 10.1038/ngeo721
Van Groenigen KJ, Forristal D, Jones M, Smyth N, Schwartz E, Hungate B,
Dijkstra P. 2013. Using metabolic tracer techniques to assess the impact
of tillage and straw management on microbial carbon use efficiency in
soil. Soil Biology and Biochemistry 66 : 139–145. DOI:
10.1016/j.soilbio.2013.07.002
Verbruggen E, Toby Kiers E. 2010. Evolutionary ecology of mycorrhizal
functional diversity in agricultural systems. Evolutionary
Applications 3 : 547–560. DOI:
10.1111/j.1752-4571.2010.00145.x
Wagg C, Schlaeppi K, Banerjee S, Kuramae EE, van der Heijden MGA. 2019.
Fungal-bacterial diversity and microbiome complexity predict ecosystem
functioning. Nature Communications 10 : 1–10. DOI:
10.1038/s41467-019-12798-y
Waldrop MP, Firestone MK. 2004. Microbial community utilization of
recalcitrant and simple carbon compounds: Impact of oak-woodland plant
communities. Oecologia 138 : 275–284. DOI:
10.1007/s00442-003-1419-9
Wang B, Gao L, Yu W, Wei X, Li J, Li S, Song X, Liang G, Cai D, Wu X.
2019. Distribution of soil aggregates and organic carbon in deep soil
under long-term conservation tillage with residual retention in dryland.Journal of Arid Land 11 : 241–254. DOI:
10.1007/s40333-019-0094-6
Wang C, Liu D, Bai E. 2018. Decreasing soil microbial diversity is
associated with decreasing microbial biomass under nitrogen addition.Soil Biology and Biochemistry 120 : 126–133. DOI:
10.1016/j.soilbio.2018.02.003
Wang J, Bao J, Su J, Li X, Chen G, Ma X. 2015. Impact of inorganic
nitrogen additions on microbes in biological soil crusts. Soil
Biology and Biochemistry 88 : 303–313. DOI:
10.1016/j.soilbio.2015.06.004
Wang Y, Li C, Tu C, Hoyt GD, DeForest JL, Hu S. 2017. Long-term
no-tillage and organic input management enhanced the diversity and
stability of soil microbial community. Science of the Total
Environment 609 : 341–347. DOI:
10.1016/j.scitotenv.2017.07.053
Wang Z, Li T, Li Y, Zhao D, Han J, Liu Y, Liao Y. 2020. Relationship
between the microbial community and catabolic diversity in response to
conservation tillage. Soil and Tillage Research 196 :
104431. DOI: 10.1016/j.still.2019.104431
Wetterstedt JAM, Agren GI. 2011. Quality or decomposer efficiency -
Which is most important in the temperature response of litter
decomposition? A modelling study using the GLUE methodology.Biogeosciences 8 : 477–487. DOI: 10.5194/bg-8-477-2011
White D, Stair J, Ringelberg D. 1996. Quantitative comparisons ofin situ
microbial biodiversity by signature biomarker analysis. Journal of
Industrial Microbiology & Biotechnology 17 : 185–196. DOI:
10.1007/bf01574692
Widdig M, Schleuss PM, Biederman LA, Borer ET, Crawley MJ, Kirkman KP,
Seabloom EW, Wragg PD, Spohn M. 2020. Microbial carbon use efficiency in
grassland soils subjected to nitrogen and phosphorus additions.Soil Biology and Biochemistry 146 : 107815. DOI:
10.1016/j.soilbio.2020.107815
Willers C, Jansen van Rensburg PJ, Claassens S. 2015. Phospholipid fatty
acid profiling of microbial communities-a review of interpretations and
recent applications. Journal of Applied Microbiology119 : 1207–1218. DOI: 10.1111/jam.12902
Witzgall K, Vidal A, Schubert DI, Höschen C, Schweizer SA, Buegger F,
Pouteau V, Chenu C, Mueller CW. 2021. Particulate organic matter as a
functional soil component for persistent soil organic carbon.Nature communications 12 : 4115. DOI:
10.1038/s41467-021-24192-8
Yang H, Wu G, Mo P, Chen S, Wang S, Xiao Y, Ma H ang, Wen T, Guo X, Fan
G. 2020a. The combined effects of maize straw mulch and no-tillage on
grain yield and water and nitrogen use efficiency of dry-land winter
wheat (Triticum aestivum L.). Soil and Tillage Research197 . DOI: 10.1016/j.still.2019.104485
Yang Y, Cheng H, Gao H, An S. 2020b. Response and driving factors of
soil microbial diversity related to global nitrogen addition. Land
Degradation and Development 31 : 190–204. DOI:
10.1002/ldr.3439
Ye C, Chen D, Hall SJ, Pan S, Yan X, Bai T, Guo H, Zhang Y, Bai Y, Hu S.
2018. Reconciling multiple impacts of nitrogen enrichment on soil
carbon: plant, microbial and geochemical controls. Ecology
Letters 21 : 1162–1173. DOI: 10.1111/ele.13083
Yuan X, Qin W, Xu H, Zhang Z, Zhou H, Zhu B. 2020. Sensitivity of soil
carbon dynamics to nitrogen and phosphorus enrichment in an alpine
meadow. Soil Biology and Biochemistry 150 : 107984. DOI:
10.1016/j.soilbio.2020.107984
Zhou J, Deng Y, Luo F, He Z, Tu Q, Zhi X. 2010. Functional molecular
ecological networks. mBio 1 : 1–10. DOI:
10.1128/mBio.00169-10
Zhou Z, Wang C, Zheng M, Jiang L, Luo Y. 2017. Patterns and mechanisms
of responses by soil microbial communities to nitrogen addition.Soil Biology and Biochemistry 115 : 433–441. DOI:
10.1016/j.soilbio.2017.09.015
Zhou Z, Zhang H, Yuan Z, Gong R. 2020. The nutrient release rate
accounts for the effect of organic matter type on soil microbial carbon
use efficiency of a Pinus tabulaeformis forest in northern China.Journal of Soils and Sediments 20 : 352–364. DOI:
10.1007/s11368-019-02423-2Table 1 Soil physical and chemical properties in 0-25 cm layer
in 2003.