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Abstract

In this study we consider the inverse problem of determining the nonlinear right-hand side of a
quasi-linear parabolic equation and prove a uniqueness theorem. Stability estimate for the solution are
obtained. A method of representing the nonlinear right-hand side explicitly is proposed for the special
case.

1 Introduction

Inverse heat source problems have various important applications in engineering and science. A typical
property of this kind of problems is that well-posedness conditions are not always guaranteed such as ex-
istence,uniqueness and stability of their solutions. Particularly, the determination of source terms in the
quasi linear parabolic problem has been extensively explored. For instance, Bushuyev [1] has shown the
uniqueness result for the unknown time-dependent right-hand side with explicitly bounded growth rate de-
termined by one additional �nal measurement. Choulli [2] has considered the determination of a function p
from overspeci�ed data, where the function p appears in an initial-boundary value problem for the equation
ut ��u � pu + f(u) = 0. Dehghan [3] has presented several �nite-di¤erence schemes concerning di¤usion
equation with source control parameter. Lorenzi [5] has studied the stability of an unknown non-linear term
in a parabolic equation in dependence on over speci�ed Cauchy-Dirichlet data prescribed on the parabolic
boundary of the open set under consideration. A uniqueness theorem has been obtained in the semilinear
parabolic equation by Isakov [4]. In this paper,we are interested in reconstruction the right hand side in
a quasi linear parabolic problem. We prove the uniqueness and stability theorem for the inverse source
problem and derive some examples to construct the source term for the special case of quasi linear equation.

2 Main results

We consider the followingsemilinear parabolic for the heat equation:8<: ut = ux + F (x; t; ux); (x; t) 2 
T := (0; L)� (0; T ];
u (x; 0) = u0 (x) ; x 2 (0; L);
u (0; t) = g0 (t) ; u (L; t) = g1 (t) ; t 2 (0; T ];

(1)

where u0; g0; g1 are given functions, and u represents the temperature,. F (x; t; ux) is the nonlinear heat source
term. Solving the equation (1) to �nd the unknown function u under the given parameters u0; g0; g1; F is
called the direct problem. The uniqueness of the semilinear parabolic problem with a nonlocal Dirichlet
boundary condition has been proved in [7]. However, sometimes the heat source term are unknown which
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means the problem is mathematically underdetermined and additional data must be supplied to fully deter-
mine the physical process. In this paper, the overspeci�ed condition is given by the following measurement
data: Z L

0

w (x)u (x; t) dx = h (t) : (2)

Denote the solution of (1) by u(x; t; F ) for a given F (x; t; ux). Then from the additional condition (2), it
follows that the inverse source problem is to solve the following nonlinear integral equationZ L

0

w (x)u (x; t;F ) dx = h (t) :

Like most inverse problems, the inverse heat source problem is also ill-posed, i.e. the existence, uniqueness
and stability of its solution are not always guaranteed. To begin with we prove the uniqueness theorem for
the inverse source problem we assume that F (x; t; ux) is Lipschitz continuous function with respect to ux :

jF (x; t; ux)� F (x; t; vx)j �M jux (x; t)� vx (x; t)j : (3)

The variational formulation of the direct problem (1) for a given F (x; t; ux) as follows:Z L

0

ut'dx+

Z L

0

ux'xdx =

Z L

0

F (x; t; ux)'dx;8' 2 H1
0 (0; L) (4)

u (0; t) = g0 (t) ; u (L; t) = g1 (t) ; t 2 (0; T ];

where u 2 C
�
[0; T ] ; L2 (0; L)

�
\ L1

�
(0; T ) ;H1 (0; L)

�
; ut 2 L2

�
(0; T ) ; L2 (0; L)

�
with the compatibility

conditions u0 (0) = g0 (0) ; u0 (L) = g1 (0) : Next, we give a preparation for the uniqueness and stability result
for the inverse problem.

Assume that fu1 (x; t) ; F (x; t; u1;x)g and fu2 (x; t) ; F (x; t; u2;x)g are two solutions of the inverse problem
(1)� (2) : For the di¤erences z = u1 � u2; �F = F (x; t; u1;x)�F (x; t; u2;x);and �h (t) = h1 (t)� h2 (t) ; the
direct problem (1) implies that 8<: zt = zxx +�F; (x; t) 2 (0; L)� (0; T ];

z (x; 0) = 0; x 2 (0; L);
z (0; t) = z (L; t) = 0; t 2 (0; T ];

(5)

Lemma 1 Let z 2 C
�
[0; T ] ; L2 (0; L)

�
\ L1

�
(0; T ) ;H1

0 (0; L)
�
be a solution of the problem (5) then the

following relation is satis�ed:Z L

0

z2xdx �
Z t

0

�h2ds+
M +

p
L

"

Z t

0

�Z s

0

�h2du

�
e
(M+

p
L)(t�s)
" ds; (6)

where " < 2p
L+1

is a positive constant.

Proof. Choosing ' := zt ��h in (4) we haveZ L

0

zt (zt ��h) dx+
Z L

0

zxztxdx =

Z L

0

�F (zt ��h) dx;

and integrating for any t 2 [0; T ] ;Z t

0

Z L

0

z2t dxdt+
1

2

Z t

0

Z L

0

d

dt

�
z2x
�
dxdt =

Z t

0

Z L

0

�Fztdxdt+

Z t

0

Z L

0

zt�hdxdt�
Z t

0

Z L

0

�F�hdxdt;

using the initial condition of (5) we obtainZ t

0

Z L

0

z2t dxdt+
1

2

Z L

0

z2xdx =

Z t

0

Z L

0

�Fztdxdt+

Z t

0

�h

Z L

0

ztdxdt�
Z t

0

�h

Z L

0

�Fdxdt
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Now we apply the Cauchy -$nvarepsilon $ ineqaulity for the �rst term of right hand side and the Hölder
inequality for the other two terms of the right hand side we haveZ t

0

Z L

0

z2t dxdt+
1

2

Z L

0

z2xdx �
1

2"

Z t

0

Z L

0

�F 2dxdt+
"

2

Z t

0

Z L

0

z2t dxdt

+

�Z t

0

�h2dt

�1=20@Z t

0

 Z L

0

ztdx

!2
dt

1A1=2

+

�Z t

0

�h2dt

�1=20@Z t

0

 Z L

0

�Fdx

!2
dt

1A1=2

(7)

Note that  Z L

0

ztdx

!2
�
 Z L

0

dx

! Z L

0

z2t dx

!
= L

 Z L

0

z2t dx

!
 Z L

0

�Fdx

!2
�
 Z L

0

dx

! Z L

0

�F 2dx

!
= L

 Z L

0

�F 2dx

!

and from the Lipschitz property of F
�F 2 �M2z2x

using these facts in (7) we obtainZ t

0

Z L

0

z2t dxdt+
1

2

Z L

0

z2xdx �
M

2"

Z t

0

Z L

0

z2xdxdt+
"

2

Z t

0

Z L

0

z2t dxdt

+
p
L

�Z t

0

�h2dt

�1=2 Z t

0

Z L

0

z2t dxdt

!1=2
+
p
L

�Z t

0

�h2dt

�1=2 Z t

0

Z L

0

z2xdxdt

!1=2
Applying the Cauchy-" ineqaulity for the last two terms of the right hand side of the above inequality with
" < 2p

L+1
we have

1

2

Z L

0

z2xdx �
M +

p
L

2"

Z t

0

Z L

0

z2xdxdt+

p
L

2

�
"+ "�1

� Z t

0

�h2dt. (8)

Now using the Gronwall inequality

Z L

0

z2xdx �
Z t

0

�h2ds+
M +

p
L

"

Z t

0

�Z s

0

�h2du

�
exp

0@
�
M +

p
L
�
(t� s)

"

1A ds

which is the required result.

Theorem 2 Let z 2 C
�
[0; T ] ; L2 (0; L)

�
\ L1

�
(0; T ) ;H1

0 (0; L)
�
be a solution of the problem (5) and

F (x; t; ux) satisfy (3). It follows that if h1 (t) = h2 (t) ;8t 2 [0; T ] then F (x; t; u1;x) = F (x; t; u2;x) and
u1 (x; t) = u2 (x; t) :

Proof. Since �h = 0; from the inequality (6) we haveZ L

0

z2xdx = 0

which implies z (x; t) = � (t) : Applying the boundary conditions of (5) we conclude � (t) = 0 providing
u1 = u2 and u1;x = u2;x: From assumtion (3) we have F (x; t; u1;x) = F (x; t; u2;x) :

Next theorem describes the stability of the inverse problem.
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Theorem 3 Let z 2 C
�
[0; T ] ; L2 (0; L)

�
\ L1

�
(0; T ) ;H1

0 (0; L)
�
be a solution of the problem (5) and

F (x; t; ux) satisfy (3). Then the following stability estimate holdsZ L

0

(F (x; t; u1;x)� F (x; t; u2;x))2 dx �
M2L2

2

Z t

0

�h2ds

+
M2L2

�
M +

p
L
�

2"

Z t

0

�Z s

0

�h2du

�
exp

0@
�
M +

p
L
�
(t� s)

"

1A ds

Proof. Using (3) we haveZ L

0

(F (x; t; u1;x)� F (x; t; u2;x))2 dx �M2

Z L

0

z2 (x; t) dx:

Applying Poincare inequality we obtainZ L

0

(F (x; t; u1;x)� F (x; t; u2;x))2 dx �
M2L2

2

Z L

0

z2x (x; t) dx

and from the inequality (6) we have the required result.

3 Structure of the source function

Our interest in the present section is studying reconstruction of the source function, explicitly. For simplicity,
we set F (x; t; ux) := f (t)u2x (x; t) : The analytical solution of (1) is given by,[6]:

u (x; t) = ' (t)x2 +  (t)x+ � (t) (9)

where ' (t) ;  (t) and � (t) determined by solving the following system of �rst-order ordinary di¤erential
equations with variable coe¢ cients: 8<:

'0 (t) = 4f (t)'2 (t) ;
 0 (t) = 4f (t)' (t) (t) ;

�0 (t) = 2' (t) + f (t) 2 (t) :
(10)

Using the boundary condition of (1) we have

g0 (t) = � (t) ; (11)

 (t) =
g1 (t)� g0 (t)

L
� L' (t) : (12)

Next employing the measurement data (2) and parabolic equation (1) we obtainZ L

0

w (x)
�
uxx + f (t)u

2
x

�
dx = h0 (t) ;

which implies

f (t) =
h0 (t)�

R L
0
w (x)uxx (x; t) dxR L

0
w (x)u2x (x; t) dx

:

From (9) ; putting ux = 2x' (t) +  (t) ; uxx = 2' (t) in the above equality we have

f (t) =
h0 (t)� 2' (t)

R L
0
w (x) dx

4'2 (t)
R L
0
x2w (x) dx+ 4' (t) (t)

R L
0
xw (x) dx+  2 (t)

R L
0
w (x) dx

:
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Substituting  (t) from (12) into the above equality we obtain the explicit formulae to construct the function
f (t) in the semilinear parabolic equation:

f (t) =
h0 (t)� 2A3' (t)

4A1'2 (t) + 4A2' (t)
h
g1(t)�g0(t)

L � L' (t)
i
+A3

h
g1(t)�g0(t)

L � L' (t)
i2 ; (13)

where

A1 =

Z L

0

x2w (x) dx; A2 =

Z L

0

xw (x) dx; A3 =

Z L

0

w (x) dx: (14)

Now let us �nd the function ' (t) : Using the measurement data (2) and the solution (9) we have

h (t) = ' (t)

Z L

0

w (x)x2dx+  (t)

Z L

0

w (x)xdx+ � (t)

Z L

0

w (x) dx;

considering (11) and (12) the function ' (t) is obtained as follows:

' (t) =
h (t)�

h
g1(t)�g0(t)

L

i
A2 � g0 (t)A3

A1 � LA2
: (15)

Substituting this ' (t) value in (15) into the (13) we have the explicit formuale for f (t).

Example 4 As the �rst example, let us give the following data for the inverse source problem (1)� (2) :

h (t) =
L4

4 (1 + t)
+ (1 + t) exp (�t) L

3

3
+ L2 ln (1 + t) +

L2e�2t

64

�
4t3 + 14t2 + 18t+ 9

�
u (x; 0) = x2 + x+

9

32

g0 (t) = 2 ln (t+ 1) +
1

32
e�2t

�
4t3 + 14t2 + 18t+ 9

�
g1 (t) = 2 ln (t+ 1) +

1

32
e�2t

�
4t3 + 14t2 + 18t+ 9

�
+

L2

t+ 1
+ Le�t (t+ 1)

Choosing w (x) = x, from (14) and (15) it can be easily seen that

' (t) =
1

1 + t

and from (13) f (t) is obtained as:

f (t) = � t
4
:

Example 5 For the second example let us consider the following data for the inverse source problem (1)�
(2) :

h (t) =
32�2L+ 8�2L2 + �2L3 � 4L3 + 4�2L sin t

4�3 (1 + cos t)

u (x; 0) =
1

8
x2 + x+ 2

g0 (t) =
sin t+ 8

2 (cos t+ 1)

g1 (t) =
L2 + 8L+ 2 sin t+ 16

4 (cos t+ 1)
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Choosing w (x) = sin �xL , from (14) and (15) computations show that

' (t) =
1

4 (1 + cos t)

and from (13) f (t) is obtained as:
f (t) = sin t:

Example 6 For the last example we have the following data for the inverse source problem (1)� (2) :

h (t) =
L3et

12
+
L2et

2
+
3Let

2

u (x; 0) =
1

4
x2 + x+

3

2

g0 (t) =
3

2
et

g1 (t) =
1

4
et
�
L2 + 4L+ 6

�
Choosing w (x) = 1, from (14) and (15) we easily obtain that

' (t) =
et

4

and from (13) f (t) is obtained as:
f (t) = e�t:

4 The �nite di¤erence schemes

In order to solve problem (1) numerically, we need the linearization of the nonlinear terms:8<: u
(k)
t = u

(k)
xx + F (x; t; u

(k�1)
x ); (x; t) 2 
T := (0; L)� (0; T ];

u(k) (x; 0) = u0 (x) ; x 2 (0; L);
u(k) (0; t) = g0 (t) ; u

(k) (L; t) = g1 (t) ; t 2 (0; T ];
(16)

For each iteration k; employing the transformation u(k) (x; t) = v (x; t) ; F (x; t; u
(k�1)
x ) = F (x; t) we obtain

the following linear problem:8<: vt = vxx + F (x; t) ; (x; t) 2 
T := (0; L)� (0; T ];
v (x; 0) = u0 (x) ; x 2 (0; L);
v (0; t) = g0 (t) ; v (L; t) = g1 (t) ; t 2 (0; T ];

(17)

The domain (0; L)� [0; T ] is divided into an M �N mesh with the spatial step size h = 1=M in x direction
and the time step size k = T=N , respectively. Grid points (xi; tn) are de�ned

xi = ih; i = 0; 1; 2; :::;M

tn = nk; n = 0; 1; 2; :::; N

in which M and N are integers. The notations vni ; F
n

i are used for the �nite di¤erence approximations of
v(ih; nk); F (ih; nk) .Using the initial condition we get

v0i = u0 (xi) ; i = 0; 1; 2; :::;M

and boundary conditions

vn+10 = g0 (tn+1) ; v
n+1
M = g1 (tn+1) ; n = 0; 1; 2; :::; N
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A direct simulation to the derivation of the one-dimensional classical forward time centred space (FTCS)
�nite di¤erence scheme leads to the following di¤erence equation for (17)

vn+1i = vni + s
�
vni�1 � 2vni + vni�1

�
+ kF

n

i

for 1 � i �M � 1; 0 � n � N � 1 where s = k=h2: The range of stability for this procedure is 0 < s � 1=2:

The modifîed equivalent partial di¤erential equation of this method shows that the Equation (17) has a
truncation error which is O

�
h2
�
, except for s = 1=6, where it is O

�
h4
�
. So there is an optimal case, s = 1=6

when the formula (17) is fourth-order accurate.

Now, we show some numerical experiments for the reconstruction F (x; t; ux) in problem (1).

Example 7 In the �rst numerical experiment we take the exact solution

u (x; t) =
�
t3 + 1

�
cosx; (x:t) 2

�
0;
3�

2

�
� (0; 2)

F (x; t; ux) = 3t2 cosx+ (cosx)
�
t3 + 1

�
+ (sinx)

�
t3 + 1

�| {z }
�ux

u0 (x) = cosx

g0 (t) = t3 + 1; g1 (t) = 0

w (x) = 1Z 3�
2

0

�
t3 + 1

�
cosxdx

Observe that the measurement data :
h (t) = �t3 � 1

We take the noisy data h� (t) of the following form:

h� (t) = h (t) + �
randn (size (h (t)))

norm (randn (size (h (t))))

Here � is a noise level parameter and "randn" denotes a random number generated by the MATLAB func-
tion. The exact solutions F (x; t) with the numerical solutions for various values of the noisy level � 2
f4%; 8%g :N =M = 40 are shown in the below Figures. We use the stopping criteria as



u(k) (x; t)� u(k�1) (x; t)

 <
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� , for noisy free data � = 10�6

In the following Table we present some numerical results for the stopping iteration numbers and the percentage
error in F (x; t; ux) for various amounts of N;M . Here we use the symbol it as the stopping iteration

numbers eF (%) :=
kF� eFk

C(
T )
kFkC(
T )

�100 as the percentage error in F (x; t; ux) : eF (x; t; ux) is approximate value
of F (x; t; ux) :
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N �M � it eF (%)
20� 20 0 51 0:96%
20� 20 4% 81 1:91%
20� 20 8% 1339 2:89%
30� 30 0 52 0:69%
30� 30 4% 63 1:26%
30� 30 8% 101 1:56%
40� 40 0 81 0:56%
40� 40 4% 101 1:14%
40� 40 8% 139 2:89%

Table 1: Iteration numbers and errors with various noisy levels and N �M for Example 1.
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