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Abstract 16 
The term “haplotype block” is commonly used in the developing field of haplotype-based 17 
inference methods. We argue that the term should be defined based on the structure of the 18 
Ancestral Recombination Graph (ARG), which contains complete information on the ancestry of 19 
a sample. We use simulated examples to demonstrate key features of the relation between 20 
haplotype blocks and ancestral structure, emphasising the stochasticity of the processes that 21 
generate them. Even the simplest cases of neutrality or of a “hard” selective sweep produce a rich 22 
structure, which is missed by commonly used statistics. We highlight a number of novel methods 23 
for inferring haplotype structure as full ARG, or as a sequence of trees. While some of these new 24 
methods are computationally efficient, they still lack features to aid exploration of the haplotype 25 
blocks, as we define them, thus calling for the development of new methods. Understanding and 26 
applying the concept of the haplotype block will be essential to fully exploit long and linked-read 27 
sequencing technologies. 28 
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Introduction 33 

One of the breakthroughs of long and linked-read sequencing technologies is the 34 
emergence of new methods for obtaining reliable haplotype information for large data sets (Meier 35 
et al., 2021). Although most studies of genome-wide variation still focus on SNP data, we are 36 
approaching the stage where population-scale haplotype information will be widely available for 37 
organisms across the tree of life. In light of this shift from site-based to haplotype-based inference, 38 
this article considers one of the fundamental concepts for haplotype-based inference—the 39 
definition of the haplotype block.  40 

“Haplotype” and “Haplotype block” are widely used terms in evolutionary genetics, and 41 
have increased in importance across many disciplines (Delaneau et al., 2019; International 42 
HapMap Consortium, 2005; Leitwein et al., 2020). An important, but often overlooked fact, is that 43 
populations evolve through changing frequencies of blocks of the genome, rather than of 44 
individual sites. Therefore, we should be most interested in understanding the trajectories of the 45 
underlying haplotypes, yet these are not fully reflected by the SNPs that we see (Castro et al., 46 
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2019; Clark, 2004). Thus, disentangling the evolutionary history underlying genomic patterns can 47 
be challenging using solely site-based statistics. For example, while whole-genome scans for 48 
signatures of selection can reveal loci that affect fitness (Poelstra et al., 2014; Tavares et al., 2018), 49 
it is hard to determine the actual causes of these signals (Burri, 2017; Grossman et al., 2010; 50 
Ravinet et al., 2017; Rockman, 2012; Stankowski et al., 2019; Tavares et al., 2018; Wolf & 51 
Ellegren, 2017). For example, shifts in polygenic scores from genome-wide association studies 52 
(GWAS) can be misinterpreted to be signals of selection instead of being artifacts of population 53 
structure (Berg et al., 2019; Novembre & Barton, 2018; Sella & Barton, 2019). Similarly, methods 54 
for estimating population density and gene flow struggle to distinguish among a virtually infinite 55 
number of possible population structures (Richardson et al., 2016; Sousa et al., 2011; Whitlock & 56 
Mccauley, 1999). 57 

By accounting for haplotype structure, it should be possible to make inferences more 58 
accurate and more efficient. Haplotypes carry information not only from mutation but also from 59 
recombination, which provides an additional ‘clock’ that can help to reveal past events. Primarily 60 
for these reasons, there has been a steady increase in analytic methods that aim to infer haplotype 61 
structure from sequence data, or that exploit haplotype structure to make inferences about 62 
selection, gene flow, and population structure.  63 

Although there has been significant progress toward the broader use of  haplotype 64 
information in empirical studies, much of this work is fragmented across many subfields, including 65 
evolutionary and conservation genetics (Leitwein et al., 2020), human and medical genetics 66 
(Crawford & Nickerson, 2005), and animal and plant breeding (Bhat et al., 2021; Mészáros et al., 67 
2021). As a result, there is often little consensus on how haplotype blocks are defined. More 68 
practically, this disparity complicates comparison of results, and may preclude insights that may 69 
otherwise arise by combining different perspectives. 70 

The main goal of this paper is to critically examine the fundamental definition of the 71 
haplotype block. Specifically, we propose a definition of haplotype block based on the full 72 
genealogy, represented by the Ancestral Recombination Graph (ARG). Using simulations of 73 
simple but general scenarios, we explore how the characteristics of haplotype blocks relate to the 74 
origin of the samples and segregating SNP variation. We then discuss how the proposed definition 75 
relates to practical inference methods and their applications in large-scale population studies. We 76 
consider how different methods make use of haplotype information and infer haplotype blocks, 77 
their underlying assumptions and respective limitations. 78 
 79 
Defining haplotype blocks 80 

A haplotype has a clear definition: it is simply a haploid genotype (for example, the 81 
genotype of the sperm or egg). In contrast, the term “haplotype block" is used widely, but in many 82 
different ways (Al Bkhetan et al., 2019; Clark, 2004; International HapMap Consortium, 2005; 83 
Schwartz et al., 2003; Taliun et al., 2014; Zhang et al., 2002). Our understanding of this term must 84 
depend on the processes of coalescence and recombination that generate haplotype structure. With 85 
this in mind, we contrast alternative definitions, and settle on one, which is based on branches in 86 
the underlying genealogy.  87 
  In sequence data, we usually observe the diploid genotypes; resolving them into the two 88 
haploid genotypes is termed "phasing". With n heterozygous sites, there are 2n possible pairs of 89 
haplotypes - more than a million with just n = 20. However, there are usually just a few haplotypes, 90 
due to linkage disequilibrium (LD) across polymorphic sites, which often produces strong 91 
haplotype structure. This allows “statistical phasing”, through which one reconciles diploid 92 
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genotypes into the underlying haplotype pair (Browning & Browning, 2011). Looking across 93 
individuals in larger genotype panels, the more frequent haplotypes often appear as stretches of 94 
shared, “banded” blocks of SNPs (Fig. 1A) (Patil et al., 2001). This can be especially striking when 95 
different haplotypes become fixed across populations, which can produce block-like patterns in 96 
data even when individual haplotypes cannot be observed (Fig. 1B); in some cases, the outstanding 97 
regions have been referred to as ‘haploblocks’ (Todesco et al., 2020). 98 
 99 
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 122 
Figure 1. Block-like patterns in empirical data. Block-like patterns in phased DNA sequences 123 
from Mimulus auranticus within the gene MaMyb2 (Stankowski & Streisfeld, 2015). Rows show 124 
24 individual haplotypes. Each column is a site with yellow and blue squares representing ancestral 125 
and derived sites, respectively. (B) An Fst Scan across Helilconius chromosome 2 reveals a large 126 
plateau of differentiation on chromosome 2 between races of H. erato (Meier et al., 2021). This 127 
large block-like pattern coincides with a chromosomal inversion, the boundaries of which are 128 
illustrated by the dashed line. 129 
 130 

Whilst a blocklike structure may be apparent within empirical genetic data, we argue here 131 
that there should be a more fundamental definition of haplotype block that is based on the true 132 
ancestry of the sequences, independent of the mutations that generated observable SNPs. Thus, we 133 
separate the definition of haplotype blocks from the estimation of these blocks from actual data.  134 
Haplotype blocks can be defined in a more concrete way via the classical concept of identity by 135 
descent (Carmi et al., 2013; Hartl et al., 1997; Thompson, 2013). Imagine an initial population, 136 
where each founder genome is labelled by a different colour. At some later time, each region of 137 
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the genome must derive from one or other founder, and so will appear as a mosaic of blocks of 138 
different colours, each corresponding to their ancestors. This naturally defines blocks that descend 139 
from a given set of founders (Fig. 2). Fisher (Fisher, 1954) showed that the junctions between IBD 140 
blocks segregate like Mendelian variants, and used this idea to understand the distribution of runs 141 
of homozygosity. In artificial populations, we can now sequence the founders, and thus directly 142 
observe blocks defined in this way (Lundberg et al., 2017; Otte & Schlötterer, 2021; Wallberg et 143 
al., 2017). Moreover, if we disregard new mutations, the evolutionary processes subsequent to the 144 
founding of the population are entirely described by the block structure. 145 
 146 

Figure 2. Haplotype blocks defined through identity by descent (IBD). Panels A and B show the 147 
same 11 hypothetical DNA sequences depicted as horizontal lines. The trees on the left and right 148 
sides show the genealogy for the set of sequences on either side of a recombination event (indicated 149 
by the vertical black line); the light grey branch in both trees shows the effect of recombination in the 150 
genealogy. Mutations are shown as symbols that correspond to the branches upon which they arose. 151 
Under the IBD definition, haplotype blocks can be defined based on DNA segments that derive from 152 
a given set of ancestors, shown here by the coloured sections of branch and DNA sequence. The only 153 
difference between panels A and B is that these ancestors are defined at two different arbitrary time 154 
points, Ta and Tb, yielding different haplotype structure. 155 
   156 
 157 

Identity-by-descent is defined with respect to a specific ancestral reference population. 158 
However, when we deal with natural populations, there is no obvious reference population, so the 159 
block structure will vary depending on our arbitrary choice of founders at an arbitrary time point 160 
(Figure 2). To eliminate this subjectivity , we will base our definition on the full ancestry of the 161 
sampled genomes, namely, on the ancestral recombination graph (ARG) (Hudson, 1983). The 162 
ARG consists of the segments of past genomes that are ancestral to our sample; looking back in 163 
time, it is generated by a series of coalescence and of recombination events (Box 1). We emphasise 164 
that these are real events: coalescence occurs when an actual individual leaves two or more 165 
offspring that are each ancestral to our sample, and recombination occurs between the two haploid 166 
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parent genomes during meiosis in an ancestral individual. Together, these processes are embedded 167 
in the ARG (Fig. B1). 168 
 169 
______________________________________________________________________________ 170 
 171 
Box 1: Ancestral Recombination Graph (ARG) 172 
The ARG describes the complete ancestry of a sample of genomes through a series of real 173 
coalescence and recombination events  (Griffiths & Marjoram, 1997; Hudson, 1983). At any given 174 
site on the genome, the relationship can be described through a genealogy (Kingman, 1982); all 175 
contemporary samples coalesce and eventually trace back to one single ancestor. Moving along 176 
the genome, the relationship inevitably changes due to recombination. This leads to a series of 177 
observable genealogies along the genome (Fig B1A), which are embedded in a single structure - 178 
the ARG (Fig B1B).  179 

The full ARG (Fig B1B) is a graph structure that depicts individuals (both ancestral and 180 
extant), lineage relationships in time. Each node in the ARG represents a real coalescence or 181 
recombination event, whilst branches represent the ancestry of a particular genomic segment, 182 
along a genetic lineage (depicted by coloured/grey segment for inherited/non-inherited genetic 183 
material in Fig B1B). Altogether, an ARG describes the entire ancestral history - each 184 
recombination and each coalescence event, which imply the genealogy for each non-recombined 185 
genomic block. Crucially, the ARG describes ancestry but not allelic state, so is independent of all 186 
the mutations that lead to the observed polymorphism in the present sample.  187 

It is important to note that the full ARG (Fig B1B) contains more information than the 188 
series of tree sequences along the genome (Fig B1A). First, a series of tree sequences lack 189 
information on the timing of recombination events, unless these are separately stored. Second, 190 
while some recombination events lead to observable changes in genealogical trees, others might 191 
not. Figure B1A depicts such cases - some recombination events might not change the tree 192 
topologies at all (trees ii and iv are exactly the same), whereas others might only lead to temporal 193 
changes in coalescence nodes (tree i differs from trees ii and iv by 1 node position, but all have the 194 
same topology). Therefore, while there are 4 non-recombining genomic regions, there are only 2 195 
unique tree topologies (trees i, ii and iv have the same topology) and 3 distinct trees (trees ii and 196 
iv are exactly the same). Some coalescence events can also be entirely invisible and not be 197 
represented in any of the individual trees – coalescence at t2 in Fig B1B is not represented in the 198 
series of trees in Fig B1A. Furthermore, two disjunct blocks of the genome can be inherited from 199 
the same ancestor, so that a unique coalescence event (e.g. marked by * in Fig B1A) can generate 200 
disjunct blocks of ancestry. It should also be noted that although Fig B1 shows the inevitable 201 
coalescence of the whole genome into a single common ancestor, this typically takes an 202 
astronomically long time: each non-recombining region of the genome coalesces at various time 203 
points, and the single lineages ancestral to each region then take an extremely long time to coalesce 204 
in one common ancestor, in a process which is in principle unobservable.  205 

Since the ARG contains full information about the genealogy of the sample, it is in theory 206 
sufficient to infer any evolutionary process: the ARG necessarily gives more information than 207 
commonly used statistics like SFS, Fst, EHH, which are low-dimensional summaries of the ARG 208 
(Ralph et al., 2020). Therefore, the ARG should serve as the foundation for developing new 209 
methodologies. However, we note that whilst the ARG is a sufficient statistic, it remains an open 210 
question how much the extra information it gives can improve inference: the intrinsic variability 211 
of the evolutionary process sets a bound on the accuracy of our inferences. 212 
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Figure B1. Relationship between 213 
Genealogies and the ARG. (A) 214 
Genealogical trees along the genome, 215 
corresponding to the ARG - each tree 216 
describes the ancestral relationship for 217 
each of the 4 non-recombined regions. c1, 218 
c2, ..., c6 denote time points for each 219 
coalescence event. Trees can either 220 
change, have the same topology, or 221 
marginally differ by only temporal positions 222 
of coalescence nodes. Asterisk (*) 223 
denotes a unique coalescence event that 224 
is ancestral to disjunct genomic regions. 225 
(B) Full representation of Ancestral 226 
Recombination Graph (ARG) - Tracing 227 
back ancestry of four genomes, there is 228 
either recombination splitting lineages or 229 
coalescence merging lineages. Inherited 230 
ancestral genomic regions are coloured 231 
corresponding to the contemporary 232 
genomes. Recombination is represented 233 
by splitting the genome into two; where 234 
grey denotes non-ancestral genomic 235 
region. Coalescence is represented by two 236 

genomes merging, with inherited genomic regions denoted by mixed colours. There are 3 237 
recombination and 6 coalescence events in the full ancestral history of the four genomes. c1, c2, 238 
..., c6 denotes time points for each coalescence event. r1, r2, r3 denotes time points for each 239 
recombination event.  240 
______________________________________________________________________________ 241 

 242 
In large populations, and over long timescales, the ARG is approximated by the coalescent 243 

with recombination; in the simplest case, the rate of coalescence is the inverse of the effective 244 
(haploid) population size, and the rate of recombination is just the rate of crossover (Hudson 1983, 245 
Griffiths, Marjoram 1997). Importantly, the coalescent does not describe the entire genealogical 246 
relationship of the whole population. Rather, it summarises how the subset of sampled individuals 247 
are related to each other. Spatial and genetic structure can also be included: ancestral lineages carry 248 
a particular set of selected alleles (i.e., a particular genetic background), and are at a particular 249 
spatial location. Tracing back in time, lineages move between backgrounds by recombination, and 250 
between locations by migration. 251 
  Informed by the ARG, we could define a haplotype block as a contiguous region of the 252 
genome in which all sites share the same genealogy, i.e. a local gene tree. However, adjacent 253 
genealogies differ by a single recombination event, and so blocks defined in this way will be 254 
vanishingly small (especially with large samples) and will usually differ trivially (see A in Fig. 3 255 
and Fig. B1A). Moreover, as samples get larger, blocks defined this way will become so small as 256 
to be impractical. 257 
  Instead, we define a haplotype block as the set of genomic regions that descend from a 258 
particular branch in the ARG; this branch is defined by a unique coalescence event. Crucially, such 259 
regions should carry a shared set of derived SNP alleles that arise on the focal branch that just 260 
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precedes the coalescence event. With enough SNPs, the haplotype block is revealed directly by 261 
these shared SNPs. 262 
 263 
Implications of the definition 264 

We next elaborate on the definition and illustrate the relationships between genealogies, 265 
SNPs and haplotype blocks using example simulations. Figure 3 shows a neutral example 266 
capturing the ancestry of 10 genomes, sampled from a population of 100 haploid individuals, 267 
across 10cM of the genetic map (Supplement 1). SNPs were generated by infinite-sites mutation 268 
with mutation at twice the rate of recombination. This simulation is general, because time and map 269 
distance both scale with population size (Hudson, 1990). Thus, the 268 generations taken for every 270 
part of the simulated genome to coalesce in a single common ancestor scales to 2.68N, and the 271 
simulated map length scales to 10/N. Thus rescaled, this simulation shows a generic pattern, 272 
independent of population size.  273 

The central panel of Fig. 3 (middle panel, ‘SNPs’) shows the distribution of SNPs on the 274 
ten sampled genomes, coloured according to the branch on which they arose (we illustrate 8 275 
branches with four or more SNPs each, out of 55 unique branches). The genome is divided into 34 276 
non-recombining intervals, but it contains only 24 different genealogies, because some longer 277 
genealogies were split into multiple intervals by intervening recombination events (Fig. 3; top 278 
panel, ‘Trees’). This illustrates how recombination interacts with the coalescent (also see Fig. B1 279 
for schematic representation of the process). If we disregard branch lengths, the trees can be further 280 
simplified into 15 distinct topologies shown in the top panel Fig. 3 (trees and corresponding 281 
regions on the genome labelled a - o). For illustration, we show one pair of genealogies that have 282 
the same topology, but differ in depth (k1 and k2), B in Fig. 3).   283 

The coloured blocks shown in the lower panel of Fig. 3 (‘Blocks’) illustrate the extent of 284 
each branch along the genome, and through time. The mutations arising on each branch are 285 
projected onto the block at the time and genomic position that they arise. The number of SNPs 286 
arising on each branch is Poisson distributed, with the expected number proportional to the area 287 
of the block; this area is the sum of the genomic lengths that each ancestor carries, and that is 288 
ancestral to the coalescence event that defines the branch. We emphasise that this is a random 289 
process, so some regions may not carry any informative SNPs. For example, though branch i (light 290 
blue) is relatively well covered by 9 SNPs, none of them fall in the shallow region to the left (C in 291 
Fig. 3). Similarly, branch ii has only 6 SNPs, none of which happen to fall in the rightmost region 292 
(D). Ultimately, the distribution of SNPs sets a limit on what can be inferred from sequence data; 293 
branches without mutations will be invisible to us, and our ability to infer the length of a block 294 
depends entirely on where mutations happen to fall.  295 

Each branch coincides with a specific coalescence event that brings together a specific set 296 
of lineages: in other words, branches are defined by both the coalescence event and the set of 297 
lineages. A single coalescence, i.e., a single ancestor, may generate multiple branches: the two 298 
genomes that come together in that event may carry a mosaic of ancestral material, in several 299 
combinations. A single coalescence event may even generate a branch that carries disjunct 300 
segments of the genome, ancestral to the same set of descendants (see the schematic representation 301 
on the Fig. B1). This did not occur for any of the focal branches in the example of Fig. 3, but is 302 
not unlikely, especially in a selective sweep. Conversely, two different coalescence events may 303 
happen to bring together the same sets of lineages; their branches would be hard to distinguish. 304 

 305 
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 306 
Figure 3. The relationship between trees (top), SNPs (middle), and haplotype blocks (bottom) in the 307 
neutral simulation (see main text for simulation details). The trees (a - o) show all of the unique topologies 308 
that coincide with the genomic spans shown in the central panel (also labelled a - o). The 8 branches that 309 
we focus on in this example are coloured and labelled i – vii.  (A) Two neighbouring topologies that differ 310 
only slightly due to recombination. (B) An example of two trees (k1 and k2) that have the same topologies 311 
but different branch lengths. The central panel shows 10 haploid genomes (labelled 1 – 10, top to bottom, 312 
coinciding with the tips of the trees). The SNPs that arose on the 8 focal branches are indicated by the 313 
coloured circles. The lower panel (Blocks) shows the haplotype blocks for each focal branch. The coloured 314 
block in each panel is the focal branch, with the other 7 blocks shown in grey. The mutations shown in the 315 
central panel are projected onto each block (black circles) at the genomic location and time that they arose. 316 
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They are also plotted onto the genomic position axis to make the connection with the centre panel mode 317 
explicit. Similarly, the numbers at the bottom right corner indicate which DNA sequences the mutations are 318 
associated with. (C & D) Examples of regions of blocks that, by chance, are revealed by mutations arising 319 
on the corresponding branch. (E & F) Examples of nested blocks, where the ancestral block is highlighted 320 
with a coloured outline. 321 

 322 
Because each branch is generated by a single coalescence, it begins at the same time across 323 

its whole extent (so, branches are bounded by a horizontal line at their base in the lower panel of 324 
Fig. 3). Recombination events split distal segments, thus limiting the span of the block. Tracing 325 
back in time, branches must end in coalescence events that combine them with yet more 326 
descendants. These may occur at different times if there have been recombination events. 327 

Haplotype blocks overlap in their genomic extent, since multiple lineages exist at any time 328 
after the MRCA; this is shown by the overlapping 3-D blocks in Fig. 3 (‘Blocks’). Haplotype 329 
blocks will also overlap in the genome (but not in time) when branches are nested in the genealogy. 330 
For example, branch ii (orange), which is ancestral to genomes 4 and 8 descends in the middle part 331 
of the genome from branch i (blue), which is ancestral to genomes 4, 7, 8 and 10. Thus, branch i 332 
is nested above branch ii in Fig. 3 (see also F for another example of nesting).  333 

If we start at a particular point on the map, and work along the genome, at some point a 334 
branch will be split by a recombination event; the new lineage will trace back and eventually 335 
coalesce, most likely ending the branch. The rate of recombination is proportional to the branch 336 
length, and so we expect that if a branch traces back deep into time, it will span a short region of 337 
the genome. Conversely, shallow branches will extend over a longer genomic span. This pattern 338 
is seen clearly in Fig. 3 (lower panel, ‘Blocks’), where branches consist of segments that are either 339 
deep and narrow, or shallow and wide. However, this relationship is not precisely inverse; if it 340 
were, blocks would tend to have the same area, whether they were deep or shallow, and hence 341 
would carry similar numbers of SNPs. In simulation, deep branches tend to be wider than expected 342 
from the naive argument given here (Supplement 1), and so most SNPs are on a few deep branches. 343 

Note that under the coalescent process, large numbers of sampled lineages rapidly coalesce 344 
down to a few, which are then likely to trace back deep into the genealogy. Thus, in a given region 345 
of the genome a substantial fraction of SNPs will fall on long, deep, branches, whereas the tips of 346 
the genealogy will be hard to resolve. Moreover, in a large sample, it is unlikely that different 347 
coalescence events will bring together exactly the same set of lineages by chance, so that we can 348 
usually identify unique coalescence events as corresponding to unique sets of lineages. 349 

Figure 3 illustrates the simplest case of the standard coalescent with recombination. In 350 
reality, population structure and selection complicate genealogies. For example, in the island 351 
model, lineages either coalesce quickly within a deme, or escape to coalesce much further back in 352 
time. This exaggerates the tendency for genealogies to be dominated by a few long branches 353 
(Wakeley, 2009). Selective sweeps have a somewhat similar effect. In the classic case (Maynard 354 
Smith & Haigh, 1974), all lineages at the selected locus coalesce in the individual that carries the 355 
favoured mutation. Moving out from this locus, recombination frees lineages to coalesce much 356 
further back. 357 

Figure 4 illustrates such a selective sweep (Supplement 2). The sweep greatly reduces 358 
diversity around the selected locus, because all lineages must trace back to the successful mutation 359 
(Fig. 4B, 1); this region of complete coalescence is shown in red; note that it still contains some 360 
diversity, due to mutation subsequent to the sweep. As we move away from the selected locus, 361 
lineages recombine out onto the ancestral background, and coalesce with the rest of the genealogy 362 
much further back (Fig. 4B).  This process can be seen in the time to the MRCA (Fig. 4D), which 363 
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jumps from a low value at the selected locus, through successive recombination events, back to a 364 
time that fluctuates around 4Ne=800 generations, under the standard coalescent. However, the 365 
replicates in the lower panel show that there is considerable variation in this process, which sets a 366 
fundamental limit on our power to detect a sweep and estimate its properties. 367 
 368 

 369 
 370 
Figure 4. The effects of a recent selective sweep on linked genealogies. (A) A mutation with advantage 371 
10% arose in a population of 400 haploid individuals, and swept to fixation in 110 generations, at which 372 
time 20 genomes were sampled; 20cM of the genome is followed back in time, with the selected locus at 373 
the left.; dashed lines (T1 - T4) show times when the favoured allele was in 1 copy, at 10%, at 50%, and at 374 
90% (110, 53, 38, 22 generations back). (B) shows genealogies at positions 0, 1.3cM, 5.3cM, and 20 cM, 375 
branches are coloured in red when on the fitter background, and black when on the ancestral background. 376 
Thus, changes in colour show recombination events that change the genomic background. Note that such 377 
events are unlikely when the allele is near fixation (i.e., at the base of the tree, below the lower dashed 378 
line), and conversely, become common whilst the allele is rare, simply because it will almost always meet 379 
with the opposite background. Before the mutation occurs (i.e., above the upper dashed line) lineages must 380 
either trace back to that mutation (top left) or recombine out into the ancestral background; thus, all lineages 381 
must appear black above the upper dashed line (110 generations back). Note that the disjunct branches in 382 
trees 2 - 4 all coalesce further back in time, but only 200 generations are shown for visibility. (C) shows 383 
SNPs along the 20 sampled genomes. 9 of the most substantial branches are shown. (These have more 384 
than 8 descendants, formed by coalescence more recently than the sweeping mutation, and have areas 385 
>0.5). The red block at the left shows the region linked to the selected locus, which coalesces in a single 386 
common ancestor 69 generations back, just after the sweeping mutation arose. Grey dots show those SNPs 387 
that are not on these 9 highlighted branches. (D) shows the time back to the most recent common ancestry 388 
(TMRCA) along the genome, on a log scale. The bold line shows the example simulated above, whilst the 389 
three grey lines show replicates, generated conditional on the same sweep; the break in the line shows an 390 
area where the TMRCA extends further back than the extent of the y-axis. The dashed line across the plot 391 
corresponds to T1 in panel A.  392 
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At the selected locus, all lineages coalesce in the favoured mutation. Successive 393 
recombinations each free one or a few lineages from the new background, so that the exceptionally 394 
large and recent cluster gradually diminishes in size, until the genealogies follow a close to neutral 395 
distribution. Thus, branches with large numbers of descendants are associated with the sweep, and 396 
can be distinguished by the characteristic sets of SNPs that they carry; nine 9 such branches are 397 
illustrated in Fig. 4C. It remains to be seen whether the rich information contained in the structure 398 
of such branches will help us improve our inferences. 399 
 400 
The definition in practice 401 
Having defined haplotype blocks conceptually, we next consider the problem of inferring 402 
haplotype blocks from empirical datasets. Current sequencing and genotyping technology make it 403 
straight-forward to call SNPs or indel variants, but it remains non-trivial to connect these to the 404 
haplotypes in which they are embedded. For that reason, sophisticated algorithms have been 405 
developed for phasing, genotype imputation and inference of genealogies (Browning & Browning, 406 
2009, 2013; Davies et al., 2016; Howie et al., 2011; Marchini et al., 2007). These tasks all engage 407 
different facets of the same problem, and rely to some extent on haplotype structure. However, 408 
these methods tend to focus on phasing and most stop short of inferring haplotype blocks as we 409 
define them. Given that our definition is rooted in the features of the ARG, we will focus our 410 
discussion around a selection of methods that make active use of the ARG and its approximations. 411 
We will discuss the underlying assumptions of these genealogy-based methods and highlight 412 
where they could be extended in light of our proposed haplotype block definition. Separately, in 413 
Box 2, we also outline classes of simpler methods that use fixed genomic windows or genomic 414 
segments as a proxy of the haplotype block. 415 
 416 
______________________________________________________________________________ 417 
 418 
Box 2: Methods for haplotype detection  419 
Many methods for inferring evolutionary processes make use of haplotype structure. These can be 420 
roughly grouped into three types based on their underlying paradigm: window-based methods, 421 
segment-based methods and tree-based methods. These methods vary in complexity from simple 422 
heuristics to full statistical treatments. Here we discuss window-based and segment-based 423 
methods, but we reserve our discussion of tree-based methods to the main text.  424 

Of the three classes, window-based methods tend to be the simplest, and primarily operate 425 
across sets of individuals. In the simplest form, haplotypes are operationally defined as the set of 426 
alleles observed at the segregating sites within a predefined window of an arbitrary length, say, 50 427 
SNPs or 100 kilobase. Ideally, window sizes should be short enough to minimize spanning 428 
recombination breakpoints. One example is H12, which detects selective sweeps (Garud et al, 429 
2015). In this test, for any given window, haplotypes are rank-ordered by their frequencies; in the 430 
case of a selective sweep at a given locus, we expect the two most common haplotypes (H1 and 431 
H2) to dominate the population. The H12 test features enhanced power to detect selection, especially 432 
under competing sweeps between recurring mutations. However, the test does not attempt to 433 
capture the real haplotype block length and is rather heuristic. Other fixed window-based 434 
applications include ones exploiting local genomic structures, especially ones showing 435 
geographical structure or associated with local adaptation (data-driven clustering/DDC in (Jones 436 
et al., 2012), see also (H. Li & Ralph, 2019; Todesco et al., 2020). While window-based methods 437 
do not explicitly infer or use information of haplotype block length, they sometimes do take the 438 
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genealogical structure into account, e.g., Twisst (Lohse et al., 2016; Martin & Van Belleghem, 439 
2017). Often, the simplicity of window-based methods is also their main appeal in the era of SNP 440 
genotyping. 441 
  Segment-based methods are more sophisticated. They operate primarily on individual 442 
sequences, with the aim to represent haplotypes as a mosaic of segments from a haplotype panel, 443 
often under some version of Li and Stephens algorithm (Box 2). These segments offer a more 444 
realistic model of recombination breakpoints and confer superior power to capture signatures due 445 
to linkage. Extended haplotypes homozygosity (EHH) (Sabeti et al., 2002) is an excellent example 446 
of such segment-based statistics for inferring selection. Along with its derivatives, such as 447 
integrated haplotype score (iHS) (Szpiech & Hernandez, 2014; Voight et al., 2006) and cross-448 
population EHH (XP-EHH) (Sabeti et al., 2007), they have been widely used to detect selection in 449 
many systems (Cao et al., 2011; International HapMap Consortium, 2005). These methods 450 
typically seek to capture the decay of a signal, say, in the extent of haplotype sharing, from an a 451 
priori defined core SNP. More sophisticated methods based on hidden Markov models to infer the 452 
haplotype structure are especially helpful in uncovering admixture and introgression (e.g., 453 
fineSTRUCTURE (Lawson et al., 2012). This allows for the visualization of the haplotype-specific 454 
ancestry and improved fine-scale analysis of population structure that is not obvious from unlinked 455 
markers.  456 
______________________________________________________________________________ 457 
 458 

The full ARG contains information about branches of the genealogy and, in theory, encodes 459 
all the information needed for applying the haplotype block definition to empirical datasets. 460 
Therefore, a direct (but impractical) way to define and analyse haplotype blocks in a dataset would 461 
be to infer the full ARG from the sample of sequences. Nevertheless, as we will soon see below, 462 
the state space of every possible ancestral history of a sample of genomes is effectively infinite, 463 
so inferring the ARG in its full form is intractable. Instead, most practical methods rely on various 464 
trade-offs to simplify the problem. 465 

For direct inference of ARG, ARGweaver (Rasmussen et al., 2014) and its extension 466 
ARGweaver-D (Hubisz et al., 2020) are among the most powerful, and widely used. ARGweaver 467 
solves the infinite state space issue by discretizing time, effectively making the ARG space finite 468 
by limiting recombination and coalescence events within discrete time points. Further, 469 
ARGweaver uses a coalescent-with-recombination model (Sequentially Markov Coalescent, or 470 
SMC; McVean & Cardin 2005; extended by Marjoram and Wall 2006 and McVean & Cardin, 471 
2005) to sample from an ARG distribution. While making inference more tractable, SMC 472 
precludes the inference of disjunct blocks, because only one immediately prior state is considered 473 
as one moves along the genome. Besides these limitations, inference of the “full” ARG is still 474 
computationally expensive. As such, ARGweaver is most suitable for mid-sized datasets on the 475 
order of fifty sequences. 476 

Two recent methods, tsinfer and Relate (Kelleher et al., 2019; Speidel et al., 2019), have 477 
attempted to approximate the ARG in much larger populations with thousands of samples by 478 
focusing on topology (or ‘succinct tree sequences’), rather than a full inference of the ARG. They 479 
do so by representing genomes as a series of tree topologies: Relate as distinct trees; tsinfer as ‘tree 480 
sequences’ connected via ancestral haplotypes. Both achieve this remarkable speed-up by relying 481 
on the Li and Stephens’ hidden Markov model (Li & Stephens, 2003) hidden Markov model (see 482 
Box 2 for further details) to infer local pairwise distances (Relate) or ancestral haplotypes (tsinfer). 483 
As an added advantage, which doubles as an efficient, lossless compression algorithm by indexing 484 
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population genomic variation as SNPs-on-trees as opposed to the traditional (and highly 485 
redundant) SNP-by-individual matrix (implemented as a tskit library (Kelleher et al., 2019). Put 486 
in another way, the tree sequence encoding can fully capture the variation data in entire 487 
populations, for a fraction of the storage space. Such a representation also effectively encapsulates 488 
a number of population genetics summary statistics (Kelleher et al., 2019; Ralph et al., 2020). 489 
These developments may prove essential, as sequencing of entire national populations increasingly 490 
becomes routine. 491 

Among practical methods, tsinfer and Relate represent the state-of-the-art in representing 492 
large populations. All three approaches, including ARGweaver, approximate some aspects of the 493 
ARG well, and give accurate coalescence time estimates under simulation of the standard 494 
coalescent (Brandt et al., 2021). For our purposes, they are also useful approximations of ARG 495 
that highlight some of the key advantages we wish to emphasise in our haplotype block definition. 496 
For example, Relate presents a selection statistics suite that goes beyond SNP information. One 497 
advantage of Relate is that branches are dated, as opposed to a strict encoding of topology alone 498 
in tsinfer. Having dated branches allows, among other things, the possibility of estimating temporal 499 
changes in mutation rates. Another useful feature, in our view, is tsinfer’s placement of SNPs onto 500 
branches, which is the key feature that distinguishes haplotype blocks from each other under our 501 
definition. 502 

We note that efforts are already underway to bridge across methods and address limitations. 503 
For instance, tsdate now adds coalescence times estimates and branch lengths from tsinfer’s output 504 
(Wohns et al., 2021). In the context of our exploration of haplotype blocks and their overlapping 505 
structure (Fig. 3C, D), we note that they can be captured rather poorly under the Li–Stephens 506 
models in tsinfer and Relate, in a way that may bias the inferred ARG. 507 

Taken together, there has been a recent spurt in innovation in genealogy/ARG-based 508 
methods. Among these, ARGweaver arguably comes closest to inferring the full ARG, but at 509 
considerable computational cost. Both tsinfer and Relate are robust and scalable to thousands of 510 
samples with minimal, reasonable tradeoffs, but infer haplotype blocks only as an incidental 511 
output. Ultimately, we hope our discussion here will encourage development of new methods to 512 
infer haplotype blocks as we define them.  513 

Assuming that a method becomes available for inferring blocks as we have defined them, 514 
there are still practical considerations that we need to face. For example, we see from Fig. 3 that 515 
haplotype blocks, defined via branches in the genealogy, have a complex structure, tracing back 516 
in time for a number of generations that varies along their span (e.g., blocks ii and iii). This makes 517 
it (for example) hard to define the extent of haplotype blocks in any simple way, especially since 518 
they may be disjunct. Should this be their maximum length, or should it rather be weighted by the 519 
depth? It is not clear which description would be better for inference and this may even depend 520 
upon the specific process that we wish to infer. These kinds of issues could be investigated by 521 
estimating parameters under a variety of specific models in which case we can evaluate the strength 522 
and weaknesses of different descriptions of haplotype structure in characterizing different 523 
processes. 524 
 525 
______________________________________________________________________________ 526 
 527 
Box 3: Application and limits of Li and Stephens Model  528 
Li and Stephens (2003) (LS) proposed a hidden Markov model (HMM) framework that underpins 529 
a large number of existing inference methods. Originally developed to model patterns of linkage 530 
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disequilibrium, it has since been widely applied to develop analytical tools and address empirical 531 
problems, such as, phasing and imputation of genomic data (Browning & Browning, 2007;  Howie 532 
et al., 2009; Y. Li et al., 2010; Marchini et al., 2007; Stephens & Scheet, 2005), inference of 533 
population structure and demographic history (Hellenthal et al., 2014; Lawson et al., 2012; 534 
Steinrücken et al., 2019, 2018), characterisation of local admixture (Price et al., 2009; Sundquist 535 
et al., 2008), inference of local genealogies (Kelleher et al., 2019; Rasmussen et al., 2014; Speidel 536 
et al., 2019), and many more. The LS HMM framework is highly tractable and efficient. However, 537 
underlying assumptions make it incompatible with the haplotype definition we propose. 538 

The LS algorithm requires a reference sample of haplotypes, or if presented in a sequence, 539 
previously observed haplotypes. It gives a framework to decide whether some focal haplotype 540 
represents a) an entirely new haplotype or b) a mosaic of previously encountered haplotypes, and 541 
determines the breakpoints and transitions in this mosaic. Whilst the LS model captures genetic 542 
relatedness among chromosomes through recombination, it assumes that the reference haplotypes 543 
are known. This would be valid in a selection experiment, if we know the founder genomes; in this 544 
case, blocks are defined by IBD to this reference population. However, if we only have 545 
contemporary genomes, the reference panel is an approximation. Secondly, the model assumes 546 
that genomic states depend solely on the immediately preceding site. This is also an approximation, 547 
since in the true ARG, recombinant lineages can coalesce back to any lineage that existed in the 548 
preceding genome, which yields disjunct haplotype blocks.  549 

 550 
 551 
Figure B2. Schematic representation of Li 552 
and Stephens hidden Markov model. A new 553 
haplotype can be sampled as an imperfect 554 
copy of n reference haplotypes (hidden 555 
states). To find the most likely path taken 556 
through the hidden states, the LS model 557 
works along the genome (k-1, k, k+1, …), 558 
calculating the probabilities of changes in the 559 
attributed haplotype. The transition probability 560 
to continue or switch the attributed haplotype 561 
is a function of the recombination rate (r) 562 
between adjacent sites, whilst the emission 563 
probability to copy the attributed allele with or 564 
without error is a function of the mutation rate 565 
(p). Moving along the genome, the LS model 566 
compares the probability of every possible 567 
copying path and infers the most likely one. 568 
 569 
 570 

______________________________________________________________________________ 571 
 572 
 573 
Conclusions and outstanding questions 574 

In this article, we have outlined a definition of the haplotype block, explored the 575 
implications of the definition with simple simulations, and considered how current methods can 576 
infer such blocks from empirical data. In our view, haplotypes and haplotype blocks should be the 577 
core concepts through which we understand population genetic processes. Under this view, it 578 
follows that ideally, genomic datasets should come directly as resolved haplotypes, rather than 579 
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diploid genotypes that require phasing and further processing. We therefore welcome new 580 
developments in linked- and long-read sequencing techniques and software that are designed with 581 
sequencing and population datasets in mind (Davies et al., 2021; Meier et al., 2021). 582 

Our simulations show that haplotype blocks contain rich information about the 583 
demographic and selective history of the locus. Making the most of this information will require a 584 
fundamental rethink of our linear, reference-based genome assemblies, and a move towards a 585 
graph-based assembly standard (Eggertsson et al., 2017; Hickey et al., 2020). We will also need 586 
new concepts and vocabulary to describe features in these graphs (e.g., super-graphs and 587 
“bubbles”; Cheng et al., 2021; Turner et al., 2018; Weisenfeld et al., 2017) informed by a robust 588 
understanding of the generative process discussed above, and we need to align our mental models 589 
with inference schemes and their encoding (as in, e.g., tsinfer). For that reason, we hope our 590 
discussion here can focus our effort towards this new standard, as haplotype-resolved sequencing 591 
becomes routine. 592 
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