References
- Abdallaha, M. M., Fernández, N., Matiasa, A. A., & Bronze, M. R.
(2020). Hyaluronic acid and Chondroitin sulfate from marine and
terrestrial sources: Extraction and purification methods.Carbohydrate Polymers, 243, 116441. doi:
10.1016/j.carbpol.2020.116441
- Abu-Rabeah, K., Polyak, B., Ionescu, R. E., Cosnier, S., & Marks, R.
S. (2005). Synthesis and Characterization of a Pyrrole−Alginate
Conjugate and Its Application in a Biosensor Construction.Biomacromolecules , 6,
3313–3318. https://doi.org/10.1021/bm050339j
- Afkhami, A., Hashemi, P., Bagheri, H., Salimian, J., Ahmadi, A., &
Madrakian, T. (2017). Impedimetic immunosensor for the label-free and
direct detection of botulinum neurotoxin serotype A using Au
nanoparticles/graphene-chitosan composite. Biosens Bioelectron .
93, 124–131. doi: 10.1016/j.bios.2016.09.059
- Anand Raj, M. K., Rathanasamy, R., Kaliyannan, G. V., & Thangamuthu,
M. R. (2020). Research Insights on the Development of Biosensors, in:
Inamuddin, A. Asiri (Eds), Nanosensor Technologies for
Environmental Monitoring. Nanotechnology in the Life Sciences ,
Springer, Cham.
- Andersson, A. J., & Gledhill, D. (2013). Ocean Acidification and
Coral Reefs: Effects on Breakdown, Dissolution, and Net Ecosystem
Calcification. Annual Review of Marine Science , 5, 321-348.
https://doi.org/10.1146/annurev-marine-121211-172241
- Asal, M., Özen, Ö., Şahinler, M., Polatoğlu, İ. (2018). Recent
Developments in Enzyme, DNA and Immuno-Based Biosensors. Sensors
(Basel) , 18, 1924. doi: 10.3390/s18061924
- Asmathunisha, N., & Kathiresan, K. A. (2013). Review on biosynthesis
of nanoparticles by marine organisms. Colloids surf B,
Biointerfaces , 103, 283–287. doi: 10.1016/j.colsurfb.2012.10.030
- Baranwal, A., & Chandra, P., (2018). Clinical implications and
electrochemical biosensing of monoamine neurotransmitters in body
fluids, in vitro, in vivo, and ex vivo models. Biosensors and
Bioelectronics, 121, 137-152. DOI: 10.1016/j.bios.2018.09.002
- Baranwal, A., Kumar, A., Priyadharshini, A., Oggu, G. S., Bhatnagar,
I., Srivastava, A., & Chandra, P. (2018). Chitosan: An undisputed
Bio-fabrication material for tissue engineering and bio-sensing
applications. International Journal of Biological
Macromolecules . 110, 110-123.
https://doi.org/10.1016/j.ijbiomac.2018.01.006
- Barzideh, Z., Latiff, A. A., Gan, C. Y., Abedin, M. Z., & Alias, A.
K. (2014). ACE Inhibitory and Antioxidant Activities of Collagen
Hydrolysates from the Ribbon Jellyfish (Chrysaora sp.). Food
Technol. Biotechnol , 52, 495–504. doi: 10.17113/ftb.52.04.14.3641
- Bastiaens, L., Soetemans, L., D’Hondt, E., & Elst, K. (2019).
Sources of Chitin and Chitosan and their Isolation, In: van den Broek,
L. A. M., Boeriu, C. G., Stevens, C. V. (Eds), Chitin and
Chitosan Properties and Applications, Wiley Publication , 1–34.
- Benito-Arenas, R., Zárate, S. G., Revuelta, J., & Bastida, A. (2019).
Chondroitin sulfate-degrading enzymes as tools for the development of
new pharmaceuticals. Catalysts , 9, 322.
https://doi.org/10.3390/catal9040322
- Ben-Nissan, B. (2003). Natural bioceramics: from coral to bone and
beyond. Curr. Opin. Solid State Mater. Sci, 7, 283– 288. DOI:
10.1016/j.cossms.2003.10.001
- Berger, M., Welle, A., Gottwald, E., Rapp, M., & Länge, K. (2010).
Biosensors coated with sulfated polysaccharides for the detection of
hepatocyte growth factor/scatter factor in cell culture medium.Biosensors & bioelectronics , 26, 1706–1709. doi:
10.1016/j.bios.2010.07.065
- Bhatnagar, I., Mahato, K., Ealla, K. K., Asthana, A., & Chandra, P.
(2018). Chitosan stabilized gold nanoparticle mediated self-assembled
glip nanobiosensor for diagnosis of invasive aspergillosis.International Journal of Biological Macromolecules . 110,
449-456. https://doi.org/10.1016/j.ijbiomac.2017.12.084
- Bo, M., Bavestrello, G., Kurek, D., Paasch, S., Brunner, E., Born, R.,
Galli, R., Stelling, A. L., Sivkov, V. N., Petrova, O. V., Vyalikh,
D., Kummer, K., Molodtsov, S. L., Nowak, D., Nowak, J., & Ehrlich, H.
(2012). Isolation and identification of chitin in the black coralParantipathes larix (Anthozoa: Cnidaria). Int. J. Biol.
Macromol. 51, 129–137.
https://doi.org/10.1016/j.ijbiomac.2012.04.016
- Boaventura, T. P., Peres, A. M., Gil, V. S. B. , Gil, C. S. B.,
Oréfice, R. L., & Luz, R. K. (2020). Reuse of collagen and
hydroxyapatite from the waste processing of fish to produce
polyethylene composites. Química Nova , 43, 168-174.
https://doi.org/10.21577/0100-4042.20170475
- Boyd, E. M., Killham, K., Wright, J., Rumford, S., Hetheridge, M.,
Cumming, R., & Meharg, A. A. (1997). Toxicity assessment of
xenobiotic contaminated groundwater using lux modifiedPseudomonas fluorescens . Chemosphere , 35, 1967-85. doi:
10.1016/s0045-6535(97)00271-3.
- Campanella, L., De Luca, S., Favero, G., Persi, L., & Tomassetti, M.
(2001). Superoxide dismutase biosensors working in non-aqueous
solvent. Fresenius. J. Anal. Chem., 369, 594–600. doi:
10.1007/s002160000672
- Campanella, L., Favero, G., Persi, L., & Tomassetti, M. (2000). New
biosensor for superoxide radical used to evidence molecules of
biomedical and pharmaceutical interest having radical scavenging
properties. J. Pharm. Biomed. Anal., 23, 69–76. DOI:
10.1016/s0731-7085(00)00276-4.
- Campanella, L., Favero, G., Sammartino, M., & Tomassetti, M. (1999).
Enzymatic immobilisation in kappa-carrageenan gel suitable for organic
phase enzyme electrode (OPEE) assembly. J. Mol. Catal. B:
Enzym ., 7, 101–113. https://doi.org/10.1016/S1381-1177(99)00035-1
- Campiglio, C. E., Bidarra, S. J., Draghi, L., & Barrias, C. C.
(2020). Bottom-up engineering of cell-laden hydrogel microfibrous
patch for guided tissue regeneration. Mater. Sci. Eng. C Mater.
Biol. Appl. , 108, 110488. doi: 10.1016/j.msec.2019.110488
- Cesewski, E., & Johnson, B. N. (2020). Electrochemical biosensors for
pathogen detection. Biosens Bioelectron . 159, 112214. doi:
10.1016/j.bios.2020.112214.
- Chandra, P. (2016). Nanobiosensors for personalized and onsite
biomedical diagnosis. London, United Kingdom: The Institution of
Engineering and Technology.
- Chaudhary, A., McShaneb, M. J., & Srivastava, R. (2010). Glucose
response of dissolved-core alginate microspheres: Towards a continuous
glucose biosensor. Analyst , 135, 2620-2628.
https://doi.org/10.1039/C0AN00109K
- Chaudhary, R., Nawaz, K., Khan, A. K., Hano, C., Abbasi, B. H., &
Anjum, S. (2020). An Overview of the Algae-Mediated Biosynthesis of
Nanoparticles and Their Biomedical Applications.Biomolecules, 10, 1498. https://doi.org/10.3390/biom10111498
- Chen, C., & Wang, J. (2020). Optical Biosensors: an exhaustive and
comprehensive review. The Analyst , 145, 1605- 1628
doi:10.1039/c9an01998g
- Chu, Y. P., Li, H. C., Ma, L., & Xia, Y. (2018). Establishment of a
tumor neovascularization animal model with biomaterials in rabbit
corneal pouch. Life Sci. , 202, 98–102. doi:
10.1016/j.lfs.2018.03.043
- Coelho, L. C., Silva, P. M., Lima, V. L., Pontual, E. V., Paiva, P.
M., Napoleão, T. H., & Correia, M.T. (2017). Lectins, Interconnecting
Proteins with Biotechnological/Pharmacological and Therapeutic
Applications. Evidence-Based Complementary and Alternative
Medicine , 1594074. doi: 10.1155/2017/1594074
- Dan, X., Liu, W., & Ng, T. B. (2016). Development and Applications of
Lectins as Biological Tools in Biomedical Research. Med Res
Rev ., 36, 221-47. doi: 10.1002/med.21363
- De. Stefano, L., Rotiroti, L., De. Stefano, M., Lamberti, A.,
Lettieri, S., Setaro, A., & Maddalena, P. (2009). Marine diatoms as
optical biosensors. Biosens Bioelectron ., 24, 1580-1584. doi:
10.1016/j.bios.2008.08.016.
- Delasoie, J., & Zobi, F. (2019). Natural Diatom Biosilica as
Microshuttles in Drug Delivery Systems. Pharmaceutics , 11(10),
537. doi: 10.3390/pharmaceutics11100537
- Dong, W. B., Wang, K. Y., Chen, Y., Li, W. P., Ye, Y. C., & Jin, S.
H. (2017). Construction and characterization of a
chitosan-immobilized-enzyme and
beta-cyclodextrin-included-ferrocene-based electrochemical biosensor
for H2O2 detection. Materials ,
10, 868. doi: 10.3390/ma10080868.
- Elgamouz, A., Idriss, H., Nassab, C., Bihi, A., Bajou, K., Hasan, K.,
Abu Haija, M., & Patole, S.P. (2020). Green Synthesis,
Characterization, Antimicrobial, Anti‐Cancer, and Optimization of
Colorimetric Sensing of Hydrogen Peroxide of Algae Extract Capped
Silver Nanoparticles. Nanomaterials , 10, 1861. doi:
10.3390/nano10091861
- Elieh-Ali-Komi, D., & Michael, R. H. (2016). Chitin and Chitosan:
Production and Application of Versatile Biomedical Nanomaterials.
International journal of advanced research ,. 4, 411-427.
- Fernandes, T. G., Diogo, M. M., Clark, D. S., Dordick, J. S., &
Cabral, J. M. (2009). High-throughput cellular microarray platforms:
Applications in drug discovery, toxicology and stem cell research.Trends Biotechnol ., 27, 342-349. doi:
10.1016/j.tibtech.2009.02.009
- Fernandes, T. G., Kwon, S., Lee, M., Clark, D. S., Cabral, J. M., &
Dordick, J. S. (2008). On-Chip, cell-based microarray
immunofluorescence assay for high-throughput analysis of target
proteins. Anal. Chem. , 80, 6633-6639. doi: 10.1021/ac800848j
- Futra, D., Heng, L. Y., Surif, S., Ahmad, A., & Ling, T. L. (2014).
Microencapsulated Aliivibrio fischeri in alginate microspheres
for monitoring heavy metal toxicity in environmental
waters. Sensors , 14, 23248-23268. doi: 10.3390/s141223248
- Gannavarapu, K. P., Ganesh, V., Thakkar, M., Mitra, S., & Dandamudi,
R.B. (2019). Nanostructured Diatom-ZrO2 composite as a
selective and highly sensitive enzyme free electrochemical sensor for
detection of methyl parathion. Sens. Actuators B Chem. 288,
611–617. doi: 10.1016/j.snb.2019.03.036
- Gericke, M., & Pinches, A. (2006). Microbial production of gold
nanoparticles. Gold Bulletin , 39, 22-28.
https://doi.org/10.1007/BF03215529
- Gomez, C. G., Lambrecht, M. V. P., Lozano, J. E., Rinaudo, M., &
Villar, M. A. (2009). Influence of the extraction– purification
conditions on final properties of alginates obtained from brown algae
(Macrocystis pyrifera ). Int. J. Biol. Macromol., 44,
365–371. doi: 10.1016/j.ijbiomac.2009.02.005
- Hong, S. A., Kwon, J., Kim, D., & Yang, S.A. (2015). A rapid,
sensitive and selective electrochemical biosensor with concanavalin a
for the preemptive detection of norovirus. Biosens Bioelectron ,
64, 338-344. doi: 10.1016/j.bios.2014.09.025
- Ifuku, S., Nogi, M., Abe, K., Yoshioka, M., Morimoto, M., Saimoto, H.,
& Yano, H. (2009). Preparation of chitin nanofibers with a uniform
width as alpha-chitin from crab shells. Biomacromolecules, 10,
1584–8. doi: 10.1021/bm900163d.
- Janegitza, B. C., Marcolino-Juniorb, L. H., Campana-Filhoc, S. P.,
Fariaa, R. C., & Fatibello-Filhoa, O. (2009). Anodic stripping
voltammetric determination of copper(II) using a functionalized carbon
nanotubes paste electrode modified with crosslinked chitosan.Sens Actuat B , 142, 260. doi: 10.1016/j.snb.2009.08.033
- Jankangram, W., Chooluck, S., & Pomthong, B. (2016). Comparison of
the Properties of Collagen Extracted from Dried Jellyfish and Dried
Squid. Afr. J. Biotechnol ., 15, 642–648. DOI:
10.5897/AJB2016.15210
- Jiang, Y., & Wu, J. (2019). Recent development in chitosan
nanocomposites for surface‐based biosensor applications.Electrophoresis , 40, 2084-2097.
https://doi.org/10.1002/elps.201900066
- Joe, M. H., Lee, K. H., Lim, S. Y., Im, S. H., Song, H. P., Lee, I.
S., & Kim, D. H. (2012). Pigment-based whole-cell biosensor system
for cadmium detection using genetically engineered Deinococcus
radiodurans . Bioprocess Biosyst Eng ., 35, 265-72. doi:
10.1007/s00449-011-0610-3.
- Joung, C. K., Kim, H. N., Lim, M. C., Jeon, T. J., Kim, H. Y., & Kim,
Y. R. (2013). A nanoporous membrane-based impedimetric immunosensor
for label-free detection of pathogenic bacteria in whole milk.Biosensor Bioelectron , 44, 210-5. doi:
10.1016/j.bios.2013.01.024
- Kashish, Bansal, S., Jyoti, A., Mahato, K., Chandra, P., & Prakash,
R. (2017). Highly sensitive in vitro biosensor for enterotoxigenic
escherichia coli detection based on ssdna anchored on ptnps-chitosan
nanocomposite. Electroanalysis , 29, 2665-2671.
https://doi.org/10.1002/elan.201600169
- Kaur, S., & Dhillon, G. S. (2014). The versatile biopolymer chitosan:
Potential sources, evaluation of extraction methods and applications.Crit. Rev. Microbiol. , 40, 155–175. doi:
10.3109/1040841X.2013.770385.
- Kikuchi, N., May, M., Zweber, M., Madamba, J., Stephens, C., Kim, U.,
& Mobed-Miremadi, M. (2020). Sustainable, Alginate-Based Sensor for
Detection of Escherichia coli in Human Breast Milk. Sensors,20, 1145. https://doi.org/10.3390/s20041145
- Kittle, J. D., Wang, C., Qian, C., Zang, Y. F., Zang, M. Q., Roman,
M., Morris, J. R., Moore, R. B., & Esker, A. R. (2012). Ultrathin
Chitin Films for Nanocomposites and Biosensors.Biomacromolecules , 13, 714-718.
https://doi.org/10.1021/bm201631r
- Kumar, A., Purohit, B., Maurya, P. K., Pandey, L. M., & Chandra, P.
(2019). Engineered nanomaterial Assisted Signal‐amplification
strategies for Enhancing Analytical performance of Electrochemical
Biosensors. Electroanalysis , 31, 1615-1629.
https://doi.org/10.1002/elan.201900216
- Kuppusamy, P., Mashitah, M. Y., Maniam, G. P., & Govindan, N. (2014).
Biosynthesized gold nanoparticle developed as a tool for detection of
HCG hormone in pregnant women urine sample. Asian Pac. J. Trop.
Dis ., 4, 237.
- Kurosaki, T., Kitahara, T., Kawakami, S., Nishida, K., Nakamura, J.,
Teshima, M., Nakagawa, H., Kodama, Y., To, H., & Sasaki, H. (2009).
The development of a gene vector electrostatically assembled with a
polysaccharide capsule. Biomaterials , 30, 4427–4434.
https://doi.org/10.1016/j.biomaterials.2009.04.041
- Kusmanto, F., Walker, G., Gan, Q., Walsh, P., Buchnan, F., Dickson,
G., McCaigue, M., Maggs, C., & Dring, M. (2008). Development of
composite tissue scaffolds containing naturally sourced microporous
hydroxyapatite. Chemical Engineering Journal , 139, 398–407.
https://doi.org/10.1016/j.cej.2007.11.041
- Langasco, R., Cadeddu, B., Formato, M., Lepedda, A. J., Cossu, M.,
Giunchedi, P., Pronzato, R., Rassu, G., Manconi, R., & Gavini, E.
(2017). Natural Collagenic Skeleton of Marine Sponges in
Pharmaceutics: Innovative Biomaterial for Topical Drug
Delivery. Mater. Sci. Eng. C Mater. Biol. Appl., 70, 710–720.
doi: 10.1016/j.msec.2016.09.041
- Leonardo, S., Garibo, D., Fernández-Tejedor, M., O’Sullivan, C. K., &
Campàs, M. (2017). Addressed immobilization of biofunctionalized
diatoms on electrodes by gold
electrodeposition. Biofabrication , 9, 015027. doi:
10.1088/1758-5090/aa6400.
- Liang, S., Xueming, L., Chen, F., & Chen, Z. (2014). Current
microalgal health food R&D activities in China. Hydrobiologia ,
512, 45–48. https://doi.org/10.1023/b:hydr.0000020366.65760.98
- Liao, J. H., Chien, C. T. H., Wu, H. Y., Huang, K. F., Wang, I., Ho,
M. R., Tu, I .F., Lee, I. M., Li, W., Shih, Y. L., Wu, C. Y.,
Lukyanov, P. A., Hsu, S. T. D., & Wu, S.H. (2016). A Multivalent
Marine Lectin from Crenomytilus grayanus Possesses Anti-cancer
Activity through Recognizing Globotriose Gb3. Journal of the
American Chemical Society, 138, 4787–4795. doi: 10.1021/jacs.6b00111
- Liao, Y. H., Jones, S. A., Forbes, B., Martin, G. P., & Brown, M. B.
(2005). Hyaluronan: Pharmaceutical characterization and drug delivery.Drug Deliv ., 12, 327– 342. doi: 10.1080/10717540590952555
- Liu, X., Huang, R., Su, R., Qi, W., Wang, L., & He, Z. (2014).
Grafting Hyaluronic Acid onto Gold Surface to Achieve Low Protein
Fouling in Surface Plasmon Resonance Biosensors. ACS applied
materials & interfaces, 6,13034-13042. doi: 10.1021/am502921z.
- Lou, B., Rajaji, U., Chen, S., & Chen, T. (2020). A Simple
Sonochemical Assisted Synthesis of Porous NiMoO4/chitosan
Nanocomposite for Electrochemical Sensing of Amlodipine in
Pharmaceutical Formulation and Human Serum. Ultrason. Sonochem,64, 104827. https://doi.org/10.1016/j.ultsonch.2019.104827
- Lu, L., Zhang, L., Zhang, X., Huan, S., Shen, G., & Yu, R. (2010). A
novel tyrosinase biosensor based on hydroxyapatite-chitosan
nanocomposite for the detection of phenolic compounds. Anal Chim
Acta . 665, 146-51. doi: 10.1016/j.aca.2010.03.033
- Madhumathi, K., Binulal, N. S., Nagahama, H., Tamura, H., Shalumon, K.
T., Selvamurugan, N., Nair, S. V., & Jayakumar, R. (2009).
Preparation and characterization of novel beta-chitin-hydroxyapatite
composite membranes for tissue engineering applications.
International Journal of Biological Macromolecules , 44, 1–5.
doi: 10.1016/j.ijbiomac.2008.09.013
- Manivannan, S., Alikunhi, N. M., & Kandasamy, K. (2010). In vitro
synthesis of silver nanoparticle by marine yeasts from coastal
mangrove sediment. Adv. Sci. Lett., 3, 428-433.
https://doi.org/10.1166/asl.2010.1168
- Masoomi, L., Sadeghi, O., Banitaba, M. H., Shahrjerdi, A., &
Davarani, S. S. H. (2013). A non-enzymatic nanomagnetic
electro-immunosensor for determination of Aflatoxin B-1 as a model
antigen. Sensor Actuat B-Chem. 177, 1122–1127. doi:
10.1016/j.snb.2012.11.067
- McGrath, S. P., Knight, B., Killham, K., Preston, S., Paton, G.
I.(1999). Assessment of the toxicity of metals in soils amended with
sewage sludge using a chemical speciation technique and a lux‐based
biosensor. Environmental Toxicology and Chemistry , 18, 659-663.
https://doi.org/10.1897/1551-5028(1999)018<0659:AOTTOM>2.3.CO;2
- Medina, M. B. (2004). Binding interaction studies of the immobilizedSalmonella typhimurium with extracellular matrix and muscle
proteins, and polysaccharides. Int. J. Food Microbiol, 93,
63–72. doi: 10.1016/j.ijfoodmicro.2003.10.008.
- Mehrotra, P. (2016). Biosensors and their applications - A review. Journal of oral biology and craniofacial research , 6 ,
153–159. doi: 10.1016/j.jobcr.2015.12.002
- Mendes, R. K., Arruda, B. S., de Souza, E. F., Nogueira, A. B.,
Teschke, O., Bonugli, L. O., & Etchegaray, A. (2017). Determination
of chlorophenol in environmental samples using a voltammetric
biosensor based on hybrid nanocomposite. J Brazil Chem Soc .,
28, 1212–1219. https://doi.org/10.21577/0103-5053.20160282
- Moro, L., Pezzotti, G., Turemis, M., Sanchís, J., Farré, M., Denaro,
R., Giacobbe, M. G., Crisafi, F., & Giardi, M. T. (2018). Fast
pesticide pre-screening in marine environment using a green
microalgae-based optical bioassay. Mar Pollut Bull ., 129,
212-221. doi: 10.1016/j.marpolbul.2018.02.036
- Mousty, C., Lepellec, A., Cosnier, S., Novoa, A., & Marks,
R.S.(2001). Fabrication of organic phase biosensors based on
multilayered polyphenol oxidase protected by an alginate
coating. Electrochemistry communications , 3, 727-732.
https://doi.org/10.1016/S1388-2481(01)00252-1
- Murado, M. A., Montemayor, M. I., Cabo, M. L., Vázquez, J. A., &
González, M. P. (2012). Optimization of extraction and purification
process of hyaluronic acid from fish eyeball. Food Bioprod.
Proc. , 90, 491–498. https://doi.org/10.1016/j.fbp.2011.11.002
- Nishikawa, H., Okumura, D., Kusunoki, M.,& Hontsu, S. (2006).
Application of hydroxyapatite thin film as a biosensor. American
Physical Society. APS March Meeting, March 13-17, V16.011.
- Njagi, J., Ispas, C., & Andreescu, S. (2008). Mixed ceria-based metal
oxides biosensor for operation in oxygen restrictive environments.Anal Chem. , 80, 7266–7244. doi: 10.1021/ac800808a
- Noh, H., Chandra, P., Moon, J.O., & Shim, Y. (2012). In vivo
detection of glutathione disulfide and oxidative stress monitoring
using a biosensor. Biomaterials, 33, 2600-2607. doi:
10.1016/j.biomaterials.2011.12.026
- Ogawa, T., Watanabe, M., Naganuma, T., & Muramoto, K. (2011).
Diversified carbohydrate-binding lectins from marine
resources. Journal of amino acids , 1, 838914.
https://doi.org/10.4061/2011/838914
- Oliveira, J. M., Grech, J. M. R., Leonor, I. B., Mano, J. F. M., &
Reis, R. L.(2007). Calcium-phosphate derived from mineralized algae
for bone tissue engineering applications. Materials Letters ,
61, 3495–3499. DOI: 10.1016/j.matlet.2006.11.099
- Pacheco-Quito, E. M., Ruiz-Caro, R., & Veiga, M. D. (2020).
Carrageenan: Drug Delivery Systems and Other Biomedical Applications.Marine Drugs , 18, 583. https://doi.org/10.3390/md18110583
- Panagiotis, B. (2015). Marine Collagen: Extraction and Applications.
In: Research Trends in Biochemistry, Molecular Biology and
Microbiology .
- Patra, J. K., Das, G., Fraceto, L. F., Campos, E. V. R., del Pilar
Rodriguez-Torres, M., Acosta-Torres, L. S., Diaz-Torres, L. A.,
Grillo, R., Swamy, M. K.,Sharma, S., Habtemariam, S., & Shin, H. S.
(2018). Nano based drug delivery systems: Recent developments and
future prospects. J. Nanobiotechnol, 16, 71.
https://doi.org/10.1186/s12951-018-0392-8
- Paul, R., & Dertein, E. (2018). Piezoelectric sensors, In: Sensors
for Mechatronics (second edition).
- Peiris, D., Markiv, A., Curley, G. P., & Dwek, M. V. (2012). A novel
approach to determining the affinity of protein–carbohydrate
interactions employing adherent cancer cells grown on a biosensor
surface. Biosensors and Bioelectronics , 35, 160-6. doi:
10.1016/j.bios.2012.02.037
- Piccirillo, C., Pintado, M., & Castro, P. (2013). Hydroxyapatite and
calcium phosphates from marine sources: Extraction and
characterization. In: Kim, S. K. (Ed), Marine Biomaterials:
Characterization, Isolation and Applications , CRC Press Boca Raton,
FL, 29–44.
- Pinsino, A., Torre, C. D., Sammarini, V., Bonaventura, R., Amato, E.,
& Matranga, V. (2008). Sea urchin coelomocytes as a novel cellular
biosensor of environmental stress: a field study in the Tremiti Island
Marine Protected Area, Southern Adriatic Sea, Italy. Cell Biol
Toxicol ., 24, 541-52. doi: 10.1007/s10565-008-9055-0.
- Prajapati, V. D., Maheriya, P. M., Jani, G. K., & Solanki,
H.K.(2014). Carrageenan: A natural seaweed polysaccharide and its
applications. Carbohydr. Polym. , 105, 97–112. doi:
10.1016/j.carbpol.2014.01.067
- Purohit, B., Vernekar, P. R., Shetti, N. P., & Chandra, P. (2020).
Biosensor nanoengineering: Design, operation, and implementation for
biomolecular analysis. Sensors International, 1, 100040.
https://doi.org/10.1016/j.sintl.2020.100040
- Quek, S. B., Cheng, L., & Cord-Ruwisch, R. (2015). Microbial Fuel
Cell Biosensor for Rapid Assessment of Assimilable Organic Carbon
under Marine Conditions. Water research , 77, 64-71.
https://doi.org/10.1016/j.watres.2015.03.012
- Rahman, M. A., & Halfar, J. (2014). First evidence of chitin in
calcified coralline algae: New insights into the calcification process
of Clathromorphum compactum . Sci. Rep. 4, 6162.
https://doi.org/10.1038/srep06162
- Ramesh, C., Vinithkumar, N. V., Kirubagaran, R., Venil, C. K., &
Dufossé, L. (2019). Multifaceted applications of microbial pigments:
current knowledge, challenges and future directions for public health
implications. Microorganisms . 7(7), 186.
https://doi.org/10.3390/microorganisms7070186
- Rassas, I., Braiek, M., Bonhomme, A., Bessueille, F., Raffin, G.,
Majdoub, H., & Jaffrezic-Renault, N. (2019). Highly Sensitive
Voltammetric Glucose Biosensor Based on Glucose Oxidase Encapsulated
in a Chitosan/Kappa-Carrageenan/Gold Nanoparticle
Bionanocomposite. Sensors (Basel) , 19, 154. doi:
10.3390/s19010154.
- Rea, I., & De Stefano, L. (2019). Recent Advances on Diatom-Based
Biosensors. Sensors , 19, 5208.
https://doi.org/10.3390/s19235208
- Ripp, S., David, E. N., Ahn, Y., Werner, C., Jarrell, J., Easter, J.
P., Cox, C. D., Burlage, R. S., & Sayler, G. S. (2000). Controlled
Field Release of a Bioluminescent Genetically Engineered Microorganism
for Bioremediation Process Monitoring and Control. Environmental
Science & Technology, 34, 846-853.
https://doi.org/10.1021/es9908319
- Rossi, S., Mori, M., Vigani, B., Bonferoni, M. C., Sandri, G. Riva, F.
Caramella, C. & Ferrari, F. A. (2018). Novel dressing for the
combined delivery of platelet lysate and vancomycin hydrochloride to
chronic skin ulcers: hyaluronic acid particles in alginate matrices.
Eur. J. Pharm., Sci. 118, 87–95. DOI:
10.1016/j.ejps.2018.03.024
- Sanchez-Ferandin, S., Leroy, F., Bouget, F. Y., & Joux, F. A. (2013).
New, sensitive marine microalgal recombinant biosensor using
luminescence monitoring for toxicity testing of antifouling biocides.Applied and environmental microbiology , 79, 631-638. doi:
10.1128/AEM.02688-12.
- Schröder, H. C., Wang, X. H., Tremel, W., Ushijima, H., & Müller,
W.E.(2008). Biofabrication of biosilica-glass by living organisms.Nat. Prod. Rep , 25, 455–474. doi: 10.1039/b612515h
- Selveraj, V., Thomas, N., Anthuvan, A. J., Nagamony, P., &
Chinnuswamy, V. (2018). Amine-functionalized diatom frustules: A
platform for specific and sensitive detection of nitroaromatic
explosive derivative. Env. Sci. Pollut. Res ., 25, 20540–20549.
https://doi.org/10.1007/s11356-017-0916-z
- Seshadri, S., Prakash, A., & Kowshik, M. (2012). Biosynthesis of
silver nanoparticles by marine bacterium, Idiomarina sp.
PR58-8. Bulletin of Materials Science , 35, 1201-5.
- Sevilla, E., Yuste, L., & Rojo, F. (2015). Marine hydrocarbonoclastic
bacteria as whole-cell biosensors for n-alkanes. Microb
Biotechnol , 8, 693-706. doi: 10.1111/1751-7915.12286.
- Sharma, D., Kanchi, S., & Bisetty, K. (2019). Biogenic synthesis of
nanoparticles: A review. Arab. J. Chem. 12, 3576–3600.
https://doi.org/10.1016/j.arabjc.2015.11.002
- Shen, X., Ju, F., Li, G., & Ma, L. (2020). Smartphone-based
electrochemical potentiostat detection system using pedot:
Pss/chitosan/graphene modified screen-printed electrodes for dopamine
detection. Sensors (Switzerland) , 20, 2781.
https://doi.org/10.3390/s20102781
- Silva, E. A., Kim, E. S., Kong, H. J., & Mooney, D. J. (2008).
Material-based deployment enhances efficacy of endothelial progenitor
cells. Proc Natl Acad Sci USA. 105, 14347–14352.
https://doi.org/10.1073/pnas.0803873105
- Simao, E. P., Silva, D. B. S., Cordeiro, M. T., Gil, L. H. V.,
Andrade, C. A. S., & Oliveira, M. D. L. (2020). Nanostructured
impedimetric lectin-based biosensor for arboviruses detection.Talanta , 208, 120338. doi: 10.1016/j.talanta.2019.120338
- Singh, A., Sinsinbar, G., Choudhary, M., Kumar, V., Pasricha, R.,
Verma, H. N., Singh, S. P., & Arora, K. (2013). Graphene
oxide-chitosan nanocomposite based electrochemical DNA biosensor for
detection of typhoid. Sensor Actuat B-Chem., 185, 675–684.
https://doi.org/10.1016/j.snb.2013.05.014
- Singh, C. R., Kandasamy, K., &
Sekar, A. (2015). A review on marine based nanoparticles and their
potential applications. African Journal of Biotechnology , 14,
1525-32. https://doi.org/10.5897/AJB2015.14527
- Singh, R., Verma, R., Kaushik, A., Sumana, G., Sood, S., Gupta, R. K.,
&. Malhotra, B. D. (2011). Chitosan-iron oxide nano-composite
platform for mismatch-discriminating DNA hybridization for Neisseria
gonorrhoeae detection causing sexually transmitted
disease. Biosens. Bioelectron , 26, 2967–2974. doi:
10.1016/j.bios.2010.11.047
- Solanki, P. R., Patel, M. K., Ali, M. A., & Malhotra, B. D. (2015). A
chitosan modified nickel oxide platform for biosensing applications.Journal of Materials Chemistry B, 3, 6698-708.
https://doi.org/10.1039/C5TB00494B
- Sousa, S., Duffy, C., Weitz, H., Glover, L. A., Bär, E., Henkler, R.,
& Killham, K.(1998). Use of a lux‐modified bacterial biosensor to
identify constraints to bioremediation of btex‐contaminated sites.Environmental Toxicology and Chemistry. 17, 1039-1045.doi:
10.1002/etc.5620170609
- Srivastava, A., Srivastava, A., Srivastava, A., & Chandra, P. (2015).
Marine biomaterials in therapeutics and diagnostic, In: Kim, S. K.
(Ed), Springer Handbook of Marine Biotechnology, Springer,
Berlin, Heidelberg, pp. 1247-1263.
- Sudhan, N., Lavanya, N., Leonardi, S. G., Neri, G., & Sekar, C.
(2019). Monitoring of Chemical Risk Factors for Sudden Infant Death
Syndrome (SIDS) by Hydroxyapatite-Graphene-MWCNT Composite-Based
Sensors. Sensors (Basel) , 19, 3437. doi: 10.3390/s19153437
- Suginta, W., Khunkaewla, P., & Schulte, A. (2013). Electrochemical
biosensor applications of polysaccharides chitin and
chitosan. Chemical reviews , 113, 5458-5479. doi:
10.1021/cr300325r
- Sun, J., Yu, J., Jiang, Z., Zhao, Z., & Xia, Y. (2020). Fluorescent
carbonized polymer dots prepared from sodium alginate based on the CEE
effect. ACS Omega , 5, 27514-27521.
https://doi.org/10.1021/acsomega.0c03995
- Taşaltın, N., Aydın, E., Karakuş, S., & Kilislioğlu, A. (2020).
K-carrageenan/PVA/nano-eggshell biocomposite-based non-enzymatic
electrochemical biosensor for low-level urea detection. Appl.
Phys. A , 126, 827. https://doi.org/10.1007/s00339-020-03960-1
- Tavakoli, J., & Youhong, T. (2017). Hydrogel Based Sensors for
Biomedical Applications: An Updated Review. Polymers , 9, 364.
doi: 10.3390/polym9080364
- Teixeira, E. H., Arruda, F. V. S., do Nascimento, K. S., Carneiro, V.
A., Nagano, C. S., Rocha da Silva, B., Sampaio, A. H., & Cavada, B.S.
(2012). Biological applications of plants and algae lectins: an
overview. In: Chang, C. F. (Ed), Carbohydrates-Comprehensive
Studies on Glycobiology and Glycotechnology , InTech, Rijeka, Croatia.
- Thouand, G., Daniel, P., Horry, H., Picart, P., Durand, M. J.,
Killham, K., Knox, O. G. G., DuBow, M. S., & Rousseau, M. (2003).
Comparison of the spectral emission of lux recombinant and
bioluminescent marine bacteria. Luminescence , 18, 145-55. doi:
10.1002/bio.716.
- Tonnina, D., Campanella, L., Sammartino, M. P., & Visco, G. (2002).
Integral toxicity test of sea waters by an algal
biosensor. Annali di chimica. 92, 477-484.
- Tramontano, C., Chianese, G., Terracciano, M., Napolitano, M., De
Stefano, L., & Rea, I. (2020). Nanostructured Biosilica of Diatoms:
From Water World to Biomedical Applications. Appl. Sci ., 10,
6811. https://doi.org/10.3390/app10196811
- Turemis, M., Silletti, S., Pezzotti, G., Sanchís, J., Farré, M., &
Giardi, M.T. (2018). Optical biosensor based on the
microalga-paramecium symbiosis for improved marine
monitoring. Sensors and Actuators B: Chemical , 270, 424-432.
https://doi.org/10.1016/j.snb.2018.04.111
- Turner, A. P. (2000). Biosensors–sense and sensitivity,Science , 290, 1315-1317. DOI: 10.1126/science.290.5495.1315
- Vázquez, J. A., Rodríguez-Amado, I., Montemayor, M. I., Fraguas, J.,
del Pilar González, M., & Murado, M. A. (2013). Chondroitin sulfate,
hyaluronic acid and chitin/chitosan production using marine waste
sources: Characteristics, application and ecofriendly processes: A
review. Mar. Drugs , 11, 747–774. doi: 10.3390/md11030747
- Velasco-Garcia, M. N. (2009). Optical biosensors for probing at the
cellular level: A review of recent progress and future prospects.Semin Cell Dev Biol, 20, 27–33. doi:
10.1016/j.semcdb.2009.01.013
- Venil, C. K., Aruldass, C. A., Dufossé, L., Zakaria, Z. A., & Ahmad,
W. A. (2014). Current perspective on bacterial pigments: emerging
sustainable compounds with coloring and biological properties for the
industry – an incisive evaluation. RSC Adv., 4, 39523.
https://doi.org/10.1039/C4RA06162D
- Venkatesan, J., Lowe, B., Anil, S., Manivasagan, P., Kheraif, A. A.
A., Kang, K., & Kim, S. (2015). Seaweed polysaccharides and their
potential biomedical applications, Starch, 67 (5–6) 381-390.
https://doi.org/10.1002/star.201400127
- Venkatesan, J., Manivasagan, P., & Kim, S. K. (2015). Marine
Microalgae Biotechnology: Present Trends and Future Advances. In: Kim,
S. K. (Eds), Handbook of Marine Microalgae , 1-9.
- Venkatesan, J., Sukumaran, A., Rao, S., & Kim, S. K. (2019).
Macroalgal Fucoidan for Biomedical Applications. In:
Ravishankar, G. A., & Ambati, R. R. (Eds). Handbook of Algal
Technologies and Phytochemicals. Volume I, Food, Health and
Nutraceutical Applications. CRC Press pp. 13-24.
- Verma, D., & Fortunati, E. (2019). Biopolymer processing and its
composites: An introduction. In: Biomass, Biopolymer-Based Materials,
and Bioenergy, Woodhead Publishing Series in Composites Science
and Engineering, pp. 3-23.
- Wang, L., Xu, M. E., Luo, L., Zhou, Y., & Si, P. (2018). Iterative
feedback bio-printing-derived cell-laden hydrogel scaffolds with
optimal geometrical fidelity and cellular controllability. Sci.
Rep., 8, 2802. https://doi.org/10.1038/s41598-018-21274-4
- Xu, S. C., Zhang, Y. Y., Dong, K., Wen, J. N., Zheng, C. M., & Zhao,
S. H. (2017). Electrochemical DNA biosensor based on graphene
oxide-chitosan hybrid nanocomposites for detection ofEscherichia coli O157:H7. Int J Electrochem Sc. , 12,
3443–3458. doi: 10.20964/2017.04.16
- Zhang, Y., Zhnag, W., Zhnag, Q., Li, K., Liu, W., Liu, Y., & Banks,
C. E. (2014). Green electrochemical sensing platforms: utilizing
hydroxyapatite derived from natural fish scales as a novel
electrochemical material for the sensitive detection of kidney injury
molecule 1 (KIM-1). Analyst, 139, 5362-5366. DOI
https://doi.org/10.1039/C4AN00957F
- Zhao, S., Zhou, Y., Wei, L., & Chen, L. (2020). Low fouling strategy
of electrochemical biosensor based on chondroitin sulfate
functionalized gold magnetic particle for voltammetric determination
of mycoplasma ovipneumonia in whole serum. Analytica chimica
acta , 1126, 91–99. doi: 10.1016/j.aca.2020.06.015.
- Zong, S., Cao, Y., Zhou, Y., &
Ju, H. (2006). Zirconia nanoparticles enhanced grafted collagen
tri-helix scaffold for unmediated biosensing of hydrogen
peroxide. Langmuir: the ACS journal of surfaces and
colloids , 22, 8915–8919. doi: 10.1021/la060930h.