References
  1. Abdallaha, M. M., Fernández, N., Matiasa, A. A., & Bronze, M. R. (2020). Hyaluronic acid and Chondroitin sulfate from marine and terrestrial sources: Extraction and purification methods.Carbohydrate Polymers, 243, 116441. doi: 10.1016/j.carbpol.2020.116441
  2. Abu-Rabeah, K., Polyak, B., Ionescu, R. E., Cosnier, S., & Marks, R. S. (2005). Synthesis and Characterization of a Pyrrole−Alginate Conjugate and Its Application in a Biosensor Construction.Biomacromolecules , 6, 3313–3318. https://doi.org/10.1021/bm050339j
  3. Afkhami, A., Hashemi, P., Bagheri, H., Salimian, J., Ahmadi, A., & Madrakian, T. (2017). Impedimetic immunosensor for the label-free and direct detection of botulinum neurotoxin serotype A using Au nanoparticles/graphene-chitosan composite. Biosens Bioelectron . 93, 124–131. doi: 10.1016/j.bios.2016.09.059
  4. Anand Raj, M. K., Rathanasamy, R., Kaliyannan, G. V., & Thangamuthu, M. R. (2020). Research Insights on the Development of Biosensors, in: Inamuddin, A. Asiri (Eds), Nanosensor Technologies for Environmental Monitoring. Nanotechnology in the Life Sciences , Springer, Cham.
  5. Andersson, A. J., & Gledhill, D. (2013). Ocean Acidification and Coral Reefs: Effects on Breakdown, Dissolution, and Net Ecosystem Calcification. Annual Review of Marine Science ,  5, 321-348. https://doi.org/10.1146/annurev-marine-121211-172241
  6. Asal, M., Özen, Ö., Şahinler, M., Polatoğlu, İ. (2018). Recent Developments in Enzyme, DNA and Immuno-Based Biosensors. Sensors (Basel) , 18, 1924. doi: 10.3390/s18061924
  7. Asmathunisha, N., & Kathiresan, K. A. (2013). Review on biosynthesis of nanoparticles by marine organisms. Colloids surf B, Biointerfaces , 103, 283–287. doi: 10.1016/j.colsurfb.2012.10.030
  8. Baranwal, A., & Chandra, P., (2018). Clinical implications and electrochemical biosensing of monoamine neurotransmitters in body fluids, in vitro, in vivo, and ex vivo models. Biosensors and Bioelectronics, 121, 137-152. DOI: 10.1016/j.bios.2018.09.002
  9. Baranwal, A., Kumar, A., Priyadharshini, A., Oggu, G. S., Bhatnagar, I., Srivastava, A., & Chandra, P. (2018). Chitosan: An undisputed Bio-fabrication material for tissue engineering and bio-sensing applications. International Journal of Biological Macromolecules . 110, 110-123. https://doi.org/10.1016/j.ijbiomac.2018.01.006
  10. Barzideh, Z., Latiff, A. A., Gan, C. Y., Abedin, M. Z., & Alias, A. K. (2014). ACE Inhibitory and Antioxidant Activities of Collagen Hydrolysates from the Ribbon Jellyfish (Chrysaora sp.). Food Technol. Biotechnol ,  52, 495–504. doi: 10.17113/ftb.52.04.14.3641
  11. Bastiaens, L.,  Soetemans, L., D’Hondt, E., &  Elst, K. (2019). Sources of Chitin and Chitosan and their Isolation, In: van den Broek, L. A. M., Boeriu, C. G., Stevens, C. V. (Eds), Chitin and Chitosan Properties and Applications,   Wiley Publication , 1–34.
  12. Benito-Arenas, R., Zárate, S. G., Revuelta, J., & Bastida, A. (2019). Chondroitin sulfate-degrading enzymes as tools for the development of new pharmaceuticals.  Catalysts , 9, 322. https://doi.org/10.3390/catal9040322
  13. Ben-Nissan, B. (2003). Natural bioceramics: from coral to bone and beyond. Curr. Opin. Solid State Mater. Sci, 7, 283– 288. DOI: 10.1016/j.cossms.2003.10.001
  14. Berger, M., Welle, A., Gottwald, E., Rapp, M., & Länge, K. (2010). Biosensors coated with sulfated polysaccharides for the detection of hepatocyte growth factor/scatter factor in cell culture medium.Biosensors & bioelectronics , 26, 1706–1709. doi: 10.1016/j.bios.2010.07.065
  15. Bhatnagar, I., Mahato, K., Ealla, K. K., Asthana, A., & Chandra, P. (2018). Chitosan stabilized gold nanoparticle mediated self-assembled glip nanobiosensor for diagnosis of invasive aspergillosis.International Journal of Biological Macromolecules . 110, 449-456. https://doi.org/10.1016/j.ijbiomac.2017.12.084
  16. Bo, M., Bavestrello, G., Kurek, D., Paasch, S., Brunner, E., Born, R., Galli, R., Stelling, A. L., Sivkov, V. N., Petrova, O. V., Vyalikh, D., Kummer, K., Molodtsov, S. L., Nowak, D., Nowak, J., & Ehrlich, H. (2012). Isolation and identification of chitin in the black coralParantipathes larix (Anthozoa: Cnidaria). Int. J. Biol. Macromol. 51, 129–137. https://doi.org/10.1016/j.ijbiomac.2012.04.016
  17. Boaventura, T. P., Peres, A. M., Gil, V. S. B. , Gil, C. S. B., Oréfice, R. L., & Luz, R. K. (2020). Reuse of collagen and hydroxyapatite from the waste processing of fish to produce polyethylene composites. Química Nova , 43, 168-174. https://doi.org/10.21577/0100-4042.20170475
  18. Boyd, E. M., Killham, K., Wright, J., Rumford, S., Hetheridge, M., Cumming, R., & Meharg, A. A. (1997). Toxicity assessment of xenobiotic contaminated groundwater using lux modifiedPseudomonas fluorescens . Chemosphere , 35, 1967-85. doi: 10.1016/s0045-6535(97)00271-3.
  19. Campanella, L., De Luca, S., Favero, G., Persi, L., & Tomassetti, M. (2001). Superoxide dismutase biosensors working in non-aqueous solvent. Fresenius. J. Anal. Chem., 369, 594–600. doi: 10.1007/s002160000672
  20. Campanella, L., Favero, G., Persi, L., & Tomassetti, M. (2000). New biosensor for superoxide radical used to evidence molecules of biomedical and pharmaceutical interest having radical scavenging properties. J. Pharm. Biomed. Anal., 23, 69–76. DOI: 10.1016/s0731-7085(00)00276-4.
  21. Campanella, L., Favero, G., Sammartino, M., & Tomassetti, M. (1999). Enzymatic immobilisation in kappa-carrageenan gel suitable for organic phase enzyme electrode (OPEE) assembly. J. Mol. Catal. B: Enzym ., 7, 101–113. https://doi.org/10.1016/S1381-1177(99)00035-1
  22. Campiglio, C. E., Bidarra, S. J., Draghi, L., & Barrias, C. C. (2020). Bottom-up engineering of cell-laden hydrogel microfibrous patch for guided tissue regeneration. Mater. Sci. Eng. C Mater. Biol. Appl. , 108, 110488. doi: 10.1016/j.msec.2019.110488
  23. Cesewski, E., & Johnson, B. N. (2020). Electrochemical biosensors for pathogen detection. Biosens Bioelectron . 159, 112214. doi: 10.1016/j.bios.2020.112214.
  24. Chandra, P. (2016). Nanobiosensors for personalized and onsite biomedical diagnosis. London, United Kingdom: The Institution of Engineering and Technology.
  25. Chaudhary, A., McShaneb, M. J., & Srivastava, R. (2010). Glucose response of dissolved-core alginate microspheres: Towards a continuous glucose biosensor. Analyst , 135, 2620-2628. https://doi.org/10.1039/C0AN00109K
  26. Chaudhary, R., Nawaz, K., Khan, A. K., Hano, C., Abbasi, B. H., & Anjum, S. (2020). An Overview of the Algae-Mediated Biosynthesis of Nanoparticles and Their Biomedical Applications.Biomolecules,  10, 1498. https://doi.org/10.3390/biom10111498
  27. Chen, C., & Wang, J. (2020). Optical Biosensors: an exhaustive and comprehensive review. The Analyst , 145, 1605- 1628 doi:10.1039/c9an01998g
  28. Chu, Y. P., Li, H. C., Ma, L., & Xia, Y. (2018). Establishment of a tumor neovascularization animal model with biomaterials in rabbit corneal pouch.  Life Sci. , 202, 98–102. doi: 10.1016/j.lfs.2018.03.043
  29. Coelho, L. C., Silva, P. M., Lima, V. L., Pontual, E. V., Paiva, P. M., Napoleão, T. H., & Correia, M.T. (2017). Lectins, Interconnecting Proteins with Biotechnological/Pharmacological and Therapeutic Applications.  Evidence-Based Complementary and Alternative Medicine , 1594074. doi: 10.1155/2017/1594074
  30. Dan, X., Liu, W., & Ng, T. B. (2016). Development and Applications of Lectins as Biological Tools in Biomedical Research. Med Res Rev ., 36, 221-47. doi: 10.1002/med.21363
  31. De. Stefano, L., Rotiroti, L., De. Stefano, M., Lamberti, A., Lettieri, S., Setaro, A., & Maddalena, P. (2009). Marine diatoms as optical biosensors. Biosens Bioelectron ., 24, 1580-1584. doi: 10.1016/j.bios.2008.08.016.
  32. Delasoie, J., & Zobi, F. (2019). Natural Diatom Biosilica as Microshuttles in Drug Delivery Systems.  Pharmaceutics , 11(10), 537. doi: 10.3390/pharmaceutics11100537
  33. Dong, W. B., Wang, K. Y., Chen, Y., Li, W. P., Ye, Y. C., & Jin, S. H. (2017). Construction and characterization of a chitosan-immobilized-enzyme and beta-cyclodextrin-included-ferrocene-based electrochemical biosensor for H2O2 detection. Materials , 10, 868. doi: 10.3390/ma10080868.
  34. Elgamouz, A., Idriss, H., Nassab, C., Bihi, A., Bajou, K., Hasan, K., Abu Haija, M., & Patole, S.P. (2020). Green Synthesis, Characterization, Antimicrobial, Anti‐Cancer, and Optimization of Colorimetric Sensing of Hydrogen Peroxide of Algae Extract Capped Silver Nanoparticles. Nanomaterials , 10, 1861. doi: 10.3390/nano10091861
  35. Elieh-Ali-Komi, D., & Michael, R. H. (2016). Chitin and Chitosan: Production and Application of Versatile Biomedical Nanomaterials.  International journal of advanced research ,. 4, 411-427.
  36. Fernandes, T. G., Diogo, M. M., Clark, D. S., Dordick, J. S., & Cabral, J. M. (2009). High-throughput cellular microarray platforms: Applications in drug discovery, toxicology and stem cell research.Trends Biotechnol ., 27, 342-349. doi: 10.1016/j.tibtech.2009.02.009
  37. Fernandes, T. G., Kwon, S., Lee, M., Clark, D. S., Cabral, J. M., & Dordick, J. S. (2008). On-Chip, cell-based microarray immunofluorescence assay for high-throughput analysis of target proteins. Anal. Chem. , 80, 6633-6639. doi: 10.1021/ac800848j
  38. Futra, D., Heng, L. Y., Surif, S., Ahmad, A., & Ling, T. L. (2014). Microencapsulated Aliivibrio fischeri in alginate microspheres for monitoring heavy metal toxicity in environmental waters. Sensors , 14, 23248-23268. doi: 10.3390/s141223248
  39. Gannavarapu, K. P., Ganesh, V., Thakkar, M., Mitra, S., & Dandamudi, R.B. (2019). Nanostructured Diatom-ZrO2 composite as a selective and highly sensitive enzyme free electrochemical sensor for detection of methyl parathion. Sens. Actuators B Chem.   288, 611–617. doi: 10.1016/j.snb.2019.03.036
  40. Gericke, M., & Pinches, A. (2006). Microbial production of gold nanoparticles. Gold Bulletin , 39, 22-28. https://doi.org/10.1007/BF03215529
  41. Gomez, C. G., Lambrecht, M. V. P., Lozano, J. E., Rinaudo, M., & Villar, M. A. (2009). Influence of the extraction– purification conditions on final properties of alginates obtained from brown algae (Macrocystis pyrifera ). Int. J. Biol. Macromol., 44, 365–371. doi: 10.1016/j.ijbiomac.2009.02.005
  42. Hong, S. A., Kwon, J., Kim, D., & Yang, S.A. (2015). A rapid, sensitive and selective electrochemical biosensor with concanavalin a for the preemptive detection of norovirus. Biosens Bioelectron , 64, 338-344. doi: 10.1016/j.bios.2014.09.025
  43. Ifuku, S., Nogi, M., Abe, K., Yoshioka, M., Morimoto, M., Saimoto, H., & Yano, H. (2009). Preparation of chitin nanofibers with a uniform width as alpha-chitin from crab shells.  Biomacromolecules, 10, 1584–8. doi: 10.1021/bm900163d.
  44. Janegitza, B. C., Marcolino-Juniorb, L. H., Campana-Filhoc, S. P., Fariaa, R. C., & Fatibello-Filhoa, O. (2009). Anodic stripping voltammetric determination of copper(II) using a functionalized carbon nanotubes paste electrode modified with crosslinked chitosan.Sens Actuat B , 142, 260. doi: 10.1016/j.snb.2009.08.033
  45. Jankangram, W., Chooluck, S., & Pomthong, B. (2016). Comparison of the Properties of Collagen Extracted from Dried Jellyfish and Dried Squid.  Afr. J. Biotechnol .,  15, 642–648. DOI: 10.5897/AJB2016.15210
  46. Jiang, Y., & Wu, J. (2019). Recent development in chitosan nanocomposites for surface‐based biosensor applications.Electrophoresis , 40, 2084-2097. https://doi.org/10.1002/elps.201900066
  47. Joe, M. H., Lee, K. H., Lim, S. Y., Im, S. H., Song, H. P., Lee, I. S., & Kim, D. H. (2012). Pigment-based whole-cell biosensor system for cadmium detection using genetically engineered Deinococcus radiodurans . Bioprocess Biosyst Eng ., 35, 265-72. doi: 10.1007/s00449-011-0610-3.
  48. Joung, C. K., Kim, H. N., Lim, M. C., Jeon, T. J., Kim, H. Y., & Kim, Y. R. (2013). A nanoporous membrane-based impedimetric immunosensor for label-free detection of pathogenic bacteria in whole milk.Biosensor Bioelectron , 44, 210-5. doi: 10.1016/j.bios.2013.01.024
  49. Kashish, Bansal, S., Jyoti, A., Mahato, K., Chandra, P., & Prakash, R. (2017). Highly sensitive in vitro biosensor for enterotoxigenic escherichia coli detection based on ssdna anchored on ptnps-chitosan nanocomposite. Electroanalysis , 29, 2665-2671. https://doi.org/10.1002/elan.201600169
  50. Kaur, S., & Dhillon, G. S. (2014). The versatile biopolymer chitosan: Potential sources, evaluation of extraction methods and applications.Crit. Rev. Microbiol. , 40, 155–175. doi: 10.3109/1040841X.2013.770385.
  51. Kikuchi, N., May, M., Zweber, M., Madamba, J., Stephens, C., Kim, U., & Mobed-Miremadi, M. (2020). Sustainable, Alginate-Based Sensor for Detection of Escherichia coli in Human Breast Milk. Sensors,20, 1145. https://doi.org/10.3390/s20041145
  52. Kittle, J. D., Wang, C., Qian, C., Zang, Y. F., Zang, M. Q., Roman, M., Morris, J. R., Moore, R. B., & Esker, A. R. (2012). Ultrathin Chitin Films for Nanocomposites and Biosensors.Biomacromolecules , 13, 714-718. https://doi.org/10.1021/bm201631r
  53. Kumar, A., Purohit, B., Maurya, P. K., Pandey, L. M., & Chandra, P. (2019). Engineered nanomaterial Assisted Signal‐amplification strategies for Enhancing Analytical performance of Electrochemical Biosensors. Electroanalysis , 31, 1615-1629. https://doi.org/10.1002/elan.201900216
  54. Kuppusamy, P., Mashitah, M. Y., Maniam, G. P., & Govindan, N. (2014). Biosynthesized gold nanoparticle developed as a tool for detection of HCG hormone in pregnant women urine sample. Asian Pac. J. Trop. Dis ., 4, 237.
  55. Kurosaki, T., Kitahara, T., Kawakami, S., Nishida, K., Nakamura, J., Teshima, M., Nakagawa, H., Kodama, Y., To, H., & Sasaki, H. (2009). The development of a gene vector electrostatically assembled with a polysaccharide capsule. Biomaterials , 30, 4427–4434. https://doi.org/10.1016/j.biomaterials.2009.04.041
  56. Kusmanto, F., Walker, G., Gan, Q., Walsh, P., Buchnan, F., Dickson, G., McCaigue, M., Maggs, C., & Dring, M. (2008). Development of composite tissue scaffolds containing naturally sourced microporous hydroxyapatite. Chemical Engineering Journal , 139, 398–407. https://doi.org/10.1016/j.cej.2007.11.041
  57. Langasco, R., Cadeddu, B., Formato, M., Lepedda, A. J., Cossu, M., Giunchedi, P., Pronzato, R., Rassu, G., Manconi, R., & Gavini, E. (2017). Natural Collagenic Skeleton of Marine Sponges in Pharmaceutics: Innovative Biomaterial for Topical Drug Delivery. Mater. Sci. Eng. C Mater. Biol. Appl.,  70, 710–720. doi: 10.1016/j.msec.2016.09.041
  58. Leonardo, S., Garibo, D., Fernández-Tejedor, M., O’Sullivan, C. K., & Campàs, M. (2017). Addressed immobilization of biofunctionalized diatoms on electrodes by gold electrodeposition. Biofabrication , 9, 015027. doi: 10.1088/1758-5090/aa6400.
  59. Liang, S., Xueming, L., Chen, F., & Chen, Z. (2014). Current microalgal health food R&D activities in China. Hydrobiologia , 512, 45–48. https://doi.org/10.1023/b:hydr.0000020366.65760.98
  60. Liao, J. H., Chien, C. T. H., Wu, H. Y., Huang, K. F., Wang, I., Ho, M. R., Tu, I .F., Lee, I. M., Li, W., Shih, Y. L., Wu, C. Y., Lukyanov, P. A., Hsu, S. T. D., & Wu, S.H. (2016). A Multivalent Marine Lectin from Crenomytilus grayanus Possesses Anti-cancer Activity through Recognizing Globotriose Gb3. Journal of the American Chemical Society, 138, 4787–4795. doi: 10.1021/jacs.6b00111
  61. Liao, Y. H., Jones, S. A., Forbes, B., Martin, G. P., & Brown, M. B. (2005). Hyaluronan: Pharmaceutical characterization and drug delivery.Drug Deliv ., 12, 327– 342. doi: 10.1080/10717540590952555
  62. Liu, X., Huang, R., Su, R., Qi, W., Wang, L., & He, Z. (2014). Grafting Hyaluronic Acid onto Gold Surface to Achieve Low Protein Fouling in Surface Plasmon Resonance Biosensors. ACS applied materials & interfaces, 6,13034-13042. doi: 10.1021/am502921z.
  63. Lou, B., Rajaji, U., Chen, S., & Chen, T. (2020). A Simple Sonochemical Assisted Synthesis of Porous NiMoO4/chitosan Nanocomposite for Electrochemical Sensing of Amlodipine in Pharmaceutical Formulation and Human Serum. Ultrason. Sonochem,64, 104827. https://doi.org/10.1016/j.ultsonch.2019.104827
  64. Lu, L., Zhang, L., Zhang, X., Huan, S., Shen, G., & Yu, R. (2010). A novel tyrosinase biosensor based on hydroxyapatite-chitosan nanocomposite for the detection of phenolic compounds. Anal Chim Acta . 665, 146-51. doi: 10.1016/j.aca.2010.03.033
  65. Madhumathi, K., Binulal, N. S., Nagahama, H., Tamura, H., Shalumon, K. T., Selvamurugan, N., Nair, S. V., & Jayakumar, R. (2009). Preparation and characterization of novel beta-chitin-hydroxyapatite composite membranes for tissue engineering applications.  International Journal of Biological Macromolecules , 44, 1–5. doi: 10.1016/j.ijbiomac.2008.09.013
  66. Manivannan, S., Alikunhi, N. M., & Kandasamy, K. (2010). In vitro synthesis of silver nanoparticle by marine yeasts from coastal mangrove sediment. Adv. Sci. Lett., 3, 428-433. https://doi.org/10.1166/asl.2010.1168
  67. Masoomi, L., Sadeghi, O., Banitaba, M. H., Shahrjerdi, A., & Davarani, S. S. H. (2013). A non-enzymatic nanomagnetic electro-immunosensor for determination of Aflatoxin B-1 as a model antigen. Sensor Actuat B-Chem. 177, 1122–1127. doi: 10.1016/j.snb.2012.11.067
  68. McGrath, S. P., Knight, B., Killham, K., Preston, S., Paton, G. I.(1999). Assessment of the toxicity of metals in soils amended with sewage sludge using a chemical speciation technique and a lux‐based biosensor. Environmental Toxicology and Chemistry , 18, 659-663. https://doi.org/10.1897/1551-5028(1999)018<0659:AOTTOM>2.3.CO;2
  69. Medina, M. B. (2004). Binding interaction studies of the immobilizedSalmonella typhimurium with extracellular matrix and muscle proteins, and polysaccharides. Int. J. Food Microbiol, 93, 63–72. doi: 10.1016/j.ijfoodmicro.2003.10.008.
  70. Mehrotra, P. (2016). Biosensors and their applications - A review. Journal of oral biology and craniofacial research ,  6 , 153–159. doi: 10.1016/j.jobcr.2015.12.002
  71. Mendes, R. K., Arruda, B. S., de Souza, E. F., Nogueira, A. B., Teschke, O., Bonugli, L. O., & Etchegaray, A. (2017). Determination of chlorophenol in environmental samples using a voltammetric biosensor based on hybrid nanocomposite. J Brazil Chem Soc ., 28, 1212–1219. https://doi.org/10.21577/0103-5053.20160282
  72. Moro, L., Pezzotti, G., Turemis, M., Sanchís, J., Farré, M., Denaro, R., Giacobbe, M. G., Crisafi, F., & Giardi, M. T. (2018). Fast pesticide pre-screening in marine environment using a green microalgae-based optical bioassay. Mar Pollut Bull ., 129, 212-221. doi: 10.1016/j.marpolbul.2018.02.036
  73. Mousty, C., Lepellec, A., Cosnier, S., Novoa, A., & Marks, R.S.(2001). Fabrication of organic phase biosensors based on multilayered polyphenol oxidase protected by an alginate coating. Electrochemistry communications , 3, 727-732. https://doi.org/10.1016/S1388-2481(01)00252-1
  74. Murado, M. A., Montemayor, M. I., Cabo, M. L., Vázquez, J. A., & González, M. P. (2012). Optimization of extraction and purification process of hyaluronic acid from fish eyeball. Food Bioprod. Proc. , 90, 491–498. https://doi.org/10.1016/j.fbp.2011.11.002
  75. Nishikawa, H., Okumura, D., Kusunoki, M.,& Hontsu, S. (2006). Application of hydroxyapatite thin film as a biosensor. American Physical Society. APS March Meeting, March 13-17, V16.011.
  76. Njagi, J., Ispas, C., & Andreescu, S. (2008). Mixed ceria-based metal oxides biosensor for operation in oxygen restrictive environments.Anal Chem. , 80, 7266–7244. doi: 10.1021/ac800808a
  77. Noh, H., Chandra, P., Moon, J.O., & Shim, Y. (2012). In vivo detection of glutathione disulfide and oxidative stress monitoring using a biosensor. Biomaterials, 33, 2600-2607. doi: 10.1016/j.biomaterials.2011.12.026
  78. Ogawa, T., Watanabe, M., Naganuma, T., & Muramoto, K. (2011). Diversified carbohydrate-binding lectins from marine resources. Journal of amino acids , 1, 838914. https://doi.org/10.4061/2011/838914
  79. Oliveira, J. M., Grech, J. M. R., Leonor, I. B., Mano, J. F. M., & Reis, R. L.(2007). Calcium-phosphate derived from mineralized algae for bone tissue engineering applications. Materials Letters , 61, 3495–3499. DOI: 10.1016/j.matlet.2006.11.099
  80. Pacheco-Quito, E. M., Ruiz-Caro, R., & Veiga, M. D. (2020). Carrageenan: Drug Delivery Systems and Other Biomedical Applications.Marine Drugs , 18, 583. https://doi.org/10.3390/md18110583
  81. Panagiotis, B. (2015). Marine Collagen: Extraction and Applications. In: Research Trends in Biochemistry, Molecular Biology and Microbiology .
  82. Patra, J. K., Das, G., Fraceto, L. F., Campos, E. V. R., del Pilar Rodriguez-Torres, M., Acosta-Torres, L. S., Diaz-Torres, L. A., Grillo, R., Swamy, M. K.,Sharma, S., Habtemariam, S., & Shin, H. S. (2018). Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnol, 16, 71. https://doi.org/10.1186/s12951-018-0392-8
  83. Paul, R., & Dertein, E. (2018). Piezoelectric sensors, In: Sensors for Mechatronics (second edition).
  84. Peiris, D., Markiv, A., Curley, G. P., & Dwek, M. V. (2012). A novel approach to determining the affinity of protein–carbohydrate interactions employing adherent cancer cells grown on a biosensor surface. Biosensors and Bioelectronics , 35, 160-6. doi: 10.1016/j.bios.2012.02.037
  85. Piccirillo, C., Pintado, M., & Castro, P. (2013). Hydroxyapatite and calcium phosphates from marine sources: Extraction and characterization. In: Kim, S. K. (Ed), Marine Biomaterials: Characterization, Isolation and Applications , CRC Press Boca Raton, FL, 29–44.
  86. Pinsino, A., Torre, C. D., Sammarini, V., Bonaventura, R., Amato, E., & Matranga, V. (2008). Sea urchin coelomocytes as a novel cellular biosensor of environmental stress: a field study in the Tremiti Island Marine Protected Area, Southern Adriatic Sea, Italy. Cell Biol Toxicol ., 24, 541-52. doi: 10.1007/s10565-008-9055-0.
  87. Prajapati, V. D., Maheriya, P. M., Jani, G. K., & Solanki, H.K.(2014). Carrageenan: A natural seaweed polysaccharide and its applications. Carbohydr. Polym. , 105, 97–112. doi: 10.1016/j.carbpol.2014.01.067
  88. Purohit, B., Vernekar, P. R., Shetti, N. P., & Chandra, P. (2020). Biosensor nanoengineering: Design, operation, and implementation for biomolecular analysis. Sensors International, 1, 100040. https://doi.org/10.1016/j.sintl.2020.100040
  89. Quek, S. B., Cheng, L., & Cord-Ruwisch, R. (2015). Microbial Fuel Cell Biosensor for Rapid Assessment of Assimilable Organic Carbon under Marine Conditions. Water research , 77, 64-71. https://doi.org/10.1016/j.watres.2015.03.012
  90. Rahman, M. A., & Halfar, J. (2014). First evidence of chitin in calcified coralline algae: New insights into the calcification process of Clathromorphum compactum . Sci. Rep. 4, 6162. https://doi.org/10.1038/srep06162
  91. Ramesh, C., Vinithkumar, N. V., Kirubagaran, R., Venil, C. K., & Dufossé, L. (2019). Multifaceted applications of microbial pigments: current knowledge, challenges and future directions for public health implications. Microorganisms . 7(7), 186. https://doi.org/10.3390/microorganisms7070186
  92. Rassas, I., Braiek, M., Bonhomme, A., Bessueille, F., Raffin, G., Majdoub, H., & Jaffrezic-Renault, N. (2019). Highly Sensitive Voltammetric Glucose Biosensor Based on Glucose Oxidase Encapsulated in a Chitosan/Kappa-Carrageenan/Gold Nanoparticle Bionanocomposite. Sensors (Basel) , 19, 154. doi: 10.3390/s19010154.
  93. Rea, I., & De Stefano, L. (2019). Recent Advances on Diatom-Based Biosensors. Sensors , 19, 5208. https://doi.org/10.3390/s19235208
  94. Ripp, S., David, E. N., Ahn, Y., Werner, C., Jarrell, J., Easter, J. P., Cox, C. D., Burlage, R. S., & Sayler, G. S. (2000). Controlled Field Release of a Bioluminescent Genetically Engineered Microorganism for Bioremediation Process Monitoring and Control. Environmental Science & Technology, 34, 846-853. https://doi.org/10.1021/es9908319
  95. Rossi, S., Mori, M., Vigani, B., Bonferoni, M. C., Sandri, G. Riva, F. Caramella, C. & Ferrari, F. A. (2018). Novel dressing for the combined delivery of platelet lysate and vancomycin hydrochloride to chronic skin ulcers: hyaluronic acid particles in alginate matrices.  Eur. J. Pharm., Sci.  118, 87–95. DOI: 10.1016/j.ejps.2018.03.024
  96. Sanchez-Ferandin, S., Leroy, F., Bouget, F. Y., & Joux, F. A. (2013). New, sensitive marine microalgal recombinant biosensor using luminescence monitoring for toxicity testing of antifouling biocides.Applied and environmental microbiology , 79, 631-638. doi: 10.1128/AEM.02688-12.
  97. Schröder, H. C., Wang, X. H., Tremel, W., Ushijima, H., & Müller, W.E.(2008). Biofabrication of biosilica-glass by living organisms.Nat. Prod. Rep , 25, 455–474. doi: 10.1039/b612515h
  98. Selveraj, V., Thomas, N., Anthuvan, A. J., Nagamony, P., & Chinnuswamy, V. (2018). Amine-functionalized diatom frustules: A platform for specific and sensitive detection of nitroaromatic explosive derivative. Env. Sci. Pollut. Res ., 25, 20540–20549. https://doi.org/10.1007/s11356-017-0916-z
  99. Seshadri, S., Prakash, A., & Kowshik, M. (2012). Biosynthesis of silver nanoparticles by marine bacterium, Idiomarina sp. PR58-8. Bulletin of Materials Science , 35, 1201-5.
  100. Sevilla, E., Yuste, L., & Rojo, F. (2015). Marine hydrocarbonoclastic bacteria as whole-cell biosensors for n-alkanes. Microb Biotechnol , 8, 693-706. doi: 10.1111/1751-7915.12286.
  101. Sharma, D., Kanchi, S., & Bisetty, K. (2019). Biogenic synthesis of nanoparticles: A review. Arab. J. Chem. 12, 3576–3600. https://doi.org/10.1016/j.arabjc.2015.11.002
  102. Shen, X., Ju, F., Li, G., & Ma, L. (2020). Smartphone-based electrochemical potentiostat detection system using pedot: Pss/chitosan/graphene modified screen-printed electrodes for dopamine detection. Sensors (Switzerland) , 20, 2781. https://doi.org/10.3390/s20102781
  103. Silva, E. A., Kim, E. S., Kong, H. J., & Mooney, D. J. (2008). Material-based deployment enhances efficacy of endothelial progenitor cells. Proc Natl Acad Sci USA. 105, 14347–14352. https://doi.org/10.1073/pnas.0803873105
  104. Simao, E. P., Silva, D. B. S., Cordeiro, M. T., Gil, L. H. V., Andrade, C. A. S., & Oliveira, M. D. L. (2020). Nanostructured impedimetric lectin-based biosensor for arboviruses detection.Talanta , 208, 120338. doi: 10.1016/j.talanta.2019.120338
  105. Singh, A., Sinsinbar, G., Choudhary, M., Kumar, V., Pasricha, R., Verma, H. N., Singh, S. P., & Arora, K. (2013). Graphene oxide-chitosan nanocomposite based electrochemical DNA biosensor for detection of typhoid. Sensor Actuat B-Chem., 185, 675–684. https://doi.org/10.1016/j.snb.2013.05.014
  106. Singh, C. R., Kandasamy, K., & Sekar, A. (2015). A review on marine based nanoparticles and their potential applications. African Journal of Biotechnology , 14, 1525-32. https://doi.org/10.5897/AJB2015.14527
  107. Singh, R., Verma, R., Kaushik, A., Sumana, G., Sood, S., Gupta, R. K., &. Malhotra, B. D. (2011). Chitosan-iron oxide nano-composite platform for mismatch-discriminating DNA hybridization for Neisseria gonorrhoeae detection causing sexually transmitted disease. Biosens. Bioelectron , 26, 2967–2974. doi: 10.1016/j.bios.2010.11.047
  108. Solanki, P. R., Patel, M. K., Ali, M. A., & Malhotra, B. D. (2015). A chitosan modified nickel oxide platform for biosensing applications.Journal of Materials Chemistry B, 3, 6698-708. https://doi.org/10.1039/C5TB00494B
  109. Sousa, S., Duffy, C., Weitz, H., Glover, L. A., Bär, E., Henkler, R., & Killham, K.(1998). Use of a lux‐modified bacterial biosensor to identify constraints to bioremediation of btex‐contaminated sites.Environmental Toxicology and Chemistry. 17, 1039-1045.doi: 10.1002/etc.5620170609
  110. Srivastava, A., Srivastava, A., Srivastava, A., & Chandra, P. (2015). Marine biomaterials in therapeutics and diagnostic, In: Kim, S. K. (Ed), Springer Handbook of Marine Biotechnology, Springer, Berlin, Heidelberg, pp. 1247-1263.
  111. Sudhan, N., Lavanya, N., Leonardi, S. G., Neri, G., & Sekar, C. (2019). Monitoring of Chemical Risk Factors for Sudden Infant Death Syndrome (SIDS) by Hydroxyapatite-Graphene-MWCNT Composite-Based Sensors. Sensors (Basel) , 19, 3437. doi: 10.3390/s19153437
  112. Suginta, W., Khunkaewla, P., & Schulte, A. (2013). Electrochemical biosensor applications of polysaccharides chitin and chitosan. Chemical reviews , 113, 5458-5479. doi: 10.1021/cr300325r
  113. Sun, J., Yu, J., Jiang, Z., Zhao, Z., & Xia, Y. (2020). Fluorescent carbonized polymer dots prepared from sodium alginate based on the CEE effect. ACS Omega , 5, 27514-27521. https://doi.org/10.1021/acsomega.0c03995
  114. Taşaltın, N., Aydın, E., Karakuş, S., & Kilislioğlu, A. (2020). K-carrageenan/PVA/nano-eggshell biocomposite-based non-enzymatic electrochemical biosensor for low-level urea detection. Appl. Phys. A , 126, 827. https://doi.org/10.1007/s00339-020-03960-1
  115. Tavakoli, J., & Youhong, T. (2017). Hydrogel Based Sensors for Biomedical Applications: An Updated Review. Polymers , 9, 364. doi: 10.3390/polym9080364
  116. Teixeira, E. H., Arruda, F. V. S., do Nascimento, K. S., Carneiro, V. A., Nagano, C. S., Rocha da Silva, B., Sampaio, A. H., & Cavada, B.S. (2012). Biological applications of plants and algae lectins: an overview. In:  Chang, C. F. (Ed), Carbohydrates-Comprehensive Studies on Glycobiology and Glycotechnology , InTech, Rijeka, Croatia.
  117. Thouand, G., Daniel, P., Horry, H., Picart, P., Durand, M. J., Killham, K., Knox, O. G. G., DuBow, M. S., & Rousseau, M. (2003). Comparison of the spectral emission of lux recombinant and bioluminescent marine bacteria. Luminescence , 18, 145-55. doi: 10.1002/bio.716.
  118. Tonnina, D., Campanella, L., Sammartino, M. P., & Visco, G. (2002). Integral toxicity test of sea waters by an algal biosensor. Annali di chimica.  92, 477-484.
  119. Tramontano, C., Chianese, G., Terracciano, M., Napolitano, M., De Stefano, L., & Rea, I. (2020). Nanostructured Biosilica of Diatoms: From Water World to Biomedical Applications.  Appl. Sci ., 10, 6811. https://doi.org/10.3390/app10196811
  120. Turemis, M., Silletti, S., Pezzotti, G., Sanchís, J., Farré, M., & Giardi, M.T. (2018). Optical biosensor based on the microalga-paramecium symbiosis for improved marine monitoring. Sensors and Actuators B: Chemical , 270, 424-432. https://doi.org/10.1016/j.snb.2018.04.111
  121. Turner, A. P. (2000). Biosensors–sense and sensitivity,Science , 290, 1315-1317. DOI: 10.1126/science.290.5495.1315
  122. Vázquez, J. A., Rodríguez-Amado, I., Montemayor, M. I., Fraguas, J., del Pilar González, M., & Murado, M. A. (2013). Chondroitin sulfate, hyaluronic acid and chitin/chitosan production using marine waste sources: Characteristics, application and ecofriendly processes: A review. Mar. Drugs , 11, 747–774. doi: 10.3390/md11030747
  123. Velasco-Garcia, M. N. (2009). Optical biosensors for probing at the cellular level: A review of recent progress and future prospects.Semin Cell Dev Biol, 20, 27–33. doi: 10.1016/j.semcdb.2009.01.013
  124. Venil, C. K., Aruldass, C. A., Dufossé, L., Zakaria, Z. A., & Ahmad, W. A. (2014). Current perspective on bacterial pigments: emerging sustainable compounds with coloring and biological properties for the industry – an incisive evaluation. RSC Adv., 4, 39523. https://doi.org/10.1039/C4RA06162D
  125. Venkatesan, J., Lowe, B., Anil, S., Manivasagan, P., Kheraif, A. A. A., Kang, K., & Kim, S. (2015). Seaweed polysaccharides and their potential biomedical applications, Starch, 67 (5–6) 381-390. https://doi.org/10.1002/star.201400127
  126. Venkatesan, J., Manivasagan, P., & Kim, S. K. (2015). Marine Microalgae Biotechnology: Present Trends and Future Advances. In: Kim, S. K. (Eds), Handbook of Marine Microalgae , 1-9.
  127. Venkatesan, J., Sukumaran, A., Rao, S., & Kim, S. K. (2019). Macroalgal Fucoidan for Biomedical Applications. In: Ravishankar, G. A., & Ambati, R. R. (Eds). Handbook of Algal Technologies and Phytochemicals. Volume I, Food, Health and Nutraceutical Applications. CRC Press pp. 13-24.
  128. Verma, D., & Fortunati, E. (2019). Biopolymer processing and its composites: An introduction. In: Biomass, Biopolymer-Based Materials, and Bioenergy, Woodhead Publishing Series in Composites Science and Engineering, pp. 3-23.
  129. Wang, L., Xu, M. E., Luo, L., Zhou, Y., & Si, P. (2018). Iterative feedback bio-printing-derived cell-laden hydrogel scaffolds with optimal geometrical fidelity and cellular controllability. Sci. Rep.,  8, 2802. https://doi.org/10.1038/s41598-018-21274-4
  130. Xu, S. C., Zhang, Y. Y., Dong, K., Wen, J. N., Zheng, C. M., & Zhao, S. H. (2017). Electrochemical DNA biosensor based on graphene oxide-chitosan hybrid nanocomposites for detection ofEscherichia coli O157:H7. Int J Electrochem Sc. , 12, 3443–3458. doi: 10.20964/2017.04.16
  131. Zhang, Y., Zhnag, W., Zhnag, Q., Li, K., Liu, W., Liu, Y., & Banks, C. E. (2014). Green electrochemical sensing platforms: utilizing hydroxyapatite derived from natural fish scales as a novel electrochemical material for the sensitive detection of kidney injury molecule 1 (KIM-1). Analyst, 139, 5362-5366. DOI https://doi.org/10.1039/C4AN00957F
  132. Zhao, S., Zhou, Y., Wei, L., & Chen, L. (2020). Low fouling strategy of electrochemical biosensor based on chondroitin sulfate functionalized gold magnetic particle for voltammetric determination of mycoplasma ovipneumonia in whole serum. Analytica chimica acta , 1126, 91–99. doi: 10.1016/j.aca.2020.06.015.
  133. Zong, S., Cao, Y., Zhou, Y., & Ju, H. (2006). Zirconia nanoparticles enhanced grafted collagen tri-helix scaffold for unmediated biosensing of hydrogen peroxide. Langmuir: the ACS journal of surfaces and colloids , 22, 8915–8919. doi: 10.1021/la060930h.