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Abstract1

Marine microbial ecosystems underpin global biogeochemical cycles and play a2

central role in the regulation of Earth’s climate. These communities are extremely3

diverse, and their taxonomic composition varies considerably across ocean basins.4

It has however been difficult to establish links between taxonomic diversity and5

ecosystem function, and the ecological and evolutionary mechanisms underpinning6

taxonomic variation are not well understood. Here we use an individual-based7

eco-evolutionary model in which taxonomic diversity emerges as a consequence of8

evolutionary history. Using this model we are able to show that virtually unlim-9

ited genetic divergence can be supported in highly abundant and rapidly evolving10

assemblages, even in the absence of niche separation. With a steady stream of11

genetic, epigenetic and plastic heritable changes to phenotype, competitive exclu-12

sion may be weakened, allowing sustained coexistence of nearly neutral pheno-13

types with highly divergent lineages. This response may help to explain observed14

patterns of taxonomic diversity and functional redundancy - without recourse to15

hidden dimensions of niche partitioning. In light of these results we suggest that16

individual-level variability is a key driver of species coexistence and the mainte-17

nance of microbial biodiversity.18

19
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Introduction22

Marine microbial communities are a fundamental driver of global biogeochemical cy-23

cles. Photosynthetic plankton form the energetic foundation of virtually all pelagic24

ecosystems, while cycling among broader networks of individuals plays a key role in the25

regulation of Earth’s climate (Guidi et al., 2016). While individual metabolic processes26

and functional traits are often well correlated with environmental conditions (Thomas27

et al., 2012; Marañón et al., 2012; Ustick et al., 2021; Cohen et al., 2021), our abil-28

ity to predict when and where individual taxa become important is complicated by an29

extremely high degree of taxonomic diversity. Indeed, among the approximately 102830

microbial cells living in the ocean (Flombaum et al., 2013), recent bioinformatic surveys31

have identified the existence of up to 150,000 genera of marine eukaryotes in the photic32
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layer alone (de Vargas et al., 2015).33

In addition to this raw taxonomic diversity, globally important metabolisms and34

functional traits often appear broadly distributed across the tree of life, and in any35

given environment may be performed equally well by a large number of individual taxa.36

There is thus a high degree of functional redundancy in marine ecosystems (Louca et37

al., 2016), with the selection of traits and function occurring irrespective of taxonomic38

classification. For example, global metagenomic analysis points to high taxonomic dis-39

similarity among functionally very similar communities (Sunagawa et al., 2015; Louca40

et al., 2018). Likewise, single-cell genomic analyses have shown extremely high levels of41

genetic divergence among coexisting cells from the same taxonomic group (Rynearson42

and Armbrust, 2000; Kashtan et al., 2014).43

This pattern of functional redundancy brings a new perspective to a longstanding44

question in marine microbial ecology, namely “how it is possible for a number of species45

to coexist in a relatively isotropic or unstructured environment all competing for the46

same sorts of materials?” (Hutchinson, 1961). As initially suggested by Hutchinson47

himself, many valid solutions to this “paradox” exist (Record et al., 2013). Species48

compete for (and are limited by) a broad range of chemical and biological factors that49

enable coexistence (Tilman, 1977). It is also clear that even a well-mixed ocean is50

neither isotropic nor unstructured (d’Ovidio et al., 2010). Spatial partitioning can thus51

occur at many different scales and ecological equilibrium is often prevented by external52

perturbations (Litchman et al., 2009) and internal dynamics (Huisman et al., 1999) such53

that competitive exclusion can be indefinitely postponed.54

The mechanisms above work by partitioning coexisting species into different niches or55

by separating them in time or physical space, but do not address the potential for more56

than one species to coexist within a single niche. An alternative perspective, provided57

by the neutral theory of biodiversity (Hubbell, 2001), suggests that an unlimited degree58

of diversity can be maintained within the same niche if species have effectively identical59

fitness in their shared environment.60

However, while the neutral theory provides a useful null hypothesis for observed61

patterns of diversity, it is often criticised on the grounds that even tiny differences in fit-62

ness must eventually lead to competitive exclusion (in the absence of other mechanisms;63

Hardin, 1960; Loreau, 2004). This is argued to be particularly true in microbial popu-64

lations, for which huge population sizes tend to diminish the importance of stochastic65

effects that might delay exclusion (Louca et al., 2018).66

While these ecological considerations suggest that neutrality is an unlikely outcome67
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in microbial communities, the degree to which species can coexist is also known to be68

affected by evolution (Kremer and Klausmeier, 2017). Laboratory cultures have been69

shown to display a high level of phenotypic convergence among traits that are strongly70

correlated with fitness (Blount et al., 2018), suggesting differences in many trait values71

and their associated fitness may be minimised through time. On one hand, conver-72

gent evolution can maintain diversity by eliminating the fitness differences that lead to73

exclusion (Scheffer and Nes, 2006; Hubbell, 2006). On the other, the same processes74

can eliminate complementary differences in phenotype that support coexistence, thus75

driving a steady decline in biodiversity (Shoresh et al., 2008; Sauterey et al., 2014).76

Among these modelling studies, a common feature is that the evolving community is77

represented as discrete populations differentiated by ecophysiological traits. This pre-78

cludes the examination of potentially important processes of birth, death and mutation79

occurring at the individual level, or of the substantial variation known to underlie a given80

set of trait values. These individual level processes require consideration. For example,81

individual-based models (IBMs) have shown that phenotypic noise among individuals in82

large populations may be sufficient to add variation to the outcomes of local competi-83

tions, allowing extended coexistence of highly similar populations (or even populations84

of equal average fitness) within the same niche (Menden-Deuer et al., 2021). This sug-85

gests that competitive exclusion may proceed much more slowly given realistic levels of86

noise between genotype and phenotype when populations have the same or very similar87

average fitnesses (although this does not explain why small differences in average fitness88

would not eventually lead to exclusion).89

In this article we address questions of functional and taxonomic diversity using an90

ecological and evolutionary (eco-evo) model that makes no prior assumptions regarding91

the differentiation of populations, species or ecotypes. Instead, the community is resolved92

at the individual level, with species and populations treated as emergent properties93

based on genetic rather than phenotypic distance. To achieve this the model includes a94

neutral genomic component that allows us to track descent and diversity under a range95

of scenarios. With simulations based on realistic ecophysiological parameters, we show96

that virtually unlimited diversity is a natural consequence of highly abundant evolving97

populations, with rapid trait evolution allowing lineages to avoid population bottlenecks98

despite sharp changes in environmental conditions.99
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An individual-based model of microbial evolution100

The eco-evolutionary model provides a very simple representation of a closed marine101

microbial ecosystem, with state variables for nutrients, individual phytoplankton cells102

and organic detritus (Beckmann et al., 2019). The phytoplankton community is repre-103

sented as a collection of individual cells that take up nutrients and increase in size as a104

function of their environmental conditions and ecophysiological traits. Cells divide into105

two daughter cells once they have doubled in biomass relative to a predefined threshold.106

Cells die through a stochastic process, producing organic detritus that is remineralised107

to inorganic nutrient at a fixed linear rate. Individual cells differ only in terms of their108

optimal temperature for growth, which is passed from generation to generation with109

some error, allowing for evolution by selection (Figure 1). Here, heritable variation is110

modelled as a random walk in a one-dimensional trait space, which represents the or-111

ganisms’ thermal optima. Heritable changes in trait values may be attributable to any112

combination of genetic and epigenetic mutations, as well as transgenerational plasticity113

that can affect the trait in question. These changes need not correspond directly to114

genetic point mutation rates, but rather to the per-generation rate of trait value change,115

which can be affected by all or some of these processes. Hereafter we refer to heritable116

trait changes generically as “mutation”, regardless of the molecular cause of the change.117

A more detailed description of the individual-based model can be found in Appendix A118

and Beckmann et al. (2019).119

In addition to the model components laid out by Beckmann et al. (2019), each120

simulated individual is assigned two heritable but ecologically-neutral characteristics: a121

binary string that undergoes a single random bit flip at each generation, and a ‘colour122

trait’ encoded as a three-element vector (red, green and blue) that also varies randomly123

from generation to generation (see Methods). The binary genome can be thought of124

as representing a two-base equivalent to a non-coding RNA or DNA sequence. Given125

that (a) genomes are identical at the point of division, (b) changes in the genomes126

are not under selection, and (c) genomes acquire mutations at a fixed rate, the binary127

genome can be used as a molecular clock. Changes through time accrue according to a128

2-base version of the Jukes and Cantor (1969) model of base substitutions (Appendix A).129

The colour trait is included primarily for visualisation, with closely-related individuals130

appearing with similar colours (Figure 1).131

5



Phenotypic and genotypic diversity within a single niche.132

Beckmann et al. (2019) initially ran their model with a total nutrient load of 5 µM N and133

a constant environmental temperature of 15◦C. The model converged to a steady state134

with individuals occupying a Gaussian distribution of thermal optima (15 ± 0.855◦C)135

centred on the environmental temperature. We repeated this experiment, running the136

model for 1000 years and obtaining an identical trait distribution.137

Using the neutral binary genome to estimate the genealogy of this population, Fig-138

ure 2 shows the estimated pairwise distance matrix for 1000 individuals sampled at the139

end of the 1000 year simulation. Although the simulation only includes a single thermal140

niche, we see multiple distinct genotypic clusters coexisting within that niche, each with141

many tens of thousands of generations worth of genetic divergence from the others.142

In order to explain this prolonged coexistence within a single niche, we will examine143

mechanisms of phenotypic and genetic diversity within the simulation.144

Within niche phenotypic diversity145

Figure 3a shows the simulated distribution of traits at the end of the 1000 year simula-146

tion. In a system without mutation, selection would drive the system towards dominance147

by a single optimally-adapted phenotype. This can be seen Figure 3b, in which the148

dashed line shows the expected net growth rates of different phenotypes at an ecologi-149

cal equilibrium (when nutrients are depleted to the minimum level required to support150

the best-adapted phenotype; Tilman, 1980). This fitness landscape shows that only151

the optimal phenotype can achieve a non-negative net growth rate, and thus all other152

phenotypes should eventually go extinct. While the associated timescales of extinction153

(calculated as the inverse of the net growth rate and shown by the solid line in Figure 3b)154

indicate that some phenotypes close to the optimum may take an extremely long time155

to go extinct, this is not sufficient to explain the trait distribution seen in Figure 3a – in156

a simulation of 1000 years duration the timescales of exclusion suggest a much narrower157

distribution of surviving phenotypes.158

Figure 3c shows that the equilibrium trait distribution is maintained by a “mutation-159

selection balance” (Zhang and Hill, 2005), with imperfect heritability of traits serving160

to level out differences in net growth rate across the trait axis. A net excess of births161

over deaths around the optimal phenotype is exactly balanced by a mutational flux of162

individuals towards less favourable parts of the trait axis. This flux likewise supports a163

net excess of deaths relative to births further away from the optimal trait value.164
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Overall, the opposing forces of mutation and selection serve to flatten the fitness165

landscape (the solid line showing zero net growth in Figure 3c), which in theory allows166

unlimited coexistence across the trait space. In practice, the breadth of the trait dis-167

tribution is limited by the increasing likelihood of extinction for less well-adapted (and168

hence less abundant) phenotypes. Nonetheless, the constant divergent flux of individuals169

provides a degree of standing trait variability.170

Within niche genotypic diversity171

Is this mutational flattening of the fitness landscape sufficient to support the sustained172

divergence of genotypes seen in Figure 2? To explore this question we modified the IBM173

to track the evolutionary trajectories of all simulated lineages, recording the time and174

phenotype (i.e. thermal optimum) associated with every cell division throughout the175

simulation.176

This is shown in Figure 4a, which shows both the emergent abundance distribution177

during the first fifteen years of the ‘constant temperature’ simulation described above178

and the evolutionary trajectories of 20 individuals that were sampled during the fifteenth179

year of that simulation. Each of these sampled cells can be tracked back through the180

generations to the initial seed, providing an exact genealogy with complete information181

regarding phenotypic changes at each generation.182

The plotted trajectories in Figure 4a indicate that individual lineages, while centred183

around the optimal temperature, show considerable phenotypic variability throughout184

the simulation. This pattern again occurs through a balance of mutation and selection,185

as lineages move around the optimal trait value in a constrained random walk. Here186

the introduction of trait variability is tempered at each generation as individuals with187

thermal optima further from the environmental temperature are less likely to successfully188

reproduce.189

The simulated pattern of descent suggests two related consequences. First, indi-190

vidual lineages are not associated with a single constant fitness on which selection can191

consistently act over long periods (even though the trait itself may be strongly and192

consistently correlated with fitness). Second, different lineages tend to exhibit similar193

average fitness over reasonably long time scales (decades or more). As a consequence,194

our simulations show extended coexistence of divergent lineages (Figure 2). While such195

a high degree of lineage divergence should be expected within a homogeneous popula-196

tion (Kingman, 1982), it occurs here for a group of competing and evolving lineages197

with clear differences in phenotype and associated fitness. In the following, we will test198
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whether this mechanism also applies in a temporally-varying environment, under which199

changing conditions might serve to accelerate competitive exclusion.200

Dynamic environmental forcing201

Beckmann et al. (2019) explored the behaviour of the model in response to a number202

of alternative environmental forcing scenarios. We repeat those experiments here with203

identical model parameters (Table A.1), but over a slightly extended timescale of 15204

years. Figure 4b-c shows the results of these simulations, which in all cases are consistent205

with the results presented by Beckmann et al. (2019).206

In Figure 4b we introduced a sinusoidal annual cycle of ±5◦C on top of the mean207

temperature of 15 degrees (red lines). As was the case in a constant environment, the208

lineage tracking highlights a very high degree of lineage coexistence. Furthermore, while209

the 20 individuals sampled towards the end of the simulation are broadly distributed in210

terms of their thermal optima (between 13 and 17◦C), they are descended from indi-211

viduals with a narrower distribution of thermal optima early in the simulation. This is212

highlighted in Figure 5, which shows the 95th percentiles of the abundance distribution213

of all individuals throughout the simulation alongside the equivalent percentiles of the214

lineages sampled towards the end of the simulation. While the abundance distributions215

show that a significant number of individuals did adapt to the extremes of temperature,216

the lineage distributions show that very few of these survived to the end of the simula-217

tion. Adaptation to the extremes of temperature therefore appear to be an evolutionary218

dead-end in this simulation, with phenotypes closer to the mean temperature most likely219

to survive in the long run.220

Finally, in panels c and d of Figure 4, we explored the response of the system to221

an abrupt change in the environmental forcing at t = 5 years. In panel c we instantly222

increased the average temperature by 5◦C, while in panel d we added a rapidly oscillating223

(square wave) diurnal cycle of ±5◦C. The eco-evolutionary responses to these changes224

again reflect the findings of Beckmann et al. (2019), with the simulated trait distribution225

either adapting to the warmer temperature (panel c) or branching into two distinct226

ecotypes adapted to the warmer and colder extremes of the fluctuating temperature227

range (panel d).228

In both cases, the plotted evolutionary trajectories reveal that the traits of of sam-229

pled lineages all began changing towards the new optimal traits before the change in230

environmental conditions. While these changes increased the likelihood of extinction231
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in the old environment, they provided a critical fitness advantage once the conditions232

changed.233

This pattern of evolution is characteristic of a multiple-origin soft selective sweep234

(Hermisson and Pennings, 2017). When the environment changes (Figure 4b to c),235

standing phenotypic variation provides multiple seeds by which genetic variation can be236

carried through to the new environment, easing the severity of population bottlenecks237

and allowing greater coexistence than might otherwise be predicted from the competitive238

exclusion principle.239

Comparison to a strictly neutral model240

To test the degree to which evolution can alleviate the strength of population bottlenecks,241

we compare the simulated timescales of lineage coalescence (going backwards in time)242

to predictions of a strictly neutral model (Halley and Iwasa, 2011, and Appendix B).243

Figure 6a shows that in a constant environment the simulated pattern of coalescence244

closely follows the theoretical predictions, with over 90% of the lineages remaining dis-245

tinct through 800 generations.246

Coalescence is only slightly accelerated with the introduction of a seasonal temper-247

ature cycle (b), but the sudden change in temperature of 5◦C introduces a population248

bottleneck (c), albeit with just under one third of the lineages successfully adapting to249

the change in conditions (also shown in Figure 4c). The population bottleneck is less250

severe when speciation is enabled through the introduction of a diel cycle (d). While251

these latter two experiments do lead to a significant loss of diversity, the introduced252

environmental perturbations are extremely harsh, with temperature changing by 5-10◦C253

in an instant. In panels (e) and (f) we introduce more realistic (although arguably still254

severe) changes, adding a 0.5◦C per year warming (from the end of year 5) to the ex-255

periments with a constant temperature (e) and an annual cycle (f). In the absence of256

the seasonal cycle this warming term had almost no effect on the pattern of coalescence257

(panel e). However, when introduced to a simulation with a seasonal cycle, the warming258

term led to a markedly more rapid loss of diversity. This likely occurs as yearly increases259

in temperature favour species adapted to the warmest part of the annual cycle over those260

adapted to the coldest temperatures.261
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Discussion262

Perspectives on microbial life in the ocean are increasingly shaped by the vast amounts263

of molecular information made available by modern sequencing techniques (Mock et al.,264

2016). Despite a large and growing number of papers that provide realistic exceptions265

to the so-called paradox of the plankton (Record et al., 2013), patterns of taxonomic266

diversity are regularly interpreted through a perspective of competitive exclusion and267

niche partitioning. A high degree of coexistence is often attributed to (potentially cryp-268

tic) niche separation (Louca et al., 2018) - but this strictly requires one hidden niche269

dimension for every additional coexisting species at equilibrium.270

The neutral theory of biodiversity (Hubbell, 2001) provides an alternative view,271

attributing patterns of taxonomic diversity to the stochastic nature of births and deaths.272

Clusters of distinct individuals can emerge in the absence of any selective pressures,273

driven by the random process of ecological drift. However, the importance of stochastic274

processes is thought to be diminished in extremely abundant populations, for which even275

relatively small increases in fitness lead to deterministic sweeps of beneficial mutations276

through the population, resetting genetic divergence to a low level (Louca et al., 2018).277

Given enough time, even small consistent differences in fitness will lead to competitive278

exclusion (Hardin, 1960), but the associated timescales can be surprisingly large even279

for appreciable differences in phenotype. Scheffer and Nes (2006), for example, showed280

the emergence and coexistence of similar (but not identical) clusters of phenotypes over281

several thousands of generations. Here we show a similar result, but with timescales of282

exclusion extended indefinitely as a consequence of a constant input of heritable variation283

of traits, arising from genetic, heritable epigenetic, and heritable plastic changes.284

This pattern of indefinite (albeit stochastic) coexistence can be understood from285

two perspectives. From a phenotypic perspective, the ecological components of the286

model point to dominance by a single ‘optimal’ phenotype under constant environmental287

conditions (Figure 3b). However, the mutational flux of individuals from better to288

worse adapted phenotypes effectively flattens the fitness landscape (Figure 3c), allowing289

unlimited coexistence. Alternatively, from a lineage-based perspective, organisms do not290

have perfectly fixed traits from one generation to the next, and lineages thus occupy a291

distribution of traits around the optimal value. Over long periods, the average fitness of292

different lineages converge to the effectively neutral values, again allowing much longer293

periods of coexistence (set by population genetic rather than ecological considerations;294

Figure 6b).295
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These results are driven by a mutation-selection balance that requires a depend-296

able and relatively high rate of heritable trait changes in comparison to the exclusion297

timescale. For our simulations, Figure 3 shows that deviations from the thermal opti-298

mum of up to 1◦C are associated with exclusion timescales of over a year - which equates299

to several hundred generations for the microbial plankton under consideration. Into this300

system we included heritable trait changes in the thermal optimum as Gaussian noise301

with a standard deviation of 0.1◦C. While this may seem high, it is worth noting that302

thermal tolerance is affected by many genetic (Chakravarti et al., 2020) and otherwise303

heritable factors (McGuigan et al., 2021) and there are thus many potential pathways304

for this trait to evolve (Schaum et al., 2018). Thermal tolerance is also known to evolve305

extremely rapidly in response to environmental changes (∼200 generations), even when306

such changes rely entirely on de novo variation and take place in asexual populations307

(Jin and Agust́ı, 2018; O’Donnell et al., 2018). Our simulated evolutionary trajectories308

(Beckmann et al., 2019) are not grossly out of alignment with responses observed in309

laboratory cultures (O’Donnell et al., 2018) or implied from field observations (Thomas310

et al., 2012). Further, running simulations with slower mutation rates prevented the311

model from showing any meaningful evolutionary response at all. Populations either312

remained unchanged (in response to sinusoidal forcing) or went extinct (in response to313

sudden temperature changes). Given the sheer size of microbial populations, and the314

ease with which they may generate the variation required to adapt extremely rapidly in315

laboratory experiments, the high rates of heritable trait change used in this model are316

reasonable.317

It should however be noted that rarer and more stochastic trait changes might not318

lead to similar patterns of soft selective sweeps and extended coexistence. If a single319

large beneficial trait change occurs in isolation, it is likely to displace all other lineages320

over a timescale related to the associated increase in fitness. For example, we ran several321

simulations for which mutations occurred 10 times less frequently, but with a standard322

deviation
√

10 times larger. While this gave an identical expected trait distribution over323

many generations, the increased stochasticity of the simulation led to harder sweeps and324

rapid competitive exclusion in response to environmental change. Furthermore, evolution325

along a single trait axis (in this case thermal tolerance) represents presents a fairly326

large target for beneficial changes. It remains to be seen what patterns of coalescence327

will emerge in a model where evolutionary changes occur in multiple trait dimensions328

simultaneously. In a much larger multidimensional trait space beneficial changes are329

likely to occur much less predictably, potentially shifting the system towards harder330
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selective sweeps and stronger competitive exclusion.331

These caveats notwithstanding, rapid evolution allows neutrality to emerge through332

a process of convergent and imperfect evolution and we see the sustained coexistence of333

phenotypically-similar but genetically-distinct lineages. This is a defining characteristic334

of functional redundancy (Louca et al., 2016; Louca et al., 2018). The assumptions of our335

model demonstrate that this phenomenon does not require the existence of additional336

hidden niche dimensions. Furthermore, our simulations suggest that high numbers of337

lineages are able to traverse even abrupt changes in environmental conditions (Figure 4),338

with the adaptive response to environmental changes underpinned by standing pheno-339

typic variation, rather than the emergence of a single beneficial mutation. These patterns340

of evolution are characteristic of soft selective sweeps, which require either standing vari-341

ation or a consistent supply of new beneficial mutations - both of which are extremely342

likely in highly abundant and rapidly reproducing microbial populations. Indeed, we343

were able to demonstrate the presence of soft sweeps in modelled populations on the344

order of only one million cells, somewhat less than the estimated 1027 Prochlorococcus345

cells currently alive in the ocean, or even the estimated effective population size of 1013346

in a well-mixed parcel of sea water (Kashtan et al., 2014).347

Despite the inclusion of selection and environmental variability, our comparisons to348

the neutral model of coalescence suggest that strong population bottlenecks are only349

likely to occur under extremely rapid environmental changes that seem unlikely to occur350

over large spatial scales in a well-mixed ocean. Several of our simulations remain con-351

sistent with a strictly neutral theory (Kingman, 1982; Halley and Iwasa, 2011), which352

predicts that the expected timescale of diversity loss will be proportional to the effec-353

tive population size (Equation B.5). For the aforementioned well-mixed population of354

Prochlorococcus, this is much longer than required to explain the observed (Kashtan355

et al., 2014) millions of years of divergence.356

Our findings suggest that rapid evolution likely plays a key role in the coexistence357

of phenotypically similar but genetically distinct species in microbial communities, with358

functional redundancy emerging through convergent evolution. Nonetheless, our sim-359

ulations remain highly idealised, in particular neglecting to account for dispersal and360

mixing of communities in a three-dimensional environment. Further work is therefore361

required to explore the significance of soft selective sweeps in a metacommunity context.362
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Figures363

Figure 1: Genealogy in the IBM after 7 days growth at a constant environmental tem-
perature. Terminal nodes at the perimeter represent live cells that have descended from
the initial seed at the centre. Each non-terminal node represents a cell division, with
branch lengths linearly proportional to the time between divisions. Nodes are coloured
according to the thermal optimum of each dividing cell (red prefers warmer, blue prefers
colder). Branch colours correspond to value of the neutral rgb gene. Note that branch
colours change gradually along branches, such that related agents have similar colours.
Extinct lineages are not shown.
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Figure 2: Estimated divergence matrix for 1000 cells sampled at the end of a 1000
year simulation, as derived from from the binary genome. The estimated number of
generations since the MRCA is shown according to the right-hand colour scale. The
lower colour scale shows each individual’s neutral colour trait.
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Figure 3: Trait distribution and mechanisms of coexistence. Panel (a) shows the eco-
evolutionary equilibrium distribution of phenotypes as a function of the thermal opti-
mum minus the environmental temperature (Topt−T ). Panel (b) shows the equilibrium
net growth rate (or fitness landscape) in the absence of mutations (dashed line) and
the associated time scales of competitive exclusion (solid line; calculated under the as-
sumption that limiting nutrients are drawn down to the equilibrium requirement of the
best-adapted species). Time scales of competitive exclusion are calculated as the inverse
of net growth rate. Panel (c) shows the equilibrium balance of births-deaths vs. mu-
tation. Mutation acts as a sink for the best-adapted phenotypes and as a source for
maladapted phenotypes, thus supporting a broad distribution of traits with equal (zero)
fitness.
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Figure 4: Eco-evolutionary plankton dynamics during three initial 15 year simulations
with the IBM. Each simulation was seeded at t = 0 with a single cell with a thermal
optimum of 15◦C. Grayscale contours in each panel show the distribution of individu-
als among phenotypes through time. The branching lines show the genealogy of 50 cells
sampled at random from cells alive during the final year of the simulation. Thermal phe-
notype is shown with the y coordinate, time of division with the x coordinate. Branch
colours correspond to value of the neutral colour trait. The red lines show the range of
environmental temperatures throughout each simulation: Panel a - constant tempera-
ture; panel b - sinusoidally varying temperature (period 1 year, amplitude 10◦C); panel
c - constant temperature until t = 5 years, switching to a diurnal square wave (period 1
day, amplitude 10◦C).
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Figure 5: Evolutionary history of cells sampled in the last year of the simulation com-
pared to abundance distributions throughout the simulation. The smooth black lines
show the 95th percentile of the abundance distribution at each point in the simulation.
Evolutionary trajectories of 1000 cells sampled during the final year of a simulation are
shown as grey lines. The 95th percentiles of this distribution are shown by the jagged
black lines. Most of the cells sampled in the last year of the simulation (including those
adapted to extremes of the temperature range) are descended from ancestors with ther-
mal optima closer to the mean environmental temperature. Most of the cells that were
adapted to extremes of temperature early in the simulation do not have descendants
alive at the end of the simulation.
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Figure 6: Patterns of coalescence under different environmental scenarios. Axes a-d cor-
respond to the experiments shown in Figure 4. Axes e-f show results from two additional
experiments: (e) 0.5◦C per year warming applied from the end of year 5, (f) as for e, but
with an annual cycle of ±5◦C. In each case coalescence patterns are shown for 100 ran-
domly selected phylogenies, in comparison the neutral model (black lines, mean±1 s.d.).
Inset panels show biomass as a function of time (x axis) and thermal optimum (y axis)
for each experiment.
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Appendix485

A Model Description486

A.1 Individual-based Eco-Evo model487

The eco-evo model we develop builds upon the individual-based model (IBM) presented488

by Beckmann et al. (2019). The model represents a closed system, in which individual489

phytoplankton (bi) grow as a function of temperature and nutrient availability, divide490

and die stochastically. Dead phytoplankton enter a detrital pool (D), which is converted491

back to inorganic nutrient (N) via a linear remineralisation term.492

Cellular growth of individual phytoplankton (µi) is defined in relation to a theoretical493

maximum of µ0 that is modified by temperature- and nutrient-dependent functions (FT494

and FN ).495

dbi
dt

= µi = µ0 · bi · FT · FN (A.1)

Here µ0 is the maximum doubling rate and b0 is the reference cellular biomass (Beckmann496

et al., 2019).497

The thermal tolerance function decreases growth rate as the environmental temper-498

ature T deviates from a phytoplankton’s thermal optimum (Topt). The breadth of the499

associated thermal niche is given by θ.500

FT (T ) = exp
[
−
(T − Topt

θ

)2]
(A.2)

Nutrient limitation is implemented with a Monod (1950) function, with a half-saturation501

constant of kN .502

FN (N) =
N

kN +N
(A.3)

Individuals increase their cellular biomass at a rate set by their physiological traits (µ0,503

Topt, etc) and the environmental conditions (T and N). Each cell grows until it reaches504

or surpasses a division threshold, which is set to twice its minimum viable biomass of b0.505

When this point is reached, the cell’s biomass is divided equally between two daughter506

cells.507

Mortality is applied stochastically, with cells having a fixed probability of death (γ0),508

at each time step. The number of live cells in the model thus changes according to the509

balance of agent divisions and agent deaths at each time step.510
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The overall phytoplankton biomass concentration in the model is calculated diag-511

nostically as the sum of the biomass of all live cells.512

P =
1

V

M∑
i=1

bi (A.4)

where M is the number of live cells and V is the volume of the modelled culture. Note513

that we regulate the number of cells in the model by controlling the culture volume. We514

do not use the concept of super-individuals.515

In contrast to the phytoplankton, which are treated as a collection of individuals,516

the nutrient and detrital pools are treated as homogeneous bulk variables. At each517

time step, uptake from the nutrient pool is taken as the sum of uptake by all individual518

agents, while production of detritus is taken as the combined biomass of all dying agents.519

Remineralisation from the detrital pool to the nutrient pool proceeds as a linear function520

of detrital biomass at each time step, with a mass specific rate of τ .521

Nt+1 = N + (τD −
M∑
i=1

µi)∆t (A.5)

Dt+1 = D + (
∑
i=idie

bi − τD)∆t (A.6)

here idie is the index of all cells dying in a particular time step.522

Evolution Trait variation and inheritance are implemented in the IBM by assigning

each newly divided agent the thermal optimum of its parent, perturbed by a value drawn

from a Gaussian distribution with mean zero and standard deviation σM .

T ′opt = Topt + σM

Changes in the thermal optimum affect the likelihood of survival by increasing or de-523

creasing the agent’s growth rate, with better adapted agents more likely to be reproduced524

in each subsequent generation.525
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Model parameter Symbol Value Units

Total nutrient load Nt 5 mmol N m−3

Maximum cellular growth rate µ0 ln 2 d−1

Minimum cellular biomass b0 5× 10−10 mmol N
Nutrient half-saturation kN 0.15 mmol N m−3

Linear mortality rate γ0 0.1 d−1

Remineralisation rate τ 0.25 d−1

Thermal optimum Topt variable ◦C
Breadth of thermal niche θ 6 ◦C
Standard deviation of ‘mutations’ σM 0.1 ◦C
Time step ∆t 1/24 d
Volume of growth culture V 10−4 m3

Table A.1: Standard model parameters.

A.2 Phylogeny526

A.2.1 Lineage tracking.527

At each cell division we assign the two daughter cells a unique identity number. We also528

record the thermal optimum, time of division and the identity of the parent cell. This529

record is purged of extinct lineages at the end of each year in order to maintain the size530

of the associated files at a manageable level. This approach allows us to reconstruct531

evolutionary trajectories in the model with complete accuracy, as shown in Figure 4.532

A.2.2 Ecologically-neutral colour trait.533

While precise, the lineage tracking approach is also very expensive computationally and534

produces vast amounts of data. As an alternative approach, we added an ecologically-535

neutral colour trait to identify closely related individuals.536

The neutral colour trait is encoded as a heritable three-element vector that corre-

sponds to a unique colour in the red-green-blue (rgb) colour space.

#   ‰

rgb = [r, g,b]

The rgb vector is replicated at each cell division and each element then immediately
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undergoes a mutation, drawn from the standard normal distribution (φ ∼ N [0, 1]).

#   ‰

rgb′ =
#   ‰

rgb +
#‰

φ

As the value of the rgb vector has no effect on the fitness of the individual, changes in the537

rgb genome through generations are mathematically equivalent to a Gaussian random538

walk in a three-dimensional space. The expected euclidean distance between two rgb539

vectors d̂rgb is therefore given as a function of the number of generations (tgen) since540

their most recent common ancestor541

d̂rgb =
√

4tgen · c (A.7)

With a standard deviation of542

σd̂rgb =
√
tgen (A.8)

Here c is a correction factor that accounts for the number of dimensions, nrgb, using the

ratio of two gamma functions.

c =
Γ(

nrgb+1
2 )

Γ(
nrgb

2 )

While the distance between agents in the rgb colour space can be used to estimate543

the time since their most recent common ancestor, the ratio of equations A.8 and A.7544

suggest an expected coefficient of variation (c.v.) of (2c)−1. For a three-element rgb545

vector, the expected euclidean distance will be broadly distributed, with a standard546

deviation of ±44% of the expected value. Even if the rgb vector is extended to include547

50 dimensions, the c.v. only drops to ±10%. This is somewhat imprecise (as shown in548

Figure A.1a), but the colour trait will be useful for identifying closely related individuals549

(e.g. Figure 1).550

A.2.3 Binary genome.551

While the neutral colour trait is useful for visualisation, it lacks the precision required

to accurately track descent in the model. To achieve this we instead turn to the binary

genome, for which each individual in the simulation is assigned a binary string of L =

2150 bits.
#   ‰

bin = [bin1,bin2, ...,binL]
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Figure A.1: Theoretical and simulated accumulation of differences in the neutral
genomes. Panel (a): RGB genome. The black lines shows the expected accumula-
tion of Euclidean distances between the 50-element rgb genomes (dashed lines are ±1
standard deviation). Panel (b): Binary genome. The black lines show the expected
rate of accumulation of bitwise differences between 2350 bit binary genomes (±1 stan-
dard deviation). In both cases the thick red lines indicate the estimated number of
generations for a given distance (±1 standard deviation). Pale lines show the simulated
distribution of pairwise distances or estimated divergences among 25 individuals. While
both genomes are encoded as a 50-element double precision vectors, it is clear that the
binary genome gives a much more precise estimate of the number of generations, as long
as the true number of generations is less than approximately half the number of bits.
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In practice, the long binary string can be efficiently encoded as a 50-element vector552

of floating point values, with 53 bits stored in the significand of each double precision553

element. (We could have stored 64 bits as unsigned integer values, but this was not554

computationally efficient given our code structure.)555

At each generation the binary genome is inherited from the parent cell and undergoes

a single random bit-flip with a probability of pmut = 1. The bit to be flipped is drawn

from a discrete uniform distribution; Rbin ∼ U [1, L].

bin′i =

1− bini if Rbin = i

bini else

With one randomly-selected bit flipped at an average rate of once every 1/pmut genera-556

tions, the expected normalised Hamming distance between two binary genomes (d̂bin) is557

given as a function of the number of generations (tgen) since their most recent common558

ancestor.559

d̂bin =
1

2
[1− exp(− 4·tgen·pmut

L
)] (A.9)

with a standard deviation of560

σd̂bin =

√
d̂bin(1− d̂bin)

L
(A.10)

These two equations (visualised in Figure A.1b) show that d̂bin increases predictably with561

the number of generations, saturating at 0.5 as the number of mutations approaches the562

length of the binary genome (L). The non-linearity of the apparent trend is attributable563

to unobservable multiple flips of the same bits (homoplasy), as predicted by the two-base564

Jukes and Cantor model (black line).565

It is also clear that d̂bin increases in a much more predictable way than d̂rgb (as long566

as the number of mutations remains less than approximately half the number of bits in567

the binary genome). This makes it a much better candidate for use as a molecular clock.568

Accordingly, the estimated number of generations, t̂gen since the divergence of any569

two lineages can be estimated from the simulated Hamming distance, d, between their570

binary genomes.571

t̂gen = − 1

4pmut
ln(1− 2d) (A.11)
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with standard deviation572

σt̂gen =
1

pmut

√
d(1− d)

4L(1− 2d)2
(A.12)

Equation A.12 and Figure A.1b demonstrate that the binary genome can be used to573

estimate divergence with a high degree of precision, as long as tgen < L/2 (N.B. longer574

simulations can be resolved by decreasing the probability (pmut) of a bit flip at each575

generation).576

The demonstrated precision of the binary clock (Figure A.1) allows us to reconstruct577

the simulated phylogeny without the expense of recording every single agent division.578

The basic principles of the binary clock are shown in Figure A.2. The dendrogram in579

Panel a shows the estimated phylogenetic tree for 100 agents sampled from a simulation580

similar to the one shown in Figure 4d (but with a much smaller population size of ∼5,000581

to allow a more structured tree). Panel b shows the first 128-bits of the corresponding582

binary genomes (one row for each of agent). The known distance matrix from the lineage583

tracking is compared to the equivalent distance matrix estimated from the binary genome584

in Figure A.3.585

Figure A.2: Phylogeny and neutral genome of 100 individuals sampled at the end of a
simulation similar to the one shown in Figure 4d (but with a population of only ∼5,000).
The dendrogram in panel (a) represents an estimated phylogeny derived from the binary
genomes. Panel (b) shows the first 128 bits of the associated binary genomes. Zeros
are black, while ones shown with their neutral colour trait. The right-hand colour scale
show the thermal optima of each individual (red = hot, blue = cold).
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Figure A.3: Heat maps showing pairwise distance matrices for the same 100 cells pre-
sented in Figure A.2. Panel (a) shows known distances based on the lineage tracking.
Panel (b) shows distances estimated from the neutral binary genomes. In each panel
the left-hand colour scale shows the thermal optima of the sampled cells (red/blue =
warm/cold adapted). The right-hand colour scale shows the genealogical divergence in
generations. The bottom colour scale shows the neutral colour traits of the sampled
cells.
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B Neutral model of lineage coalescence586

Simulated rates of coalescence through time in Figure 6 are compared to predictions587

of a neutral theory model (Kingman, 1982; Halley and Iwasa, 2011). Going backwards588

in time, for a population of N individuals the per generation probability of a single589

coalescence event among k lineages is given by590

p =
k(k − 1)

2N
(B.1)

This gives an expected waiting time for coalescence T (in generations) of591

µT = p−1 (B.2)

with a standard deviation of592

σT =

√
1− p
p2

(B.3)

The expected number of lineages can also be expressed as a function of time t (in593

generations),594

k(t) =
k0

1 + t
thalf

(B.4)

where k0 is the number of sampled lineages at t = 0 and thalf is given by595

thalf =
2N

k0
(B.5)
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