References
  1. Davis, H.E.; Assaf, G.S.; McCorkell, L.; Wei, H.; Low, R.J.; Re’em, Y.; Redfield, S.; Austin, J.P.; Akrami, A. Characterizing long COVID in an international cohort: 7 months of symptoms and their impact.EClinicalMedicine 2021 , 38 , 101019; DOI: 10.1016/j.eclinm.2021.101019.
  2. Boroujeni, M.E.; Simani, L.; Bluyssen, H.A.R.; Samadikhah, H.R.; Benisi, S.Z.; Hassani, S.; Dilmaghani, N.A.; Fathi, M.; Vakili, K.; Mahmoudiasl, G.-R.; Abbaszadeh, H.A.; Moghaddam, M.H.; Abdollahifar, M.-A.; Aliaghaei, A. Inflammatory response leads to neuronal death in human post-mortem cerebral cortex in patients with COVID-19. ACS Chem. Neurosci .2021 , 12(12), 2143-2150; DOI: 10.1021/acschemneuro.1c00111.
  3. Frank, M.G.; Nguyen, K.H.; Ball, J.B.; Hopkins, S.; Kelley, T.; Baratta, M.V.; Fleshner, M.; Maier, S.F. SARS-CoV-2 spike S1 subunit induces neuroinflammatory, microglial and behavioral sickness responses: Evidence of PAMP-like properties. Brain, Behav. Immun. 2022 , 100 , 267-277; DOI: 10.1016/j.bbi.2021.12.007.
  4. Idrees, D.; Kumar, V. SARS-CoV-2 spike protein interactions with amyloidogenic proteins: Potential clues to neurodegeneration. Biochem. Biophys. Res. Commun. 2021 , 554 , 94e98; DOI: 10.1016/j.bbrc.2021.03.100.
  5. Nydström, S.; Hammarström, P. Amyloidogenesis of SARS-CoV2 spike protein. J. Am. Chem. Soc.2022 , 144 , 8945-8950. DOI: 10.1021/jacs.2c03925.
  6. Kruger, A.; Vlok, M.; Turner, S.; Venter C.; Laubscher, G.J.; Kell, D.B.; Pretorius, E. Proteomics of fibrin amyloid microclots in long COVID/post-acute sequelae of COVID-19 (PASC) shows many entrapped pro-inflammatory molecules that may also contribute to a failed fibrinolytic system. Cardiovasc. Diabetol. 2022 , 21 , 190; DOI: 10.1186/s12933-022-01623-4.
  7. Oh, J.; Cho, W.-H.; Barcelon, E.; Kim, K.H.; Hong, J.; Lee, S.J. SARS-CoV-2 spike protein induces cognitive deficit and anxiety-like behavior in mouse via non-cell autonomous hippocampal neuronal death. Sci. Rep. 2022 ,12 , 5496; DOI: 10.1038/s41598-022-09410-7.
  8. Zarubin, T.; Han, J. Activation and signaling of the p38 MAP kinase pathway. Cell Research 2005, 15(1), 11-18; DOI: 10.1038/sj.cr.7290257
  9. Zhang, W.; Liu, H.T. MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Res. 2002 , 12(1), 9-18; DOI: 10.1038/sj.cr.7290105.
  10. Olajide, O.A.; Iwuanyanwu, V.U.; Adegbola, O.D.; Al-Hindawi, A.A. SARS-CoV-2 spike glycoprotein S1 induces neuroinflammation in BV-2 microglia. Mol. Neurobiol.2022 , 59(1), 445-458; DOI: 10.1007/s12035-021-02593-6.
  11. Frank, M.G. Nguyen, K.H.; Ball, J.B.; Hopkins, S.; Kelley, T.; Baratta, M.V.; Fleshner, M.; Maier, S.F. SARS-CoV-2 spike S1 subunit induces neuroinflammatory, microglial and behavioral sickness responses: Evidence of PAMP-like properties.Brain Behav. Immun. 2022 , 100 , 267-277; DOI: 10.1016/j.bbi.2021.12.007.
  12. Shirato, K.; Kizaki, T. SARS-CoV-2 spike protein S1 subunit induces pro-inflammatory responses via toll-like receptor 4 signaling in murine and human macrophages. Heliyon 2021 , 7, e06187; DOI: 10.1016/j.heliyon.2021.e06187.
  13. Fang, C.; Wu, B.; Le, N.T.T.; Imberdis, T.; Mercer, R.C.C.; Harris, D.A. Prions activate a p38 MAPK synaptotoxic signaling pathway. PLoS Pathog. 2018 , 14(9), e1007283; DOI: 10.1371/journal.ppat.1007283.
  14. Seneff, S.; Nigh, G.; Kyriakopoulos, A.M.; McCullough, P.A. Innate immune suppression by SARS-CoV-2 mRNA vaccinations: The role of G-quadruplexes, exosomes, and MicroRNAs. Food Chem. Toxicol . 2022 , 164,113008; DOI: 10.1016/j.fct.2022.113008.
  15. Andries, O.; Mc Cafferty, S.; De Smedt, S.C.; Weiss, R.; Sanders, N.N.; Kitada, T. N1-methylpseudouridine-incorporated mRNA outperforms pseudouridine-incorporated mRNA by providing enhanced protein expression and reduced immunogenicity in mammalian cell lines and mice. J. Control. Release 2015 , 217, 337-344; DOI: 10.1016/j.jconrel.2015.08.051.
  16. Anderson, B.R.; Muramatsu, H.; Nallagatla, S.R.; Bevilacqua, P.C.; Sansing, L.H.; Weissman, D.; Karik, K. Incorporation of pseudouridine into mRNA enhances translation by diminishing PKR activation. Nucleic Acids Res .2010 , 38 , 58845892; DOI: 10.1093/nar/gkq347.
  17. Nunez-Castilla, J.; Stebliankin, V.; Baral, P.; Balbin, C.A.; Sobhan, M.; Cickovski, T.; Mondal, A.M.; Narasimhan, G.; Chapagain, P.; Mathee, K.; Siltberg-Liberles, H. Potential autoimmunity resulting from molecular mimicry between SARS-CoV-2 spike and human proteins. Viruses2022 , 14(7) , 1415. DOI: 10.3390/v14071415.
  18. Patterson, B.; Francisco, B.; Yogendra, R.; Long. E.; Pise, A.; Beaty, C.; Osgood, E.; Bream, J.; Kreimer, M.; Heide, R.V.; Guevara-Coto, J.; Mora, R.; Mora, J. SARS-CoV-2 S1 protein persistence in SARS-CoV-2 negative post-vaccination individuals with long COVID/ PASC-like symptoms.ResearchSquare preprint. July 2022 ; DOI: 10.21203/rs.3.rs-1844677/v1.
  19. Fertig, T.E.; Chitoiu, L.; Marta, D.S.; Ionescu, V.-S.; Cismasiu, V.B.; Radu, E.; Angheluta, G.; Dobre, M.; Serbanescu, A.; Hinescu, M.E.; Gherghiceanu, M. Vaccine mRNA can be detected in blood at 15 days post-vaccination.Biomedicines 2022 , 10 , 1538. DOI: 10.3390/biomedicines10071538.
  20. Patterson, B.K.; Francisco, E.B.; Yogendra, R.; Long, E.; Pise, A.; Rodrigues, H.; Hall, E.; Herrera, M.; Parikh, P.; Guevara-Coto, J.; Triche, T.J.; Scott, P.; Hekmati, S.; Maglinte, D.; Chang, X.; Mora-Rodríguez, R.A.; Mora, J. Persistence of SARS CoV-2 S1 protein in CD16+ monocytes in post-acute sequelae of COVID-19 (PASC) up to 15 months post-infection.Front. Immunol. 2022 , 12 , 746021; DOI: 10.3389/fimmu.2021.746021.
  21. Kyriakopoulos, A.M.; McCullough, P.A.; Nigh, G.; Seneff, S. Potential mechanisms for human genome integration of genetic code from SARS-CoV-2 mRNA vaccination: Implications for disease. J. Neurol. Disord. 2022 ,10 , 519. DOI: 10.4172/2329-6895.10.10.519.
  22. Aldén, M.; Olofsson Falla, F.O.; Yang, D.; Barghouth, M.; Luan C.; Rasmussen, M.; De Marinis, Y. Intracellular reverse transcription of Pfizer BioNTech COVID-19 mRNA vaccine BNT162b2 in vitro in human liver cell line. Curr. Issues Mol. Biol. 2022 , 44(3), 1115-11; DOI: 10.3390/cimb44030073.
  23. McKerrow, W.; Wang, X.; Mendez-Dorantes, C.; Mita, P.; Cao, S.; Grivainis, M.; Ding, L.; LaCava, J.; Burns, K.H.; Boeke, J.D.; Fenyö, D. LINE-1 expression in cancer correlates with p53 mutation, copy number alteration, and S phase checkpoint. PNAS 2022 , 119(8),e2115999119; DOI: 10.1073/pnas.2115999119
  24. Balaj, L.; Lessard, R.; Dai, L.; Cho, Y.-J.; Pomeroy, S.L.; Breakefield, X.O.; Skog, J. Tumour microvesicles contain retrotransposon elements and amplified oncogene sequences. Nat. Commun . 2011 , 2 , 180; DOI: 10.1038/ncomms1180.
  25. Maugeri, M.; Nawaz, M.; Papadimitriou, A.; Angerfors, A.; Camponeschi, A.; Na, M.; Hltt, M.; Skantze, P.; Johansson, S.; Sundqvist, M.; Lindquist, J.; Kjellman, T.; Mrtensson,I.-L.; Jin, T.; Sunnerhagen, P.; stman, S.; Lindfors, L.; Valadi, H. Linkage between endosomal escape of LNP-mRNA and loading into EVs for transport to other cells. Nat. Commun .2019 , 10 , 4333; DOI: 10.1038/s41467-019-12275-6.
  26. Ong, S.M.; Hadadi, E.; Dang, T.M.; Yeap, W.H.; Tan, C.T.; Ng, T.P.; Larbi, A.; Wong, S.-C.; The pro-inflammatory phenotype of the human non-classical monocyte subset attributed to senescence. Cell Death Dis. 2008 ,9 , 266; DOI: 10.1038/s41419-018-0327-1
  27. Liu, S.; Hossinger, A.; Heumller, S.-E.; Hornberger, A.; Buravlova, O.; Konstantoulea, K.; Mller, S.A.; Paulsen, L.; Rousseau, F.; Schymkowitz, J.; Lichtenthaler, S.F.; Neumann, M.; Denner, P.; Vorberg, I.M. Highly efficient intercellular spreading of protein misfolding mediated by viral ligand-receptor interactions. Nat. Commun. 2021 ,12 , 5739; DOI: 10.1038/s41467-021-25855-2.
  28. Röltgen, K.; Nielsen, S.C.A.; Silva, O.; Younes, S.F>; Zaslavsky, M.; Costales, C.; Yang, F.; Wirz, O.F.; Solis, D.; Hoh, R.A.; Wang, A.; Arunachalam, P.S.; Colburg, D.; Zhao, S.; Haraguchi, E.; Lee, A.S.; Shah, M.M.; Manohar, M.; Chang, I.; Gao, F.; Mal-lajosyula, V.; Li, C.; Liu, J.; Shoura, M.J.; Sindher, S.B.; Parsons, E.; Dashdorj, N.J.; Dashdorj, N.D.; Monroe, R.; Serrano, G.E.; Beach, T.G.; Chinthrajah, R.S.; Charville, G.W.; Wilbur, J.L.; Wohlstadter, J.N.; Davis, M.M.; Pulendran, B.; Troxell, M.L.; Sigal, G.B.; Natkunam, Y.; Pinsky, B.A.; Nadeau, K.C.; Boyd, S.D. Immune imprinting, breadth of variant recognition, and germinal center response in human SARS-CoV-2 infection and vaccination. Cell 2022 , 185 , 1025-1040; DOI: 10.1016/j.cell.2022.01.018.
  29. Bansal, S.; Perincheri, S.; Fleming, T.; Poulson, C.; Tiffany, B.; Bremner, R.M.; Mohanakumar, T. Cutting edge: Circulating exosomes with COVID spike protein are induced by BNT162b2 (Pfizer-BioNTech) vaccination prior to development of antibodies: A novel mechanism for immune activation by mRNA vaccines. J. Immunol. 2021 , 207 , 2405-2410; DOI: 10.4049/jimmunol.2100637.
  30. Sohn, K.M.; Lee, S.G.; Kim, H.J.; Cheon, S.; Jeong, H.; Lee, J.; Kim, I.S.; Silwal, P.; Kim, Y.J.; Paik, S.; Chung, C.; Park, C.; Kim, Y.S.; Jo, E.K. COVID-19 patients upregulate toll-like receptor 4-mediated inflammatory signaling that mimics bacterial sepsis. J. Korean Med. Sci. 2020 ,35(38), e343; DOI: 10.3346/jkms.2020.35.e343.
  31. Khan, S.; Shafiei, M.S.; Longoria, C.; Schoggins, J.W.; Savani, R.C.; Zaki, H. SARS-CoV-2 spike protein induces inflammation via TLR2-dependent activation of the NF-κB pathway. eLife 2021 , 10 , e68563; DOI: 10.7554/eLife.68563.
  32. Flynn, C.M.; Garbers, Y.; Lokau, J.; Wesch, D.; Schulte, D.M.; Laudes, M.; Lieb, W.; Aparicio-Siegmund, S.A.; Garbers, C. Activation of Toll-like Receptor 2 (TLR2) induces Interleukin-6 trans-signaling. Sci. Rep.2019 , 9 , 7306; DOI: 10.1038/s41598-019-43617-5.
  33. Murata, K.; Nakao, N.; Ishiuchi, N.; Fukui, T.; Katsuya, N.; Fukumoto, W.; Oka, H.; Yoshikawa, N.; Nagao, T.; Namera, A.; Kakimoto, N.; Oue, N.; Awai, K.; Yoshimoto, K.; Nagao, M. Four cases of cytokine storm after COVID-19 vaccination: Case report. Front. Immunol. 2022 ,13 , 967226; DOI: 10.3389/fimmu.2022.967226.
  34. Negron, S.G.; Kessinger, C.W.; Xu B.; Pu, W.T.; Lin, Z. Selectively expressing SARS-CoV-2 spike protein S1 subunit in cardiomyocytes induces cardiac hypertrophy in mice. BioRxiv Preprint. June 20, 2021 ; DOI: 10.1101/2021.06.20.448993.
  35. Cheng, M.H.; Porritt, R.A.; Rivas, M.N.; Krieger, J.M.; Ozdemir, A.B.; Garcia, G., Jr.; Arumugaswami, V.; Fries, B.C.; Arditik, M.; Bahar, I. A monoclonal antibody against staphylococcal enterotoxin B superantigen inhibits SARS-CoV-2 entry in vitro. Structure 2021 ,29(9), 951-962.e3; DOI: 10.1016/j.str.2021.04.005.
  36. Cheng, M.H.;Zhang, S., Porritt, R.A.; Arditi, M.; Bahar, I. Superantigenic character of an insert unique to SARS-CoV-2 spike supported by skewed TCR repertoire in patients with hyperinflammation. Proc. Natl. Acad. Sci. U.S.A.2020 , 117 , 25254-25262; DOI: 10.1073/pnas.2010722117.
  37. Sabroe, I.; Jones, E.C.; Usher, L.R.; Whyte, M.K.B.; Dower, S.K. Toll-like receptor (TLR)2 and TLR4 in human peripheral blood granulocytes: A critical role for monocytes in leukocyte lipopolysaccharide responses. J. Immunol.2002 , 168 , 4701-4710; DOI: 10.4049/jimmunol.168.9.4701.
  38. D’Mello, C.; Le, T.; Swain, M.G. Cerebral microglia recruit monocytes into the brain in response to tumor necrosis factor alpha signaling during peripheral organ inflammation. J. Neurosci. 2009, 29(7), 2089-2102; DOI: 10.1523/JNEUROSCI.3567-08.2009.
  39. Mörz, M. A case report: Multifocal necrotizing encephalitis and myocarditis after BNT162b2 mRNA vaccination against COVID-19. Vaccines 2022 ,10 , 1651. DOI: 10.3390/vaccines10101651.
  40. Norrby, E. Prions and protein-folding diseases. J. Intern. Med. 2011, 270(1), 1-14; DOI: 10.1111/j.1365-2796.2011.02387.x.
  41. Castle, A.R.; Gill, A.C. Physiological functions of the cellular prion protein. Front. Mol. Biosci. 2017 , 4 , 19; DOI: 10.3389/fmolb.2017.00019
  42. Vizcaíno, C.; Mansilla, S.; Portugal, J. Sp1 transcription factor: A long-standing target in cancer chemotherapy. Pharmacol . Ther . 2015 ,152 , 111-24; DOI: 10.1016/j.pharmthera.2015.05.008.
  43. Guillot-Sestier, M.-V.; Sunyach, C.; Druon, C.; Scarzello, S.; Checler, F. The alpha-secretase-derived N-terminal product of cellular prion, N1, displays neuroprotective function in vitro and in vivo.J. Biol. Chem. 2009 , 284(51), 35973-86; DOI: 10.1074/jbc.M109.051086.
  44. Bertuchi, F.R.; Bourgeon, D.M.G.; Landemberger, M.C.; Martins, V.R.; Cerchiaro, G. PrPC displays an essential protective role from oxidative stress in an astrocyte cell line derived from PrPC knockout mice. Biochem. Biophys. Res. Commun . 2012 ,418(1), 27-32; DOI: 10.1016/j.bbrc.2011.12.098.
  45. Gao, Z.; Peng, M.; Chen, L.; Yang, X.; Li, H.; Shi, R.; Wu, G.; Cai, L.; Song, Q.; Li, C. Prion protein protects cancer cells against endoplasmic reticulum stress induced apoptosis. Virol. Sin. 2019 , 34(2),222–234; DOI: 10.1007/s12250-019-00107-2.
  46. Halliday, M.; Mallucci, G.R. Targeting the unfolded protein response in neurodegeneration: A new approach to therapy. Neuropharmacology 2 014 ,76 Pt A, 169-74; DOI: 10.1016/j.neuropharm.2013.08.034.
  47. Déry, M.-A.; Jodoin, J.; Ursini-Siegel, J.; Aleynikova, O.; Ferrario, C.; Hassan, S.; Basik, M.; LeBlanc, A.C Endoplasmic reticulum stress induces PRNPprion protein gene expression in breast cancer. Breast Cancer Res. 2013 , 15(2), R22; DOI: 10.1186/bcr3398.
  48. Young-Pearse, T.L.; Chen, A.C.; Chang, R.; Marquez, C.; Selkoe, D.J. Secreted APP regulates the function of full-length APP in neurite outgrowth through interaction with integrin beta1. Neural Dev. 2008 , 23 , 3, 15; DOI: 10.1186/1749-8104-3-15.
  49. Demars, M.P.; Bartholomew, A.; Strakova, Z.; Lazarov, O. Soluble amyloid precursor protein: A novel proliferation factor of adult progenitor cells of ectodermal and mesodermal origin. Stem Cell Res. Ther. 2011 ,2(4), 36; DOI: 10.1186/scrt77.
  50. Hu, Y.; Hung, A.C.; Cui, H.; Dawkins, E.; Bolós, M.; Foa, L.; Young, K.M.; Small, D.H. Role of cystatin C in amyloid precursor protein-induced proliferation of neural stem/progenitor cells. J. Biol. Chem. 2013 ,288(26), 18853-62; DOI: 10.1074/jbc.M112.443671.
  51. Lee, K.J.; Moussa, C.E.H.; Lee, Y.; Sung, Y.; Howell, B.W.; Turner, R.S.; Pak, D.T.S.; Hoe, H.S. Beta amyloid-independent role of amyloid precursor protein in generation and maintenance of dendritic spines. Neuroscience2010 , 169(1), 344-56; DOI: 10.1016/j.neuroscience.2010.04.078.
  52. Hoe, H.-S.; Fu, Z.; Makarova, A.; Lee, J.-Y.; Lu, C.; Feng, L.; Pajoohesh-Ganji, A.; Matsuoka, Y.; Hyman, B.T.; Ehlers, M.D.; Vicini, S.; Pak, D.T.S.; Rebeck, G.W. The effects of amyloid precursor protein on postsynaptic composition and activity. J. Biol. Chem . 2009 , 284(13),8495-506; DOI: 10.1074/jbc.M900141200.
  53. Van Nostrand, W.E.; Schmaier, A.H.; Farrow, J.S.; Cunningham, D.D. Protease nexin-II (amyloid beta-protein precursor): A platelet alpha-granule protein.Science 1990 , 248 , 745-748; DOI: 10.1126/science.2110384.
  54. Xu, F.; Previti, M.L.; Nieman, M.T.; Davis, J.; Schmaier, A.H.; Van Nostrand W.E. AbetaPP/APLP2 family of Kunitz serine proteinase inhibitors regulate cerebral thrombosis. J. Neurosci. 2009 , 29(17), 5666-70; DOI:10.1523/JNEUROSCI.0095-09.2009.
  55. Raivich, G.; Behrens, A. Role of the AP-1 transcription factor c-Jun in developing, adult and injured brain. Progress in Neurobiology 2006, 78(6), 347-363; DOI: 10.1016/j.pneurobio.2006.03.006.
  56. Nishimura, Y.; Tanaka, T. Calcium-dependent activation of nuclear factor regulated by interleukin 3/Adenovirus E4 promoter-binding protein gene expression by calcineurin/nuclear factor of activated t cells and calcium/calmodulin-dependent protein kinase signaling. J. Biol. Chem . 2001 , 276(23), 19921-8; DOI: 10.1074/jbc.M010332200.
  57. Kim, Y.; Lee, J.; Lee, C. In silico comparative analysis of DNA and amino acid sequences for prion protein gene. Transboundary and Emerging Diseases2 008 , 55(3), 105-114; DOI: 10.1111/j.1865-1682.2007.00997.x.
  58. Barbieri, G.; Palumbo, S.; Gabrusiewicz, K.; Azzalin, A.; Marchesi, N.; Spedito, A.; Biggiogera, M.; Sbalchiero, E.; Mazzini, G.; Miracco, C.; Pirtoli, L.; Kaminska, B.; Comincini, S. Silencing of cellular prion protein (PrPC) expression by DNA-antisense oligonucleotides induces autophagy-dependent cell death in glioma cells. Autophagy2011 , 7(8), 840-53; DOI: 10.4161/auto.7.8.15615.
  59. Qin, X.; Jiang, B.; Zhang, Y. 4E-BP1, a multifactor regulated multifunctional protein. Cell Cycle 2016 , 15(6), 781-786; DOI: 10.1080/15384101.2016.1151581.
  60. Kyriakopoulos, A.M.; McCullough, P.A. Synthetic mRNAs; Their analogue caps and contribution to disease. Diseases 2021 , 9(3), 57; DOI: 10.3390/diseases9030057.
  61. Heiseke, A.; Aguib, Y.; Schatzl, H.M. Autophagy, prion infection and their mutual interactions. Curr. Issues Mol. Biol . 2010 ,12(2), 87-97; DOI: 10.21775/cimb.012.087.
  62. Yao, H.; Zhao, D.; Khan, S.H.; Yang, L. Role of autophagy in prion protein-induced neurodegenerative diseases. Acta Biochim. Biophys. Sin. 2013 , 45 , 494-502; DOI: 10.1093/abbs/gmt022.
  63. López-Pérez, Ó.; Badiola, J.J.; Bolea, R.; Ferrer, I.; Llorens, F.; Martn-Burriel, I. An update on autophagy in prion diseases. Front. Bioeng. Biotechnol.2020 , 8 , 975; DOI: 10.3389/fbioe.2020.00975.
  64. Abdelaziz, D.H.; Abdulrahman, B.A.; Gilch, S.; Schatzl, H.M. Autophagy pathways in the treatment of prion diseases. Curr. Opin. Pharmacol. 2019 ,44 , 46-52; DOI: 10.1016/j.coph.2019.04.013.
  65. Liou, W.; Geuze, H.J.; Geelen, M.J.; Slot, J.W. The autophagic and endocytic pathways converge at the nascent autophagic vacuoles. J. Cell Biol. 1997 ,136(1), 61-70; DOI: 10.1083/jcb.136.1.61.
  66. Shin, H.Y.; Park, J.H.; Carp, R.I.; Choi, E.K.; Kim, Y.S. Deficiency of prion protein induces impaired autophagic flux in neurons. Front. Aging Neurosci.2014 , 6 , 207; DOI: 10.3389/fnagi.2014.00207.
  67. Brandner, S.; Isenmann, S.; Raeber, A.; Fischer, M.; Sailer, A.; Kobayashi, Y.; Marino, S.; Weissmann, C.; Aguzzi, A. Normal host prion protein necessary for scrapie-induced neurotoxicity. Nature 1996, 379(6563), 339-43; DOI:10.1038/379339a0.
  68. Hall, G.F.; Patuto, B.A. Is tau ready for admission to the prion club? Prion 2012 ,6(3), 223-233; DOI: 10.4161/pri.19912.
  69. Corsaro, A.; Thellung, S.; Villa, V.; Nizzari, M.; Florio, T. Role of prion protein aggregation in neurotoxicity. Int. J. Mol. Sci. 2012 ,13(7), 8648-8669; DOI: 10.3390/ijms13078648.
  70. Wang, X.-F.; Dong, C.-F.; Zhang, J.; Wan, Y.-Z.; Li, F.; Huang, Y.-X.; Han, L.; Shan, B.; Gao, C.; Han, J.; Dong, X.-P. Human tau protein forms complex with PrP and some GSS- and fCJD-related PrP mutants possess stronger binding activities with tau in vitro. Mol. Cell Biochem. 2008 ,310(1-2), 49-55; DOI: 10.1007/s11010-007-9664-6.
  71. Mudher, A.; Colin, M.; Dujardin, S.; Medina, M.; Dewachter, I.; Alavi Naini, S.M. Mandelkow, E.-M.; Mandelkow, E.; Buée, L.; Goedert, M.; Brion J.-P. What is the evidence that tau pathology spreads through prion-like propagation?ANC 2017 , 5 , 99; DOI: 10.1186/s40478-017-0488-7.
  72. Winter, N.; Novatchkova, M.; Bachmair, A. Cellular control of protein turnover via the modification of the amino terminus. Int. J. Mol. Sci. 2021 ,22(7), 3545; DOI: 10.3390/ijms22073545.
  73. Korolchuk, V.I.; Mansilla, A.; Menzies, F.M.; Rubinsztein, D.C. Autophagy inhibition compromises degradation of ubiquitin-proteasome pathway substrates. Mol. Cell 2009 , 33(4) , 517-527; DOI: 10.1016/j.molcel.2009.01.021.
  74. Takekawa, M.; Adachi, A.; Nakahata, A.; Nakayama, I.; Itoh, F.; Tsukuda, H.; Taya, Y.; Imai, K. p53-inducible Wip1 phosphatase mediates a negative feedback regulation of p38 MAPK-p53 signaling in response to UV radiation. EMBO J.2000 , 19(23), 6517-26; DOI: 10.1093/emboj/19.23.6517.
  75. Wang, Z.-P.; Tian, Y.; Jun, L. Role of wildtype p53-induced phosphatase 1 in cancer. Oncol Lett 2017 , 14 , 3893-3898; DOI: 10.3892/ol.2017.6685.
  76. Zhang, X.; Wan, G.; Mlotshwa, S.; Vance, V.; Berger, F.G.; Chen, H.; Lu, X. Oncogenic Wip1 phosphatase is inhibited by miR-16 in the DNA damage signaling pathway. Cancer Res. 2010 , 70(18), 7176-86; DOI: 10.1158/0008-5472.CAN-10-0697.
  77. Yang, Y.-Q.; Zheng, Y.-H.; Zhang, C.-T.; Liang, W.-W.; Wang, S.Y.; Wang, X.-D.; Wang, Y.; Wang, T.-H.; Jiang, H.-Q.; Feng, H.-L. Wild-type p53-induced phosphatase 1 down-regulation promotes apoptosis T by activating the DNA damage-response pathway in amyotrophic lateral sclerosis.Neurobiology of Disease 2020 , 134 , 104648; DOI: 10.1016/j.nbd.2019.104648.
  78. Culmsee, C.; Mattson, M.P. p53 in neuronal apoptosis. Biochem. Biophys. Res. Commun .2005 , 331 , 761-777; DOI: 10.1016/j.bbrc.2005.03.149.
  79. Suzuki, H.I.; Yamagata, K.; Sugimoto, K.; Iwamoto, T.; Kato, S.; Miyazono, K. Modulation of microRNA processing by p53. Nature 2009 ,460(7254), 529-33; DOI: 10.1038/nature08199.
  80. Wong, E.S.M.; Le Guezennec, X.; Demidov, O.N.; Marshall, N.T.; Wang, S.T.; Krishnamurthy, J.; Sharpless, N.E.; Dunn, N.R.; Bulavin, D.V. p38 MAPK controls expression of multiple cell cycle inhibitors and islet proliferation with advancing age. Dev . Cell 2009 ,17(1), 142-9; DOI: 10.1016/j.devcel.2009.05.009.
  81. Liu, X.; Yang, W.; Zhu, C., Sun, S.; Wu, S.; Wang, L.; Wang, Y.; Ge, Z. Toll-like receptors and their role in neuropathic pain and migraine. Mol. Brain2022 , 15 , 73. DOI: 10.1186/s13041-022-00960-5.
  82. Umar, S.; Palasiewicz, K.; Meyer, A.; Kumar, P.; Prabhakar, B.S.; Volin, M.V.; Rahat, R.; Al‐Awqati, M.; Chang, H.J.; Zomorrodi, R.K.; Rehman, J.; Shahrara, S. Inhibition of IRAK4 dysregulates SARS-CoV-2 spike protein-induced macrophage inflammatory and glycolytic reprogramming. Cell Mol. Life Sci. 2022 , 79(6), 301; DOI: 10.1007/s00018-022-04329-8.
  83. Relja, B.; Land, W.G. Damage-associated molecular patterns in trauma. Eur. J. Trauma Emerg. Surg. 2020 , 46 , 751-775. DOI: 10.1007/s00068-019-01235-w.
  84. Xu, F.; Chen, L.; Zhao, X.; Zhong, H.; Cui, L.; Jiang, L.; Huang, H.; Li, L.; Zeng, S.; Li, M. Interaction of Wip1 and NF-κB regulates neuroinflammatory response in astrocytes. Inflamm. Res. 2017 , 66(11),1011-1019; DOI:10.1007/s00011-017-1085-8.
  85. Lannoy, V.; Côté‐Biron, A.; Asselin, C.; Rivard, N. Phosphatases in toll-like receptors signaling: The unfairly-forgotten. Cell Commun. Signal2021 , 19 , 10; DOI: 10.1186/s12964-020-00693-9.
  86. Zhao, Y.; Kuang, M.; Li, J.; Zhu, L.; Jia, Z.; Guo, X.; Hu, Y.; Kong, J.; Yin, H.; Wang, X.; You, F. SARS-CoV-2 spike protein interacts with and activates TLR41.Cell Res. 2021 , 31 , 818-820; DOI: 10.1038/s41422-021-00495-9.
  87. Yan, F.; Cheng, X.; Zhao, M.; Gong, S.; Han, Y.; Ding, L.; Wu, D.; Luo, Y.; Zuo, W.; Zhu, L.; Fan, M. Ji, X. Loss of Wip1 aggravates brain injury after ischaemia/reperfusion by overactivating microglia. Stroke Vasc. Neurol . 2021 , 6(3), 344-351; DOI: 10.1136/svn-2020-000490.
  88. Shi, Y.; Nikulenkov, F.; Zawacka-Pankau, J.; Li, H.; Gabdoulline, R.; Xu, J.; Eriksson, S.; Hedström, E.; Issaeva, N.; Kel, A.; Arnér, E.S.J.; Selivanova, G. ROS-dependent activation of JNK converts p53 into an efficient inhibitor of oncogenes leading to robust apoptosis. Cell Death and Differentiation 2014 , 21 , 612-623; DOI: 10.1038/cdd.2013.186.
  89. Shen, X.F.; Zhao, Y.; Cao, K.; Guan, W.-X.; Li, X.; Zhang, Q.; Zhao, Y.; Ding, Y.-T.; Duk, J.-F. Wip1 deficiency promotes neutrophil recruitment to the infection site and improves sepsis outcome. Front. Immunol . 2017 ,8 , 1023; DOI: 10.3389/fimmu.2017.01023.
  90. Cooks, T.; Harris, C.C.; Oren, M. Caught in the crossfire: p53 in inflammation. Carcinogenesis2014 , 35(8), 1680-1690; DOI: 10.1093/carcin/bgu134.
  91. Lowe, J.; Cha, H.; Lee, M.O.; Mazur, S.J.; Appella, E.; Fornace, A.J. Jr. Regulation of the Wip1 phosphatase and its effects on the stress response. Front. Biosci. (Landmark Ed) 2012 , 17(4), 1480-1498; DOI: 10.2741/3999.
  92. Cha, H.; Lowe, J.M.; Li, H.; Lee, J.-S.; Belova, G.I.; Bulavin, D.V.; Fornace, A.J. Jr. Wip1 directly dephosphorylates gamma-H2AX and attenuates the DNA damage response. Cancer Res. 2010 , 70(10), 4112-22; DOI: 10.1158/0008-5472.CAN-09-4244.
  93. Chew, J.; Biswas, S.; Shreeram, S.; Humaidi, M.; Wong, E.T.; Dhillion, M.K.; Teo, H.; Hazra, A.; Fang, C.C.; López-Collazo, E.; Bulavin, D.V.; Tergaonkar, V. WIP1 phosphatase is a negative regulator of NF‐κB signalling. Nat. Cell Biol. 2009 , 11(5), 659-666; DOI: 10.1038/ncb1873.
  94. Sun, B.; Hu, X.; Liu, G.; Ma, B.; Xu, Y.; Yang, T.; Shi, J.; Yang, F.; Li, H.; Zhang, L.; Zhao, Y. Phosphatase Wip1 negatively regulates neutrophil migration and inflammation. J. Immunol. 2014 , 192(3),1184-95; DOI:10.4049/jimmunol.1300656.
  95. Qin, Y.; Hurley, L.H. Structures, folding patterns, and functions of intramolecular DNA G-quadruplexes found in eukaryotic promoter regions. Biochimie2008 , 90(8), 1149-1171; DOI: 10.1016/j.biochi.2008.02.020.
  96. Zhang, L.; Jia, Y. The potential interplay between G-quadruplex and p53: Their roles in regulation of ferroptosis in cancer. Front. Mol. Biosci.2022 , 9 , 965924; DOI: 10.3389/fmolb.2022.965924.
  97. Vincent, B.; Sunyach, C.; Orzechowski, H.-D.; St. George-Hyslop, P.; Checler, F.; p53-dependent transcriptional control of cellular prion by presenilins. J. Neurosci. 2009 , 29(20 ), 6752-6760; DOI: 10.1523/JNEUROSCI.0789-09.2009.
  98. Olsthoorn, R.C.L. G-quadruplexes within prion mRNA: the missing link in prion disease?Nucleic Acids Res. 2014 , 42(14), 9327-33; DOI: 10.1093/nar/gku559.
  99. Riley, K.J.; Maher, L.J. 3rd. p53 RNA interactions: New clues in an old mystery. RNA 2007, 13(11), 1825-1833; DOI: 10.1261/rna.673407.
  100. Yang, D. G-Quadruplex DNA and RNA. Methods Mol. Biol . 2019 , 2035 , 1-24; DOI: 10.1007/978-1-4939-9666-7_1.
  101. Dawkins, E.; Small, D.H. Insights into the physiological function of the β-amyloid precursor protein: beyond Alzheimer’s disease. J. Neurochem.2014 , 129(5), 756-769; DOI: 10.1111/jnc.12675.
  102. Liu, X.; Yu, X.; Zack, D.J.; Zhu, H.; Qian, J. TiGER: A database for tissue-specific gene expression and regulation. BMC Bioinformatics. 2008 ,9 , 271; DOI: 10.1186/1471-2105-9-271.
  103. Zheng, H.; Koo, E.H. The amyloid precursor protein: beyond amyloid. Mol. Neurodegener .2006 , 1 , 5; DOI: 10.1186/1750-1326-1-5.
  104. da Costa, C.A.; Sunyach, C.; Pardossi-Piquard, R.; Sévalle, J.; Vincent, B.; Boyer, N.; Kawarai, T.; Girardot, N.; St. George-Hyslop, P.; Checler, F. Presenilin-dependent gamma-secretase-mediated control of p53-associated cell death in Alzheimer’s disease. J. Neurosci.2006 , 26(23), 6377-6385; DOI: 10.1523/JNEUROSCI.0651-06.2006.
  105. Nijholt, D.A.T.; De Kimpe, L.; Elfrink, H.L.; Hoozemans, J.J.M.; Scheper, W. Removing protein aggregates: the role of proteolysis in neurodegeneration. Curr. Med. Chem . 2011 , 18(16), 2459-76. DOI: 10.2174/092986711795843236.
  106. White, E. Autophagy and p53. Cold Spring Harb. Perspect. Med. 2016, 6(4), a026120; DOI: 10.1101/cshperspect.a026120.
  107. Barbosa, M.C.; Grosso, R.A.; Fader, C.M. Hallmarks of aging: An autophagic perspective. Front. Endocrinol. (Lausanne) 2019 , 9 , 790; DOI: 10.3389/fendo.2018.00790.
  108. Kumar, A.V.; Mills, J.; Lapierre, L.R. Selective autophagy receptor p62/SQSTM1, a pivotal player in stress and aging. Front . Cell Dev. Biol.2022 , 10 , 793328. DOI: 10.3389/fcell.2022.793328.
  109. Du, Y.; Wooten, M.C.; Wooten, M.W. Oxidative damage to the promoter region of SQSTM1/p62 is common to neurodegenerative disease. Neurobiol. Dis. 2009 ,35(2) , 302-310. DOI: 10.1016/j.nbd.2009.05.015.
  110. Schnöder, L.; Hao, W.; Qin, Y.; Liu, S.; Tomic, I.; Liu, X.; Fassbender, K.; Liu, Y. Deficiency of neuronal p38α MAPK attenuates amyloid pathology in Alzheimer disease mouse and cell models through facilitating lysosomal degradation of BACE1. J. Biol. Chem . 2016 , 291(5),2067-2079; DOI: 10.1074/jbc.M115.695916.
  111. Subbannayya, Y.; Pinto, S.M.; Bösl, K.; Prasad, T.S.K.; Kandasamy, R.K. Dynamics of dual specificity phosphatases and their interplay with protein kinases in immune signaling. Int. J. Mol. Sci. 2019 , 20(9), 2086. DOI: 10.3390/ijms20092086
  112. Goel, S.; Sharif-Askari, F.S.; Sharif Askari, N.S.; Madkhana, B.; Alwaa, A.M.; Mahboub, B.; Zakeri, A.M.; Ratemi, E.; Hamoudi, R.; Hamid, Q.; Halwani, R. SARS-CoV-2 switches ’on’ MAPK and NF-κB signaling via the reduction of nuclear DUSP1 and DUSP5 expression. Front. Pharmacol. 2021 ,12 , 631879; DOI: 10.3389/fphar.2021.631879.
  113. Vaure, C.; Liu, Y. A comparative review of toll-like receptor 4 expression and functionality in different animal species. Front .Immunol. 2014 , 5 , 316; DOI: 10.3389/fimmu.2014.00316.
  114. Cioccarelli, C.; Sánchez-Rodríguez, R.; Angioni, R.; Venegas, F.C.; Bertoldi, N.; Munari, F.; Cattelan, A.; Molon, B.; Viola, A.; IL1β Promotes TMPRSS2 expression and SARS-CoV-2 cell entry through the p38 MAPK-GATA2 axis. Front. Immunol . 2021 , 12 , 781352; DOI: 10.3389/fimmu.2021.781352.
  115. Nguyen, K.V. β-Amyloid precursor protein (APP) and the human diseases. AIMS Neurosci.2019 , 6(4) , 273-281; DOI: 10.3934/Neuroscience.2019.4.273.
  116. Foley, A.R.; Roseman, G.P.; Chan, K.; Smart, A.; Finn, T.S.; Yang, K.; Lokey, R.S.; Millhauser, G.L.; Raskatov, J.A. Evidence for aggregation-independent, PrPC-mediated Aβ cellular internalization. PNAS 2020 ,117(46), 28625-28631; DOI: 10.1073/pnas.2009238117/-/DCSupplemental.
  117. Zhang, Y.; Zhao, Y.; Zhang, L.; Yu, W.; Wang, Y.; Chang, W. Cellular prion protein as a receptor of toxic amyloid-β42 oligomers is important for Alzheimer’s disease.Front. Cell Neurosci. 2019 , 13 , 339; DOI: 10.3389/fncel.2019.00339.
  118. Citron, B.A.; Saykally, J.N.; Cao, C.; Dennis, J.S.; Runfeldt, M.; Arendash, G.W. Transcription factor Sp1 inhibition, memory, and cytokines in a mouse model of Alzheimer’s disease. Am. J. Neurodegener. Dis. 2015 ,4(2), 40-48.
  119. Heicklen-Klein, A.; Ginzburg, I. Tau promoter confers neuronal specificity and binds Sp1 and AP-2. J. Neurochem . 2000 , 75(4), 1408-18; DOI: 10.1046/j.1471-4159.2000.0751408.x.
  120. Christensen, M.A.; Zhou, W.; Qing, H.; Lehman, A.; Philipsen, S.; Song, W. Transcriptional regulation of BACE1, the beta-amyloid precursor protein beta-secretase, by Sp1. Mol. Cell Biol. 2004 ,24(2), 865-74; DOI:10.1128/MCB.24.2.865-874.2004.
  121. Wen, A.Y.; Sakamoto, K.M.; Miller, L.S. The role of the transcription factor CREB in immune function. J. Immunol . 2010 , 185(11), 6413-6419; DOI: 10.4049/jimmunol.1001829.
  122. Horwich, A.L.; Weissman, J.S. Deadly conformations —- protein misfolding in prion disease.Cell 1997 , 89(4), 499-510; DOI: 10.1016/S0092-8674(00)80232-9.