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Abstract. Let a particle start at some point in the unit interval I := [0, 1] and undergo
Brownian motion in I until it hits one of the end points. At this instant the particle stays
put for a finite holding time with an exponential distribution and then jumps back to a
point inside I with a probability density µ0 or µ1 parametrized by the boundary point
it was at. The process starts afresh. The same evolution repeats independently each
time. Many probabilistic aspects of this diffusion process are investigated in the paper
[11]. The authors in the cited paper call this process diffusion with holding and jumping
(DHJ). Our simple aim in this paper is to analyze the eigenvalues of a nonlocal boundary
problem arising from this process. In particular we answer a question on the spectral gap
of the DHJ process raised at the end of the paper in [11].

1. Introduction

Consider a diffusion equation on the unit interval I := [0, 1]

ut(t, x) =Lu(t, x) where the generator is(1.1)

L := a(x)
d2

dx2
+ b(x)

d

dx
.(1.2)

Both a(x) > 0 and b(x) are assumed to be continuous on I. The eigenvalue problem we
would like to consider has the form

(1.3) a(x) v′′(x) + b(x)v′(x) + λv(x) = 0
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with boundary conditions

v(0) =

∫ 1

0
v(x) dµ0(x)− σ0 (Lv)(0),(1.4)

v(1) =

∫ 1

0
v(x) dµ1(x)− σ1 (Lv)(1).(1.5)

The boundary conditions above originate from a diffusion process considered in a famous
paper of Feller [5]. As summarized in Theorem 8 of Feller’s paper, the diffusion process
starts from some point in I until it reaches one of the boundary points at some time t.
Then there is a finite sojourn time T associated with each of the two boundary points 0
and 1. In other words, the particle is held for a duration of T which is assumed to be
a random variable independent of the past and has an exponential distribution Pr(T >
t) = exp(−t/σi), i = 0 or 1. (As noted on p.3 in [5], σi = 0 and σi = ∞ correspond
to instantaneous return and to absorbing barrier process respectively at the end point i.)
At t + T , the particle jumps back to I according to a probability distribution µ0 or µ1
parametrized by the end points. The process starts afresh. Peng and Li call this type of
process diffusion with holding and jumping (DHJ). Connection of DHJ to neuron science
is discussed in [12]. Generalizations of DHJ to diffusion with sticky boundary conditions
have appeared in many popular papers in probability, see for example [4].

The analysis with no holding at the boundary (i.e. σi = 0) was initiated in [1] and [2]
in a general multi-dimensional setting. A question raised on the realness of eigenvalues
of one-dimensional Brownian motion with jumping (BMJ) was answered in [8] and in [7].
There have been a lot of research on this type of process initiated by Feller’s paper ( see
for example [3] and [4].) Peng and Li’s paper [11] seems to be the only one in discussing
the existence of non-real eigenvalues λ for the system in (1.3), (1.4) and (1.5). We continue
the analysis using classical function theoretic techniques to derive sufficient conditions on
the holding parameter σi’s and on boundary measures µ that give all real eigenvalues. We
give an affirmative answer on the principal eigenvalue question posed in Peng and Li’s
paper. Finally we give a numerical example showing the existence of a non-real principal
eigenvalue for certain σ values.

For Brownian motion, the differential equation in (1.2) is simply

v′′(x) + λv(x) = 0.(1.6)

The boundary conditions in (1.4) and (1.5) become:

v(0) =

∫ 1

0
v(x) dµ0(x)− σ0 v′′(0)(1.7)

v(1) =

∫ 1

0
v(x) dµ1(x)− σ1 v′′(1).(1.8)
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This type of nonlocal boundary problem has an eigen-parameter involved. To compute the
eigenvalues of (1.6), we let λ = z2. A solution of the equation has the form

v(x) = c1e
−izx + c2e

izx.

The boundary conditions (1.7) and (1.8) correspond to the system:

c1 + c2 =

∫ 1

0
(c1e

−izx + c2e
izx) dµ0(x) + σ0z

2 (c1 + c2),(1.9)

c1e
−iz + c2e

iz =

∫ 1

0
(c1e

−izx + c2e
izx) dµ1(x) + σ1z

2
(
c1e
−iz + c2e

iz
)
.(1.10)

By grouping the coefficients of c1 and c2 in the equations above, we can find the values of
z from the zeros of the determinant

(1.11) ∆ :=

∣∣∣∣∣∣
(1− σ0z2)−

∫ 1
0 e
−izx dµ0 (1− σ0z2)−

∫ 1
0 e

izx dµ0

(1− σ1z2)e−iz −
∫ 1
0 e
−izx dµ1 (1− σ1z2)eiz −

∫ 1
0 e

izx dµ1

∣∣∣∣∣∣ .
If we define

(1.12) F (z) :=

(
(1− σ0z2)−

∫ 1

0
e−izx dµ0

)
×
(

(1− σ1z2)eiz −
∫ 1

0
eizx dµ1

)
,

then the determinant ∆ is equal to F (z)− F (−z). By noting that

eiz = cos(z) + i sin(z),

we see that F (z) can be decomposed into its real and imaginary parts as

F (z) = E(z) + i O(z),

where E is an even function while O is odd and both have all real coefficients. Hence
∆ = 2i O(z). To analyze the roots of ∆ and to clear up a point in the proof of Proposition
6.1 in [11], we first do a quick review on a topic in classical entire functions shown in
Chapter VII of Levin’s book [9].

An entire function f(z) is said to be of exponential type if there are positive constants M

and τ such that |f(z)| ≤Meτ |z| for all large |z|. The indicator function of f(z) is

hf (θ) := lim
r→∞

log |f(reiθ)|
r

.

The defect df ([9], p.319) of an entire function f(z) of exponential type is defined by

df := (hf (−π/2)− hf (π/2)) /2.

If the defect of f(z) is non-negative, it follows from the Lindelöf’s maximum principle ([9],
p.320) that

|f(z)

f(z)
| ≤ 1 for Im(z) > 0.
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The function f(z) above is defined to be f(z). If f(z) = P (z) + iQ(z) are its real and
imaginary part decomposition (each with real Taylor coefficients), then f(z) = P (z)−iQ(z).

Definition 1.1. An entire function f(z) of exponential type is said to belong to the class
P if it has non-negative defect and has no roots in the open lower half plane Im(z) < 0.

Definition 1.2. An entire function f(z) of exponential type is defined to be in the class
HB (named after Hermite and Biehler) if f(z) has no roots in the lower half plane and

|f(z)

f(z)
| ≤ 1 when Im(z) > 0.

As a consequence of the definition, we see that the product of two HB functions also
belongs to HB. In addition, according to Lemma 1 in ([9], p.319) the two classes P and
HB introduced above are identical.

The following statement is part of Theorem 3’ in Levin’s ([9], p.314):

Proposition 1.1. If an entire function f(z) of exponential type belongs to HB, then its
real and imaginary parts may be represented in the form

P (z) = R(z)P1(z), and Q(z) = R(z)Q1(z),

where the roots of the entire functions R(z), P1(z) and Q1(z) are all real and the roots of
P1(z) and Q1(z) interlace.

2. Zeros of the determinant

It was shown in Lemma 5.3 in [11] that the eigenvalues λ = z2 other than λ = 0 in (1.6)
have positive real parts. We define the principal eigenvalue λ1 as the one with smallest
positive real part and the spectral gap as

γ1 = min{Reλ : 0 6= λ is an eigenvalue of (1.6)}.

We’ll show that when both σ’s are large, all the eigenvalues of (1.6) are real regardless how
the probability measures µ are defined at the end points. However when σ’s get small, it
is possible that some complex eigenvalues will appear for certain measures. In particular
if σ0 = σ1 and µ0 and µ1 are point mass measure at x = 1/2, it was raised in the last part
of [11] if the principal eigenvalue λ1 is real while the second one is complex. We answer
the question in the affirmative and pinpoint the spectral gap in this case. The example
discussed by Peng and Li shows how eigenvalues switch from real to complex when σ gets
smaller. However, they become real again when σ converges to the limit 0.
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We first establish a result on existence of real roots of the determinant ∆ defined in the
previous section. The function F in (1.12) can be rephrased in a ’symmetric’ form as:

(2.1) F (z) := eiz/2{(1−σ0z2)−
∫ 1

0
e−izt dµ0(t)}×eiz/2{(1−σ1z2)−

∫ 1

0
e−iz(1−t) dµ1(t)}.

Theorem 2.1. Let

f(z) = eiz/2
(

(1− σz2)−
∫ 1

0
e−izt dµ(t)

)
.(2.2)

(1) The function f belongs to HB if σ > 2/π2 for a general probability measure µ.
(2) For any σ > 0, f belongs to HB if the probability measure dµ = m(t)dt with m(t)

being a differentiable and non-increasing function on I .

Proof. It is obvious that f is an entire function of exponential type. To calculate its defect,
we look at the growth along the imaginary axis. For z = iy, y < 0,

f(iy) = e−y/2
(

1 + σy2 −
∫ 1

0
eyt dµ(t)

)
,

we see that

(2.3) lim
y→∞

log |f(iy)|
|y|

=
1

2
.

For y > 0,

f(iy) = (1 + σy2)e−y/2 − e−y/2
∫ 1

0
eyt dµ(t), and(2.4)

e−y/2
∫ 1

0
eyt dµ(t) =

∫ 1

0
ey(t−1/2) dµ(t) ≤ ey/2.(2.5)

Since the first term on the right side of (2.4) goes to zero, we have

(2.6) lim
y→∞

log |f(iy)|
|y|

≤ 1

2
.

Altogether, the defect df of f is non-positive.

To show that f(z) does not have zeros in the lower half plane, we do some simple calculus
here. Suppose f(z) = 0 for some z = x + iy with y < 0, then its zeros in the lower half
plane are computed from the equation:

σz2 = 1−
∫ 1

0
e−ixteyt dµ(t).

By taking the modulus of both sides, we see that σ|z|2 ≤ 2. So x2 ≤ 2/σ.
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By looking at the imaginary part of e−iz/2f(z) = 0, we have

(2.7) 2σxy =

∫ 1

0
sin(xt) eyt dµ(t).

The equation is odd in x, we may perform an analysis only for x > 0. The right hand side
is positive if 0 < x ≤ π while the left side is negative. For f(z) to have zeros in the lower
half plane, x > π has to hold. Together with the inequality x2 ≤ 2/σ, we conclude that
f(z) cannot vanish in the lower half-plane if σ > 2/π2.

For the proof of the second statement, we write
1− cos(xt)

x
as an anti-derivative of sin(xt).

With the measure dµ = m(t)dt after one integration by parts, (2.7) above becomes

(2.8) 2σxy =
1− cos(x)

x
eym(1)−

∫ 1

0

1− cos(xt)

x
eyt (ym(t) +m′(t)) dt.

For y < 0, the left side is negative while both terms on the right are non-negative since
ym(t) +m′(t) < 0. In conclusion, f cannot have zeros in the lower half plane and is hence
in HB. �

Remark 2.1. f(z) belongs to HB in the limiting case σ = 0. This was proved in [7].
Statement (2) in Theorem 2.1 also holds if the measure µ is piece-wise continuous and

non-increasing on [0, 1]. A good example is dµ =
1

b
dt supported on [0, b] for 0 < b < 1.

Interestingly it may not hold if µ is increasing. This is illustrated by µ being the constant
function supported on [1− b, 1].

Definition 2.2. To simplify our language below, we shall say a probability measure µ
is non-increasing (non-decreasing) if dµ = m(t) dt for some smooth function m(t) that is
non-increasing (non-decreasing) on [0, 1].

Corollary 2.1. Let g(z) = eiz/2(c−
∫ 1

0
e−izt dµ(t)). The function belongs to HB for any

real constant c whenever µ is non-increasing.

Proof. The proof is almost identical to the one given above. By writing z = x + iy, the

imaginary part of e−z/2g(z) is

∫ 1

0
sin(xt)eyt dµ(t). This integral is positive for y < 0. Hence

g cannot have zeros in the lower half plane. �

Remark 2.2. The real part decomposition of the function g is

c cos(z/2)−
∫ 1

0
cos(z(1/2− t)) dµ(t).

According to Proposition 1.1, this function has all real zeros for any real constant c when
µ is non-increasing. Since the integrand is symmetric with to the mid-point 1/2, it also
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has all real zeros if µ is non-decreasing. Result of this type is well-known. See for example,
problems 173-175 in Part V, Chapter 3 of [13].

Corollary 2.2. If µ is non-increasing on I, then both

C(z) := (1− σz2) cos(z/2)−
∫ 1

0
cos(z(t− 1/2)) dµ and(2.9)

S(z) := (1− σz2) sin(z/2)−
∫ 1

0
sin(z(t− 1/2)) dµ(2.10)

have all real zeros for any σ > 0.

In addition, the function C(z) has all real zeros if µ is non-decreasing on I.

Proof. The statements on C(z) and S(z) follow from the Theorem above and Proposition
1.1. The last statement follows from the fact that cos(z(t − 1/2) is invariant when t is
changed to 1− t. �

Regarding cases when ∆(z) has all real roots, we have

Corollary 2.3. If the measures µ0 and µ1 are respectively non-increasing and non-decreasing
on I, then all the zeros of ∆(z) are real.

Proof. This follows from the Theorem above and a factorization of F as shown in (2.1). �

Remark 2.3. In general, the function f(z) would have complex roots in the lower half
plane if µ is a point measure and σ is sufficiently small. The monotonic decreasing nature
of m(t) seems to be important. The smooth measure dµ = 1

630(t(1− t))4 dt resembling the
point mass measure at t = 1/2 gives a function f(z) in (2.2) with roots in the lower half
plane.

3. Location of principal eigenvalue

There are only a few cases that we can locate the principal eigenvalue of the system (1.6),
(1.7) and (1.8) even if the eigenvalues are known to be real in advance. Its determination
becomes difficult if there are non-real ones. As shown in Section 1, the eigenvalues are
computed from the zeros of ∆(z) which is basically the imaginary part decomposition of
F (z) listed in (2.1). We re-write it as:

(3.1)

(
(1− σ0z2)eiz/2 −

∫ 1

0
e−iz(t−1/2)dµ0

)
×
(

(1− σ1z2)eiz/2 −
∫ 1

0
e−iz(1/2−t)dµ1

)
.

Based on Theorem 2.1, F lies in HB if µ0 is non-increasing while µ1 is non-decreasing on
[0, 1]. In such a case ∆(z) has all real zeros. With further assumptions on σi’s, we discuss
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a couple of examples that we can pin-point the location of the first positive zero and hence
the principal eigenvalue.

We state a possibly well-known result on the monotonicity of a real analytic function.

Lemma 3.1. Suppose g(x) is a real analytic function defined on (a, b) with limx→a g(x) =
−∞ and limx→b g(x) = ∞. In addition assume that g(x) − c = 0 has only real zeros for
each real c, then g(x) is non-decreasing on (a, b).

Proof. Suppose g(x) has a local maximum g(x0) = w0 at some point x0 in (a, b), then the
integer value of the Cauchy integral

1

2πi

∮
C

g′(z)

g(z)− w
dz

is at least 2 when w = w0 and C is a small circle on the complex plane surrounding the
point x0. Since g(z) − w = 0 does not have non-real roots for real w, the integral is 0
when the parameter w becomes slightly larger than w0. This contradicts the fact that the
Cauchy integral is a continuous function of w as it varies inside C. Hence g(x) cannot have
any local maximum. �

Theorem 3.2. For the system (1.6), (1.7) and (1.8), assume that σ0 = σ1 and µ0 = µ1.
In addition if the measure µ is monotonic, then the principal eigenvalue λ is equal to the
minimum of 1/σ, 4π2 and z20 where z0 is the first root in (π, 3π) where (1−σz2) cos(z/2)−∫ 1
0 cos(z(1/2− t)) dµ(t) has its first real zero.

Proof. By expanding F (z) in (3.1), we arrive at

(1− σz2)2eiz − 2(1− σz2)eiz/2
(∫ 1

0
cos(z(1/2− t) dµ(t)

)
+(∫ 1

0
eiz(1/2−t)dµ

)
×
(∫ 1

0
e−iz(1/2−t)dµ

)
.

Since the last term above is always real, its imaginary decomposition part is determined
by the sum of first two terms. So the imaginary part decomposition O(z) is the function

2(1− σz2) sin(z/2)

(
(1− σz2) cos(z/2)−

∫ 1

0
cos(z(1/2− t)) dµ(t)

)
.(3.2)

Its zeros are 1/
√
σ, 2π, 4π, · · · and those of C(z) which are all real according to Corollary

2.2. Our intention below is to show C(z) has a zero in (π, 3π).

Let us define the meromorphic functions:

Qc(z) :=

∫ 1
0 cos(z(1/2− t)) dµ

cos(z/2)
.(3.3)
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In the interval (0, π), Qc(z) > 1 because

cos(z/2)−
∫ 1

0
cos(z(1/2− t)) dµ = −2

∫ 1

0
sin(

zt

2
) sin(

z(1− t)
2

) dµ < 0.

At z = π,
∫ 1
0 cos(π(1/2 − t) dµ =

∫ 1
0 sin(πt) dµ > 0. Thus Qc(z) goes to −∞ as z goes to

π from the right.

At z = 3π, the numerator of Qc(z) is equal to
∫ 1
0 cos(3π(1/2 − t) dµ = −

∫ 1
0 sin(3πt)dµ.

With the property that µ is either increasing or decreasing on [0, 1], we draw the conclusion

that
∫ 1
0 sin(3πt) dµ > 0 by splitting it into a sum of three integrals over (0, 1/3), (1/3, 2/3)

and (2/3, 1). The middle integral is smaller than either the first or the third one. Thus
the quotient Qc(z) in (3.3) goes to ∞ as z goes to 3π from the left.

From the remark made after Corollary 2.1, we see that Qc(z) = c has only real zeros for
any real c. Lemma 3.1 implies that Qc(z) is monotonically increasing in (π, 3π). The same
conclusion applies to Qc(z) over the intervals (3π, 5π), (5π, 7π), · · · .

Finally, the parabola 1 − σz2 will intersect Qc(z) in (π, 3π) at only one point z0. This is

the first positive root of (1− σz2) cos(z/2)−
∫ 1
0 cos(z(1/2− t)) dµ(t) = 0.

The eigenvalues of the system (1.6), (1.7) and (1.8) are determined by the roots of the
equation (3.2), which consist of zeros of (1−σz2) sin(z/2) and those of C(z). The candidates
for the first positive roots are the 1/

√
σ, 2π and z0. Hence the principal eigenvalue λ = z2

is the minimum of 1/σ, 4π2 and z20 .

We remark that if an extra assumption is made on µ, then a better bound on the principal
eigenvalue can be found. For example if dµ = m(t)dt with m′(t) ≥ 0 and m′′(t) ≤ 0, then

Qc(2π) = −
∫ 1

0
cos(2π(1/2− t))m(t)dt

= − 1

2π

∫ 1

0
sin(2πt)m′(t)dt.

Since m′(t) is non-increasing, then Qc(2π) ≤ 0 Now Qc(z) is monotonically increasing in
(π, 3π) and Qc(2π) ≤ 0, then z0 is always larger than the minimum of 1/

√
σ and 2π. �

Incidentally we note that the roots of O(z) in (3.2) are identical if dµ is dt, 2tdt or 2(1−t)dt.
For all these cases, O(z) = 2(1−σz2)

(
(1− σz2) cos(z/2)− 2 sin(z/2)/z

)
. From an inverse

eigenvalue problem point of view, it seems that the knowledge of the entire set of eigenvalues
still cannot determine the single measure µ even when σ is given..
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We finish this section with another case of real eigenvalues where the holding rates σi’s are
different but both end-point measures are equal to the Lebesgue measure. The case here
is to illustrate the difficulty of locating the first positive root even if is known a priori that
all the roots are real.

Proposition 3.1. For the Brownian motion described by (1.6), (1.7) and (1.8) with
σ0 < σ1 and both measures at the end points being the Lebesgue measure on [0, 1], all
the eigenvalues are real.

Let ρ be the first positive root of x cot(x/2) =
1

1− σ0x2
+

1

1− σ1x2
.

Then the principal eigenvalue is 4π2 if 2π ≤ 1/
√
σ1. On the other hand, if 2π > 1/

√
σ1,

then the principal eigenvalue is ρ2 with 1/
√
σ1 < ρ < 2π.

Proof. We will just give a sketch of proof here. By replacing each of the measures by
Lebesgue measure in (3.1), one gets

F =

(
(1− σ)z2)eiz/2 − 2

sin(z/2

z

)
×
(

(1− σ1z2)eiz/2 − 2
sin(z/2

z

)
.

After expanding the product above, the odd part decomposition is

O(z) = 2 sin(z/2)

(
(1− σ0z2)(1− σ1z2) cos(z/2)− sin(z/2)

z
((1− σ0z2) + (1− σ1z2)

)
.

The case σ0 = σ1 has been settled in the remark at the end of Theorem 3.2. We may
assume that σ0 < σ1. The first positive zero x0 of O(z) is determined by the minimum of
2π and the first positive zero ρ of x cot(x/2) = R(x), where

R(x) :=
1

1− σ0x2
+

1

1− σ1x2
.

x cot(x/2) decreases from 2 to −∞ in (0, 2π), from ∞ to −∞ in (2π, 4π), · · · etc. R(x)
increases from 2 to ∞ in the interval (0, 1/

√
σ1) and from −∞ to ∞ in (1/

√
σ1, 1/

√
σ0).

If 1/
√
σ1 ≥ 2π, then x cot(x/2) will not intersect R(x) in (0, 2π). So 2π is the first positive

root of O(z). If 1/
√
σ1 < 2π, then the first point of intersection of the two curve occurs

inside the interval (1/
√
σ1, 2π). �

3.1. Peng and Li’s question. When both σi’s are the same σ and the µi’s are both point
measure δ1/2, Peng and Li in [11] raise the problem of showing that the principal eigenvalue

is real and is equal to the minimum of 1/σ and 4π2. In the limiting case when both σi = 0,
i.e. there is no holding at the boundary points, it was proved in [1] for a general point
measure δp, p ∈ (0, 1) that the principal eigenvalue is 4π2..
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With both µ’s being δ1/2,

(3.4) O(z) = 2 sin(z/2) (1− σz2)
(
(1− σz2) cos(z/2)− 1

)
.

So the zeros of O(z) are those of

h(z) := (1− σz2) cos(z/2)− 1 = 0

plus z = 1/
√
σ and 2nπ for n = 1, 2, · · · . For the rest of this subsection, we perform an

analysis on the zeros of h(z) = 0. According to Theorem 2.1, h(z) being the real part of

eiz/2((1− σz2)− e−iz/2) has all real zeros whenever σ > 2/π2.

For large σ, the parabola 1 − σx2 intersects various branches of sec(x/2) at two different
points in each of the intervals (π, 3π), (5π, 7π), · · · in the lower half plane. The roots of
h(x) = 0 together with the double root at the origin are all real. Since cos(x/2) is negative
in each of these intervals, all the real roots satisfy the inequality 1 − σx2 < 0. So all the
positive real roots of h(x) are larger than 1/

√
σ.

Inside the first interval (π, 3π), as σ gets small, the parabola becomes first tangent to
sec(x/2) at some point x1 which is a double root of h(x) = 0. As σ gets smaller, all the
real roots in this interval disappear since the x values are less than 1/

√
σ. However each

root of h(z) is continuous (actually locally analytic) in terms of σ, the double root x1 on
the real axis in (π, 3π) will split into a pair of conjugate complex roots on the complex
plane. We need to approximate the location of x1 in order to compute the spectral gap of
this nonlocal boundary value problem. Our aim in the following is to show x2 − y2 > 4π2,
i.e. Re z2 > 4π2 for all the non-real roots z = x+ iy of h(z) = 0.

All the double roots can be computed from the system of equations:

h(x) = (1− σx2) cos(x/2)− 1 = 0,

h′(x) = −2σx cos(x/2)− 1− σx2

2
sin(x/2) = 0.

By eliminating the parameter σ, we arrive at

(3.5) φ(x) := 4 cos(x/2)− 4 cos2(x/2)− x sin(x/2)

whose roots are the double roots of h(x). Since

φ(x) = 4 cos(
x

2
)
(

1− cos(
x

2
)
)
− x sin(

x

2
) and

φ′(x) = −3 sin(
x

2
)
(

1− cos(
x

2
)
)

+ cos(x/2)
(

sin(
x

2
)− x

2

)
,

we see easily that φ(0) = 0, φ(x) < 0 in (π, 2π). In addition φ′(x) < 0 in (0, π) and
φ′(x) > 0 in (π, 3π). Now φ(7π/3) = −2

√
3 − 3 + 7π/6 < 0. From these results, we

conclude that the first positive root x1 of φ(x) is larger than 7π/3 = 7.33038. Numerically
x1 = 7.74873. This is the place where 1 − σx2 is tangent to sec(x/2) in (π, 3π). The
corresponding value of σ∗ is 0.03906.
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We note that λ = x21 is a real eigenvalue of multiplicity 2 corresponding to σ = σ∗ in
the system (1.6) and (1.7). The double roots have to split into a conjugate pair on the
complex plane as σ decreases further. Each trajectory can be parametrized implicitly as
an analytic function of σ for 0 < σ < σ∗. As σ goes to zero, the limiting equation is
h(z) = cos(z/2)− 1. So the conjugate pair of trajectories will converge to the point (4π, 0)
on the real axis. Similarly in the interval (5π, 7π), the two real roots on the real line will
converge to a double root and then split into a conjugate complex pair as σ gets smaller
further.

We show how the trajectories are obtained since we have to prove that all these roots
satisfy the inequality Re(z2) > 4π2. With z = x+ iy, the equation h(z) = 0 written as

σz2 = 1− 1

cos(z/2)

can be decomposed into its real and imaginary parts as follows:

σ(x2 − y2) = 1− cos(x/2) cosh(y/2)

cosh(y/2)2 − sin(x/2)2
,

σ 2x y = − sin(x/2) sinh(y/2)

cosh(y/2)2 − sin(x/2)2
.

By eliminating the parameter σ, these two equations yield

−x
2 − y2

2xy
sin(

x

2
) sinh(

y

2
) = cosh2(

y

2
)− sin2(

x

2
)− cos(

x

2
) cosh(

y

2
).

Let us define

H(x, y) : = cosh2(
y

2
)− sin2(

x

2
)− cos(

x

2
) cosh(

y

2
) +

x2 − y2

2xy
sin(

x

2
) sinh(

y

2
).(3.6)

All the non-real zeros z = x+ iy of h(z) = 0 lie on the contours defined by H(x, y) = 0. As
illustrated in Figure 1, their heights of the contours get larger as they move out to infinity.

Figure 1. Level curves of H(x,y) = 0

The graph is symmetric with respect to both axes and we’ll only consider the part in the
first quadrant. Let α := 3/7. We intend to show that all the points (x, y) on the contours
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lie within the angular sector y < αx with x > π/α. Consequently x2 − y2 > 40

9
π2 > 4π2.

We showed earlier that the trajectory of the roots of h(z) = 0 come out from the point
x1 > 7π/3 on the real axis. It has to come down to the x axis at 4π as σ decreases to 0.
To show that the graph cannot cross the vertical line x = 7π/3, we inspect the value

H(7π/3, y) = cosh2(
y

2
)− 1

4
+

√
3

2
cosh(

y

2
) +

7π

12y
sinh(

y

2
)− 3y

28π
sinh(

y

2
)

=

(√
3

2
cosh(

y

2
)− 1

4

)
+

(
cosh2(

y

2
)− 3y

28π
sinh(

y

2
)

)
+

7π

12y
sinh(

y

2
).

With the terms arranged as shown, each of the groups is positive. Thus H(7π/3, y) > 0 for
all y ≥ 0. In other words, no points of the vertical line (7π/3, y) can lie on the contours.

We now prove that the contours lie below the radial line y = αx. The proof is a routine
calculus problem.

H(x, αx) = cosh2(
αx

2
)− sin2(

x

2
)− cos(

x

2
) cosh(

αx

2
) +

1− α2

2α
sin(

x

2
) sinh(

αx

2
).

The sum of the last three terms is bounded above by 1 + cosh(αx/2) + sinh(αx/2) which is

1 + eαx/2. It is a simple task to show that cosh2(t) > 1 + et for t > 3/2. We’ll give a proof
at the end of this section. So H(x, αx) > 0 if αx/2 > 3/2 or x > 7. In other words, all
the points z = x+ iy on the contours lie within the angular sector bounded by y = ±3x/7
if x > 7. This is definitely true since we have shown that x > 7π/3 for all points on the
contours. The following result answers the question raised at the end of the paper by Peng
and Li [11].

Theorem 3.3. For the Brownian motion described by (1.6), (1.7) and (1.8) with holding
rates at the end points equal to the same σ and µ0 = µ1 = δ1/2, then the principal eigenvalue

is min {1/σ, 4π2}.

Proof. The roots of (3.4) provide the eigenvalues of the system. Since λ = z2, the real
eigenvalues are 1/σ, 4π2, 16π2, · · · regardless what the holding rate σ is. If z is a real root
of h(z) = 0, we showed then 1− σz2 > 0, i.e. 1/σ provides a lower bound for all other real
eigenvalues.

Let z = x+iy be a non-real root of h(z) = 0 when σ < σ∗. We showed above that x > 7π/3

and y < 3x/7. So Re (z2) = x2 − y2 > x2(1 − 9/49), i.e. Re λ = Re (z2) > 49π2

9
40
49 =

40π2

9 > 4π2.

Hence the principal eigenvalue is real and is the minimum of the two numbers 1/σ and
4π2. �
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We conclude this section with a numerical example showing the existence of a non-real
principal eigenvalue. In (3.1), if σ0 = σ1 and the boundary measures are µ0 = δp and
µ1 = δ1−p respectively, F (z) is equal to(

(1− σz2)eiz/2 − e−i(p−1/2)z
)2

=
(
(1− σz2)(cos(z/2) + i sin(z/2))− cos((p− 1/2)z) + i sin((p− 1/2)z)

)2
=
([

(1− σz2) cos(z/2)− cos((p− 1/2)z)
]

+ i
[
(1− σz2) sin(z/2) + sin((p− 1/2)z)

])2
.

So the imaginary part O(z) is equal to

2
[
(1− σz2) cos(z/2)− cos((p− 1/2)z)

]
×
[
(1− σz2) sin(z/2) + sin((p− 1/2)z)

We take σ = 0.01 and p = 2/3, it can be shown that all the zeros of the factor

(1− 0.01z2) cos(z/2)− cos(z/6)

are real and that the first positive zero is at 3π. The second factor has the form

(1− 0.01z2) sin(z/2) + sin(z/6).

It has a pair of complex zeros ζ = 7.66688 ± i 2.49563 and all the others are real. Numeri-
cally the real part of ζ2 = 52.55300 is smaller than the square of the other real roots. Also
this number is smaller than 9π2 = 88.82643. Thus ζ2 is the principal eigenvalue here.

We note that in [7], it was shown for the case of σ = 0 (Brownian motion with jumps
only), this symmetric jump of jumping from 0 to 2/3 and from 1 to 1/3 gives the largest
principal eigenvalue among all possible probability measures µ0 and µ1.

Remark 3.1. The inequality cosh(t)2 > 1 + et is implied by x2 − 4x− 2 > 0 with x = et.
We have to show that et > 2 +

√
6 for t > 3/2. If we replace et by a lower bound

1 + t+ · · ·+ t5/5!, its value at t = 3/2 is 5711/1280 = 4.46172. An upper bound of 2 +
√

6
is 2 + 49/20 = 4.45. So cosh(t)2 > 1 + et for t = 3/2 and beyond.

4. Conclusion

Though the Brownian model studied here is pretty straight forward, we have shown in
general the computation of the spectral gap is not a simple problem. In particular we use
the classical Hermite-Biehler Theorem to help us analyze the distribution of the eigenvalues.
Slight generalization of the simple Brownian motion model v′′ + λv = 0, such as (1 +
x)4v′′(x) + z2v(x) = 0 or Bessel-like diffusion v′′(x) + n/(1 + x)v′(x) + z2v(x) = 0 also
have similar eigenvalue distributions. For a diffusion equation of the form v′′(x) + cv′(x) +
z2v(x) = 0 with no holding conditions, we note that the paper [10] seems to be the first one
in pointing out the existence of a non-real principal eigenvalue under the jump boundary
conditions v(0) = v(1/2) = v(1). Our results show that if the boundary conditions (1.4)
and (1.5) yield both real and non-real roots in the parameter z, then it is a real pain to
sort out the minimal value of real part of λ = z2.
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