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Abstract

Based on an equivalent derivative nonlinear Schröinger equation, some periodic and non-periodic two-

parameter solutions of the deformed continuous Heisenberg spin equation are obtained. These solutions

are all proved to be ill-posed by the estimates of the Fourier integral in Hs
S2 (periodic solution in Hs

S2(T)

and non-periodic solution in Hs
S2(R) respectively). If α 6= 0, the range of the weak ill-posedness index is

1 < s < 3
2 for both periodic and non-periodic solutions. However, the periodic solution admits a strong

ill-posedness index in the range of 3
2 < s < 7

2 , whereas the range of the non-periodic solution is 1 < s < 2.

These results extend our previous work (see [38]) of the deformed continuous Heisenberg spin model to

the periodic solution case and a different fractional Sobolev spaces Hs
S2 .

Keywords: Heisenberg spin; soliton; ill-posedness; Fourier integral

1. Introduction

The deformed continuous Heisenberg spin (DCHS) equation is the important physical model which

has received a lot of attention in the past decades. Mikhailov and Shabat[27] firstly constructed an

integrable SO(3) invariant integrable DCHS equation which can be written as

St = S ∧ Sxx + αSx(Sx)2, (1)

where ∧ denotes the cross product of the vector S(x, t) = (S1(x, t), S2(x, t), S3(x, t)), S · S = 1 and

(Sx)2 = Sx · Sx.

DCHS equations contain a large number of different equations which can be transformed into various

different order nonlinear Schrödinger (NLS) equations. Porsezian et al.[31] firstly showed that (1) is

gauge equivalent to the integrable derivative NLS equation, which can be applied to two photon self-

induced transparency and ultrashot light pulse propagation in the optical fiber. Similarly, Lakshmanan

et al.[10, 17, 22, 28, 30] investigated the higher order integrable DCHS equations and found they can

be transform to the higher order NLS equations by associating the spin vector with the tangent to a

moving curve in Euclidean space. For the higher dimensional integrable DCHS[24], how to derive the

corresponding gauge equivalent NLS equations have also been presented[37].
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If α = 0, then (1) deforms into an isotropic Heisenberg spin (IHS) equation which is an exactly

integrable equation which can be regarded as a simplest case of the Landau–Lifshitz equation (LL

equation)[20]. The following papers illustrate some typical progress with the LL equation. Alouges

and Soyeur [1] established some necessary conditions for the existence of a global weak solution. When

the spatial dimension is n = 1 under the periodic boundary condition setting, Guo and Huang [8] es-

tablished the existence of unique smooth solutions by means of the technique of spatial differences. In

R3, Carbou and Fabrie [4] proved the local existence and uniqueness of regular solutions and the global

existence when the initial data are small in some sense. Chang, Shatah, and Uhlenbeck [5] established

the existence of small-data global solutions for the cylindrical coordinates case. In normal coordinates,

a global solution with small initial values also exists [2] under some special norms. In dimensions larger

than three, the global existence and uniqueness of mild solutions were proved [23] under the smallness

condition. Similarly, under the smallness constraint in Morrey spaces, Lin, Lai, and Wang [21] extended

this result to establish an existence result for the global solution. Moreover, the solution with small initial

data in critical Besov space was proved [9] to be globally well-posed in dimensions n ≥ 3.

Inspired by the study of heat flow in harmonic maps and by the Ginzburg–Landau equation, the

concentration set of the stationary weak solutions of the LL equation was estimated [7, 18, 35] to analyze

the behavior of the solution at the singular point. Moreover, the singular property (and even the finite

time blowup) can be proved for a special type of the solution. If the topology degree is one, the equivariant

solution will blow up; its blowup rate was predicted in [26, 29, 32]. As we know, the exact solution to

the LL equation provides a more intuitive way to study its dynamic behavior. We refer the reader to

[6, 11, 13, 34, 36, 39, 40, 41, 42] for details.

Because (1) is a quasilinear equation, it is difficult to analyze the well-posedness of the system directly.

Partial differential equations lack a theory of well-posedness. So many papers use the equivalent system

of the equation (especially the equivalent nonlinear Schrödinger equation) to prove the well-posedness of

the solution to the original partial differential equations, such as the Schrödinger equation with derivative

−iWt = ∆W − 2W ∗

1 + |W |2
∇W · ∇W

or its equivalent covariant derivative equation:

(iDt −DjDj) Ψk = −iIm
(
ΨjΨ

∗
j

)
Ψj .

Similarly, we here use an equivalent complex equation to study the deformed continuous Heisenberg spin

equation. If we set the curvature κ and torsion τ are

κ = (Sx · Sx)
1
2 and τ =

S · (Sx×Sxx)

κ2

respectively.

We can apply the following Hasimoto transform [31, 43, 44]:

Q = κ exp

(
i

∫ x

−∞
τ (t, x′) dx′

)
to transform (1) into the following nonlinear derivative Schrödinger equation (refer to [31]):

iQt +Qxx +
1

2
Q |Q|2 − iα

(
|Q|2Q

)
x

= 0. (2)
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Equation (2) is a mix of the cubic Schrödinger equation and Alfvén equation. Without iα
(
|Q|2Q

)
x
,

(2) is the well-known cubic Schrödinger equation, which has been studied in great detail. However, if

the cubic term 1
2Q |Q|2 is neglected, (2) is the Alfvén equation, which comes from plasma physics [25].

For the Alfvén equation, some well-posedness results of the solution are established already. Hayashi

[12] obtained the global well-posedness of it in H1. Some similar results can be also seen in [15, 16].

Furthermore, Takaoka [33] considered the rougher data solution and showed local well-posedness in Hs

with s > 1
2 by an equivalent equation. If the initial condition Q0 satisfies ‖Q0‖L2 <

√
2π, Hayashi

and Ozawa [14] applied the mass conservation to prove that the solution is a global one. However, a

soliton-type solution to it is ill-posed on Hs (0 < s < 1
2 ) [3].

Compared with well-posedness, the results of the ill-posedness of partial differential equations are

deficient. The ill-posedness will be depend on the specific solutions. Different solutions can have different

ill-posedness spaces and unequal ill-posedness indexes. This makes it difficult to obtain a general ill-

posedness result. Although Bigioni and Linares proved the ill-posedness for a class of solutions as early

as 2001, it remains to be determined whether solutions with general initial boundary data or the more

general derivative Schrödinger equation also have ill-posedness in some special space. It is worth noting

that the solution discussed in [3] is the solution in the whole space Hs(R).

To our knowledge, there are few papers on the ill-posedness result of the DCHS equation. In the

recent paper [38], we give a proof of the ill-posedness of the solution and predict an exact index range

of it for the first time. As far as we know, there are no other papers to discuss the this topic and some

more further work of it needs to be done. In view of this, we continue our previous work[38] to discuss

the ill-posedness problem of the DCHS equation and extend the result of it to the different solutions

(periodic and non-periodic solutions) and different fractional Sobolev spaces(which will be defined in the

following content).

Here, we study the ill-posedness problem of (1) and (2). For σ ≥ 0, Jσ is denoted by the Fourier

multiplier ξ → (1 + |ξ|2)σ/2. Hσ (which includes Hσ(R)) and the periodic space of Hσ(T) (where the

period is T) is the norm ||f‖Hσ = ||Jσ(f)||L2 (L2 is on R or T) of complex fractional Sobolev spaces.

With the initial condition Q0, the solution of equation (2) is ill-posed in Hs(Hs(R) or Hs(T)). And

it can be classified as follows:

(I) (Weak ill-posedness) Let C̃ be a given constant. For any real δ > 0, the solution is weakly ill-posed

in Hs if and only if

‖Qc1,ω1(x, 0)−Qc2,ω2(x, 0)‖Hs ≤ δ,

Qcj ,ωj (·, T ) ∈ Hs, ‖Qc1,ω1(·, T )−Qc2,ω2(·, T )‖Hs ≥ C̃.

(II) (Strong ill-posedness) For any ε > 0 and δ > 0, the solution is strongly ill-posed in Hs if and only

if

‖Qc1,ω1(x, 0)−Qc2,ω2(x, 0)‖Hs ≤ δ,

‖Qc1,ω1
(·, T )−Qc2,ω2

(·, T )‖Hs ≥ ε−1

‖Qcj ,ωj (·, T )‖Hs = ‖Qcj ,ωj (·, 0)‖Hs > ε−1.

Taking into account that ‖κ‖ = ‖Q‖ and κ = (Sx · Sx)
1
2 , there is an equivalent relationship between

the different norms of Q and S. So we can use the norm of Q to estimate the norm of S. Let F =
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(F1, F2, F3), and G = (G1, G2, G3). We use the induced distance

dσ(F, G) =

[
3∑
l=1

‖Fl −Gl‖2Hσ

]1/2
,

to define the vector norm in Hσ
∗ as follows:

‖F‖Hσ∗ =

(
3∑
l=1

‖Fl‖2Hσ

) 1
2

.

At the same time, the induced norm of Hσ
S2 (Hσ

S2(T) and Hσ
S2(R) ) for the vector S (S∞ is the value of

S in x =∞) is

‖S‖Hσ
S2 (T) = ‖S‖Hσ∗ (T).

and

‖S‖Hσ
S2 (R) = ‖S− S∞‖Hσ∗ (R),

respectively.

It is not difficult to find that if Q ∈ C([0, T ];Hσ) is the solution of (2), then the solution of (1)

satisfies S ∈ C([0, T ];Hσ+1
S2 ). Similarly, in Hs

S2(T) (or Hs
S2(R)), two types of ill-posedness are defined as

follows:

(I) The solution is weakly ill-posed in Hs
S2 if and only if

‖Sc1,ω1(x, 0)− Sc2,ω2(x, 0)‖Hs
S2
≤ δ,

Scj ,ωj (·, T ) ∈ Hs
S2 , ‖Sc1,ω1(·, T )− Sc2,ω2(·, T )‖Hs

S2
≥ C̃.

(II) The solution is strongly ill-posed in Hs
S2 if and only if

‖Sc1,ω1
(x, 0)− Sc2,ω2

(x, 0)‖Hs
S2
≤ δ,

‖Sc1,ω1(·, T )− Sc2,ω2(·, T )‖Hs
S2
≥ ε−1

‖Scj ,ωj (·, T )‖Hs
S2
, ‖Scj ,ωj (·, 0)‖Hs

S2
> ε−1.

By Fourier analysis, the following result is obtained:

Theorem 1. There is a solution S(x, t) of (1) in Hs
S2 , and the mapping S0 → S(t) is ill-posed. Specifi-

cally, if α 6= 0, there are the following two-parameter solitary wave solutions Sc,ω:
(I) If Sc,ω satisfies the constrained curvature condition

(Sx · Sx)
1
2 =
√

2A1

(
B1 cos

(
1

2
A1ξ

)2

+ C1

)− 1
2

,

where ξ = x − ct, A1 =
√
c2 + 4ω, B1 = 4

√
−α2ω + α c+ 1, and C1 = −α c − 2

√
−α2ω + α c+ 1 − 2,

then the solution is weakly ill-posed in Hs
S2(T) with 1 < s < 3

2 , and strongly ill-posed in Hs
S2(T) with

3
2 < s < 5

2 .
(II) If Sc,ω satisfies the constrained curvature condition

(Sx · Sx)
1
2 =
√

2

(
eA2ξB2

A2
2

+
e−A2ξB2

A2
2

+
C2

A2
2

)− 1
2

,

where ξ = x− ct, A2 =
√
−c2 − 4ω, B2 =

√
−ω α2 + α c+ 1 and C2 = αc+ 2, then the solution is weakly

ill-posed in Hs
S2(R) with 1 < s < 3

2 , and strongly ill-posed in Hs
S2(R) with 1 < s < 2.
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Remark 1. In addition to (1), there are a large number of the more general DCHS models. For instance,

Lakshmanan and Ganesan[19] proposed a generalised case which including linear inhomogeneities (a

higher order integrable DCHS equations in the same time) as follows

St = (γ2 + µ2x)S ∧ Sxx + µ2S ∧ Sx − (γ1 + µ1x)Sx − γ
(
Sxx +

3

2
S2
xS

)
x

. (3)

As far as we know, the well posedness and the ill-posedness problems of (3) are still open.

The Hσ norm of Q is equivalent to the Hσ+1
S2 norm of S. In order to prove Theorem 1, we only need

to prove its equivalent theorem as follows:

Theorem 2. Let α 6= 0 and ξ = x − ct; Ai, Bi and Ci (i = 1, 2), as in Theorem 1. Then, (2) has a
two-parameter solitary wave solution:

Qc,ω (ξ, t) = e−iωtφ (ξ) eiψ(ξ), (4)

where φ(ξ) and ψ(ξ) can be

φ(ξ) =
√

2A1

(
B1 cos

(
1

2
A1ξ

)2

+ C1

)− 1
2

, (5)

ψ(ξ) =
3αA1√

(B1 + C1)C1

arctan

(
C1 tan

(
1
2 A1ξ

)√
(B1 + C1)C1

)
+

1

2
cξ, (6)

or

φ(ξ) =
√

2

(
eA2ξB2

A2
2

+
e−A2ξB2

A2
2

+
C2

A2
2

)− 1
2

, (7)

ψ(ξ) = −3 arctan

(
2 eA2ξB2 + C2

αA2

)
+

1

2
cξ. (8)

These two different kinds of the solutions are ill-posed:
(I) Solution (4), where φ(ξ) and ψ(ξ) are in the form of (5) and (6), respectively , is weakly ill-posed

in Hs(T) with 0 < s < 1
2 , and strongly ill-posed in Hs(T) with 1

2 < s < 3
2 .

(II) Solution (4), where φ(ξ) and ψ(ξ) are in the form of (7) and (8), respectively, is weakly ill-posed
in Hs(R) with 0 < s < 1

2 , and strongly ill-posed in Hs(R) with 0 < s < 1.

Remark 2. The Alfvén equation has a class of ill-posedness solutions in Hs(R) (0 < s < 1/2) [3]. From

case (I), if the cubic term 1
2Q |Q|2 is added to the Alfvén equation, ill-posedness solutions also exist. In

addition, only the weak ill-posedness of the soliton-type solution on the whole space Hs(R) was discussed.

However, theorem 2 shows that the solution to the derivative Schrödinger equation with the 1
2Q |Q|2 term

can show weak and strong ill-posedness in both Hs(R) and Hs(T). Moreover, (3) is proved ([17]) to be

geometrically as well as gauge equivalent to the generalised NLS equation with linear inhomogeneities

iQ1 + iµ1Q+ i( γ1 + µ1x)Qx + (γ2 + µ2x)
(
Qxx + 2|Q|2Q

)
+ 2µ2

(
Qx +Q

∫ x

−x
|Q|2 dx′

)
+ iγ

(
Qxxx + 6|Q|2Qx

)
= 0.

(9)

Similar to (3), the well posedness and the ill-posedness problems of (9) are still unknown.
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This paper is organized as following. In section 2, we construct the (non-) periodic travelling wave

solution for the equivalent nonlinear derivative Schrödinger equation of the deformed continuous Heisen-

berg spin equation. In section 3, the ill-posedness of the periodic travelling wave solution is proved and

the range of the ill-posedness index is presented. In section 4, we prove the weak and strong ill-posedness

of the non-periodic solution (soliton solution) and estimate the ill-posedness indexes.

2. (Non-) periodic solutions to the deformed continuous Heisenberg spin equation

Under the plane wave variable ξ = x− ct setting, we assume the soliton solution of (2) is as follows

Qc,ω (t, x) = e−iωtφ (ξ) eiψ(ξ). (10)

By substituting (10) into (2), and separating the real and imaginary sections, we obtain

c φ
dψ

dξ
+ αφ3

dψ

dξ
−
(

dψ

dξ

)2

φ+ ω φ (ξ) +
1

2
φ3 +

d2φ

dξ2
= 0 (11)

and

−c dφ

dξ
− 3αφ2

dφ

dξ
+ 2

(
dψ

dξ

)
dφ

dξ
+

(
d2ψ

dξ2

)
φ = 0 (12)

respectively.

Note that (11)–(12) represent a system of first-order differential equations with the dependent variable

ξ. To solve this system, by (12), we have

ψ = c2 +
c ξ

2
+

∫
3αφ4 + 4 c1

4φ2
dξ. (13)

Substituting (13) with (11), we have

16

(
d2φ

dξ2

)
φ3 + 3α2 φ8 + 8α cφ6 + 8φ6 − 8 c1αφ

4 + 4 c2 φ4 + 16ω φ4 − 16 c1
2 = 0. (14)

To solve (14), we define the auxiliary function:(
dφ

dξ

)2

=

6∑
j=0

hjφ
j , (15)

where hj is a undetermined function.

By (15), the second derivative of φ must satisfy the following equation

d2φ

dξ2
=

1

2

6∑
j=1

j hjφ
j−1(ξ). (16)

Substituting (15)–(16) with (14) and comparing the powers of φ, we have(
dφ

dξ

)2

= −α
2

16
φ6 +

(
−α c

4
− 1

4

)
φ4 +

(
α c1

2
− c2

4
− ω

)
φ2 − c12φ−2. (17)

In (17), we study the case where c1 = 0, which is(
dφ

dξ

)2

= −
[
α2

16
φ4 +

(
−α c

4
− 1

4

)
φ2 − c2

4
− ω

]
φ2. (18)
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For the ODE (18), if h0 = h1 = h3 = h5 = 0, h6 < 0, h24 − 4h2h6 > 0, h2 > 0, and h4 < 0, then (15)

has the following bell shape solution:

φ(ξ) =

 2h2sech
2√h2 ξ

2
√
h24 − 4h2h6 −

(√
h24 − 4h2h6 + h4

)
sech2

√
h2 ξ


1
2

and singular solution

φ(ξ) =

 2h2csch
2
[
±
√
h2 ξ

]
2
√
h24 − 4h2h6 +

(√
h24 − 4h2h6 − h4

)
csch2

[
±
√
h2 ξ

]


1
2

.

By (15), we have h0 = h1 = h3 = h5 = 0, h2 = −(1/4)c2 − ω, h4 = −(1/4)αc − 1/2 and h6 =

−(1/16)α2. Hence, we obtain the following theorem:

Solution 3. Equation (2) has the following solution:

Q = e−iω teiψ(ξ)φ (ξ) , (19)

where ξ = x− ct,

ψ(ξ) =

∫
3αφ2

4
dξ +

c ξ

2
. (20)

(I) If α > 0, c < −2α−1, and ω < (αc+ 1)/α2, then the equation has the following trig solution:

φ(ξ) =

 2( 1
4c

2 + ω)sec2
√

1
4c

2 + ω ξ

√
−α2ω + α c+ 1−

(
1
2

√
−α2ω + α c+ 1 + α c

4 + 1
2

)
sec2

√
1
4c

2 + ω ξ


1
2

(21)

and the singular trig solution

φ(ξ) =

 −2( 1
4c

2 + ω)csc2 ±
√

1
4c

2 + ω ξ

√
−α2ω + α c+ 1−

(
1
2

√
−α2ω + α c+ 1− α c

4 −
1
2

)
csc2 ±

√
1
4c

2 + ω ξ


1
2

. (22)

(II) If α > 0, ω < −(1/4) c2 and −2α−1 < c, then the equation has the following bell shape solution:

φ(ξ) =

 −2( 1
4c

2 + ω)sech2
√
− 1

4c
2 − ω ξ

√
−α2ω + α c+ 1−

(
1
2

√
−α2ω + α c+ 1− α c

4 −
1
2

)
sech2

√
− 1

4c
2 − ω ξ


1
2

(23)

and the singular solution

φ(ξ) =

 −2( 1
4c

2 + ω)csch2 ±
√
− 1

4c
2 − ω ξ

√
−α2ω + α c+ 1 +

(
1
2

√
−α2ω + α c+ 1 + α c

4 + 1
2

)
csch2 ±

√
− 1

4c
2 − ω ξ


1
2

. (24)

Remark 3. Solutions (21) and (22) can be converted to the same form as follows:

φ(ξ) =

{
4(c2 + 4ω)

4
√
−α2ω + α c+ 1 cos2

(
1
2

√
c2 + 4ω ξ

)
− α c− 2

√
−α2ω + α c+ 1− 2

} 1
2
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Similarly, (23) and (24) can be converted to the same form as follows:

φ(ξ) =

{
−4(c2 + 4ω)

4 cosh2
(
1
2

√
−c2 − 4ω ξ

)√
−ω α2 + α c+ 1 + α c− 2

√
−ω α2 + α c+ 1 + 2

} 1
2

.

Remark 4. The evolution of solutions (21) and (23) can be seen in Figures 1–4, which illustrate the

ill-posedness of (21) and (22). By comparing the images in Figure 3 and Figure 4, it can be seen that

under different parameter settings, the initial value with a sufficiently small distance at the initial time

(see Figure 4) can become a solution with a sufficiently large distance at a specific time (see Figure 3).

3. Ill-posedness of the periodic solution

We prove the ill-posedness property of the solution in (21) (and at the same time for (22)). Equation

(21) can be transformed to

φ(ξ) =
√

2A1

(
B1 cos

(
1
2A1ξ

)2
+ C1

)− 1
2

,

where

A1 =
√
c2 + 4ω,

B1 = 4
√
−α2ω + α c+ 1,

C1 = −α c− 2
√
−α2ω + α c+ 1− 2.

Then, (20) is equivalent to

ψ(ξ) = 3αA1√
(B1+C1)C1

arctan

(
C1 tan( 1

2 A1ξ)√
(B1+C1)C1

)
+ 1

2 cξ.

Let

d4 =
1

2
A1,

d5 =
√

2A1

and

h[1](x) =
(
B1 cos (x)

2
+ C1

)− 1
2

.

Then,

φ(x) = d5h
[1](d4x),

ψ(x) =
3αA1√

(B1 + C1)C1

arctan

(
C1 tan (d4ξ)√
(B1 + C1)C1

)
+

1

2
cξ.

Let

g[1](x) = 3αA1√
(B1+C1)C1

arctan

(
C1 tan(x)√
(B1+C1)C1

)
.

and

F [1](x) = eig
[1](x)h[1](x).
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Then, by (19), we can define

ϕ
[1]
c,ω(x) = Qc,ω(x, 0) = d5e

icx/2F [1](d4x).

We define the Fourier transformation on the interval Tγ := [−πγ, πγ] as

F1(f)(ξ) =
1√
2π

∫ πγ

−πγ
f(x) e−ixξ dx.

Let Zγ = [−γ, γ]. Then, Hs(Tγ) is complete in the space C∞ with period Tγ and norm

‖f‖Hs(Tγ) := ‖〈ξ〉sF1(f)(ξ)‖L2(Zγ).

In the following, we study the ill-posedness of solution (21). As solution (21) is periodic in R, its

norm could be infinity in Hs(R). Therefore, we consider its ill-posedness in one period. We first estimate

its inner-product norm in an integer period (with a sufficiently large period λT), and then estimate the

norm in a single period T.

Proposition 4. If α 6= 0, then the Cauchy problem of equation (2) in Hs(T) could be ill-posed, That is,

Q0 → Q(t) is not uniformly continuous. With the initial condition Q0 = ϕ
[1]
c,ω(x) = d5e

icx/2F [1](d4x), the
solution of equation (2) is ill-posed in Hs(T). Specifically, we have the following:

(I) If 0 < s < 1
2 , then the solution is weakly ill-posed.

(II) If 1
2 < s < 3

2 , then the solution is strongly ill-posed.

Proof. With the scaling and time-shifting properties of the Fourier transform,

F(ϕ
[1]
c,ω)(ξ) = d5

d4
F(F [1])( ξd4 −

c
2d4

).

Furthermore, we compute the norm under different initial conditions,

‖ϕ[1]
c1,ω1

− ϕ[1]
c2,ω2
‖2Hs(T γ

d41

) =

∫
Z γ
d41

〈ξ〉s|F(ϕ[1]
c1,ω1

)(ξ)−F(ϕ[1]
c2,ω2

)(ξ)|2dξ

=

∫
Z γ
d41

〈ξ〉s|d51
d41
F(F [1])(

ξ

d41
− c1

2d41
)− d52

d42
F(F [1])(

ξ

d42
− c2

2d42
)|2dξ

= d41

∫
Z γ
d41

〈d41η〉s|
d51
d41
F(F [1])(η − c1

2d41
)− d52

d42
F(F [1])(η

d41
d42
− c2

2d42
)|2dη

' P [1]
1 + P

[1]
2 + P

[1]
3 .

(25)

where

P
[1]
1 = (d41)2s+1

∫
Z γ
d41

〈η〉s d
2
51

d241
|F(F [1])(η − c1

2d41
)−F(F [1])(

d41
d42

η − c1
2d41

)|2dη,

P
[1]
2 = (d41)2s+1

∫
Z γ
d41

〈η〉s d
2
51

d241
|F(F [1])(η

d41
d42
− c1

2d41
)−F(F [1])(η

d41
d42
− c2

2d42
)|2dη,

P
[1]
3 = (d41)2s+1

∫
Z γ
d41

〈η〉s|d
2
51

d241
− d252
d242
|F(F [1])(η

d41
d42
− c2

2d42
)|2dη.

9



If Nj(j = 1, 2) and N are large integers, then we have the following approximation:

cj = −Nj ' −N, ωj = Nλs
j −

N2
j

4

Without loss of generality, we assume that N1 < N2, and we have

d4j =
1

2
N

1
2λs
j , d5j =

√
2N

1
2λs
j ,

|d41 − d42| ' |N1 −N2|N
1
2λs−1.

With the estimation

(
d251
d241
− d252
d242

)2 = 0,

we can compute

P
[1]
3 = 0.

Let η ' cj
2d4j

. If γ is a positive integer, let γ ≥ N and γ ' N . Considering the Fourier transform on

the unit sphere η ∈ B1(N1− 1
2λs), we apply the mean-value theorem and the Cauchy-Schwarz inequality,

P
[1]
1 ' N

1
2λs(2s+1)

∫
Z γ
d41

〈η〉s|F(F [1])(η − c1
2d41

)−F(F [1])(
d41
d42

η − c1
2d41

)|2dη

' N 1
2λs(2s+1)N2s(1− 1

2λs)

∫
Z γ
d41

|
∫ η− c1

2d41

d41
d42

η− c1
2d41

(
F(F [1])

)′
(ζ)dζ|2dη

≤ N 1
2λs+2s

∫
Z γ
d41

|
∫ η− c1

2d41

η
d41
d42
− c1

2d41

dβ‖
∫ η− c1

2d41

η
d41
d42
− c1

2d41

|
(
F(F [1])

)′
(ζ)|2dζ|dη

' N 1
2λs+2s|1− d41

d42
|
∫
Z γ
d41

|η||
∫ η− c1

2d41

η
d41
d42
− c1

2d41

|
(
F(F [1])

)′
(ζ)|2dζ|dη

' N 1
2λs+2s−1 |N1 −N2|

∫
Z γ
d41

|η||
∫ η− c1

2d41

η
d41
d42
− c1

2d41

|
(
F(F [1])

)′
(ζ)|2dζ|dη.

(26)

By the Fubini theorem,∫
Z γ
d41

|η||
∫ η− c1

2d41

η
d41
d42
− c1

2d41

|
(
F(F [1])

)′
(ζ)|2dζ|dη

=
∫ γ
d41
0 η

∫ η− c1
2d41

η
d41
d42
− c1

2d41

|
(
F(F [1])

)′
(ζ)|2dζdη −

∫ 0

− γ
d41

η
∫ η− c1

2d41

η
d41
d42
− c1

2d41

|
(
F(F [1])

)′
(ζ)|2dζdη

=
∫ γ
d41
−c1
2d41

|
(
F(F [1])

)′
(ζ)|2

∫ (ζ+
c1

2d41
)
d42
d41

ζ+
c1

2d41

ηdηdζ −
∫ −c1

2d41

− γ
d41

|
(
F(F [1])

)′
(ζ)|2

∫ ζ+ c1
2d41

(ζ+
c1

2d41
)
d42
d41

ηdηdζ

= 1
2

∫ γ
d41

− c1
2d41

|
(
F(F [1])

)′
(ζ)|2(ζ + c1

2d41
)2
[
(d42d41

)2 − 1
]
dζ

− 1
2

∫ − c1
2d41

− γ
d41

|
(
F(F [1])

)′
(ζ)|2(ζ + c1

2d41
)2
[
1− (d42d41

)2
]
dζ

= 1
2

∫
Z γ
d41

|
(
F(F [1])

)′
(ζ)|2(ζ + c1

2d41
)2
[
(d42d41

)2 − 1
]
dζ.

(27)
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Note that
d41

2 − d422

d41
2 =

Nλs
1 −Nλs

2

Nλs
1

' (N1 −N2)Nλs−1

Nλs
=
N1 −N2

N
.

Then, by (26) and (27), we have

P1
[1] ≤ N 1

2λs+2s−1 |N1 −N2|
∫
Z γ
d41

|
(
F(F [1])

)′
(ζ)|2(ζ +

c1
2d41

)2[1− (
d42
d41

)2]dζ

' N 1
2λs+2s−2|N1 −N2|2

∫
Z γ
d41

|
(
F(F [1])

)′
(ζ)|2(ζ +

c1
2d41

)2dζ

' N 1
2λs+2s−2|N1 −N2|2N2(1− 1

2λs)

∥∥∥∥(F(F [1])
)′

(ζ)

∥∥∥∥2
L2(Z γ

d41

)

= N−
1
2λs+2s|N1 −N2|2

∥∥∥∥(F(F [1])
)′

(ζ)

∥∥∥∥2
L2(Z γ

d41

)

.

(28)

Similar to the computation of P1,

P2
[1] ' (d41)2s+1

(
d42
d41

)2s+1 ∫
Z γ
d41

|η|2s|F(F [1])(η − c1
2d41

)−F(F [1])(η − c2
2d42

)|2dη

' N 1
2λs(2s+1)N2s(1− 1

2λs)

∫
Z γ
d41

|
∫

η− c1
2d41

η− c2
2d42

(
F(F [1])

)′
(ζ)dζ|2dη

6 N
1
2λs+2s

∫
Z γ
d41

|
∫

η− c1
2d41

η− c2
2d42

dζ||
∫

η− c1
2d41

η− c2
2d42

|
(
F(F [1])

)′
(ζ)|2dζ|dη

' N 1
2λs+2s | c1

2d41
− c2

2d42
|
∫
Z γ
d41

∫ η− c1
2d41

η− c2
2d42

|
(
F(F [1])

)′
(ζ)|2dζdη

' N 1
2λs+2s | c1

2d41
− c2

2d42
|2
∥∥∥∥(F(F [1])

)′∥∥∥∥2
L2(Z γ

d41

)

' N− 1
2λs+2s|N2 −N1|2

∥∥∥∥(F(F [1])
)′∥∥∥∥2

L2(Z γ
d41

)

.

(29)

Note that∥∥∥∥(F(F [1])
)′∥∥∥∥2

L2(R)
=
∥∥∥xh[1](x)

∥∥∥2
L2(R)

=

∫ +∞

−∞

2x2

B1 cos (2x) +B1 + 2C1
dx = +∞,

Here, the estimate of the supreme (28) and (29) of P
[1]
1 goes to infinity because |F | is a function with π

as its period.
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Note that with the Plancherel theorem, we have the estimate of F ,∥∥∥F(F [1])
∥∥∥2
L2(Z γ

d41

)
=
∥∥∥h[1](x)

∥∥∥2
L2(T γ

d41

)

=

∫ γπ
d41

− γπ
d41

2 dx

B1 cos (2x) +B1 + 2C1

=

∫ γπ
d41

0

2 dx

B1 cos (2x) +B1 + 2C1
+

∫ 0

− γπ
d41

2 dx

B1 cos (2x) +B1 + 2C1

≤
∫ γπ

d41

0

2 dx

B1 + 2C1
+

∫ 0

− γπ
d41

dx

C1

=
2 γπ

(B1 + 2C1) d41
+

γπ

C1 d41

' γ

d41
N−1.

(30)

Similarly,∥∥∥∥(F(F [1])
)′∥∥∥∥2

L2(Z γπ
d41

)

=
∥∥∥xh[1](x)

∥∥∥2
L2(T γπ

d41

)

=

∫ γπ
d41

− γπ
d41

2x2 dx

B1 cos (2x) +B1 + 2C1

=

∫ γπ
d41

0

2x2 dx

B1 cos (2x) +B1 + 2C1
+

∫ 0

− γπ
d41

2x2 dx

B1 cos (2x) +B1 + 2C1

≤
∫ γπ

d41

0

2x2 dx

B1 + 2C1
+

∫ 0

− γπ
d41

x2 dx

C1

=
2 γ3π3

3 (B1 + 2C1) d41
3 +

γ3π3

3C1d41
3

' γ3

d41
3N
−1.

(31)

Similarly, we can estimate the lower bound of (F(F ))
′
,∥∥∥∥(F(F [1])

)′∥∥∥∥2
L2(Z γ

d41

)

=

∫ γπ
d41

0

2x2 dx

B1 cos (2x) +B1 + 2C1
+

∫ 0

− γπ
d41

2x2 dx

B1 cos (2x) +B1 + 2C1

≥
∫ γπ

d41

0

x2 dx

B1 + C1
+

∫ 0

− γπ
d41

x2 dx

B1 + 2C1

=
γ3π3

3 (B1 + C1) d41
3 +

γ3π3

3 (B1 + 2C1) d41
3

' γ3

d41
3N
−1,

Equations (31) and (32) indicate that (F(F ))
′

is in a scale of γ3

d413N−1. Combining (25), (28), (29),

12



(31), and (32), we have the estimate in Hs(T γ
d41

),

‖ϕ[1]
c1,ω1

− ϕ[1]
c2,ω2
‖2Hs(T γ

d41

) ≤ N
− 1

2λs+2s−1|N2 −N1|2
γ3

d41
3 .

We integrate the function in one period and choose the period as follows:

T 1
d41

=

[
− π

d41
,
π

d41

]
, Z 1

d41

=

[
− 1

d41
,

1

d41

]
.

Then, we have the estimate in Hs(T 1
d41

),

‖ϕ[1]
c1,ω1

− ϕ[1]
c2,ω2
‖2Hs(T 1

d41

) ≤ N
−2λs+2s+1|N2 −N1|2.

If −2λs+ 2s+ 1 < 0, let b = | − 2λs+ 2s+ 1|. Then, we can control the distance between solitons

N2 −N1 = δNεs, (32)

to control the norm
‖ϕ[1]

c1,ω1
− ϕ[1]

c2,ω2
‖2Hs(T 1

d41

) ≤ C̃δ
2N2εs−b ≤ C̃δ2,

where C̃ > 0 is a constant, and ε and δ are any real values larger than 0.
Similarly, we can estimate the lower bound of F(F [1]),∥∥∥F(F [1])

∥∥∥2
L2(Z γπ

d41

)
=

∫ γπ
d41

0

2 dx

B1 cos (2x) +B1 + 2C1
+

∫ 0

− γπ
d41

2 dx

B1 cos (2x) +B1 + 2C1

≥
∫ γπ

d41

0

dx

B1 + C1
+

∫ 0

− γπ
d41

dx

B1 + 2C1

' γ

d41
N−1.

(33)

Combining (30) and (33), we then compute the norm of ϕ
[1]
c,ω in Hs(T γ

d41
),

‖ϕ[1]
c,ω‖2Hs(T γ

d41

) ' d
2s+1
4

d25
d24

∫
Z γ
d41

|η|2s|F(F [1])(η − c

2d4
)|2dη

' N ( 1
2λs)(2s+1)N2s(1− 1

2λs)‖h[1](x)‖2L2(T γ
d41

)

' N 1
2 sλ+2 s−1 γ

d41
,

(34)

We then have the estimate of the norm of ϕ
[1]
c,ω in Hs(T 1

d41

)

‖ϕ[1]
c,ω‖2Hs(T 1

d41

) ' N
2 s−1. (35)

Assume that the solution is Qcj ,ωj (x, T ) at t = T . By the translational invariant of the traveling
wave solution and (35), we have

‖Qcj ,ωj (x, T )‖2Hs(T 1
d41

) = ‖ϕ[1]
cj ,ωj‖

2
Hs(T 1

d41

) ' N
2 s−1.

13



On the other hand,

Qcj ,ωj (x, T ) = e−iωjT eiψ(x−cjT )d5jh
[1](d4j(x− cj)T ).

Restricting Qcj ,ωj (x, T ) on the sphere B(d4j)−1(Tcj), we can choose cj and ωj to determine the phase.
Then, combining (30) and (33), we have

‖Qc1,ω1(x, T )−Qc2,ω2(x, T )‖2L2(T γ
d41

) ' ‖Qc1,ω1
(x, T )‖2L2(T γ

d41

) + ‖Qc2,ω2
(x, T )‖2L2(T γ

d41

)

' d5j2
∫ γπ

d41

− γπ
d41

h[1]
2
(d4j(x− cjT ))dx

' 1

d4j
d5j

2‖h[1](x)‖2L2(T γ
d41

)

' N 1
2λs−1

γ

d41
,

So

‖Qc1,ω1
(x, T )−Qc2,ω2

(x, T )‖2Hs(T γ
d41

) =

∫ γ
d41

− γ
d41

(1 + |µ|2)s|Q̂c1,ω1
(µ)− Q̂c2,ω2

(µ)|2dµ

≥ N2s‖Qc1,ω1
(x, T )−Qc2,ω2

(x, T )‖2L2(T γ
d41

)

' N2s+ 1
2λs−1

γ

d41

Furthermore,
‖Qc1,ω1(x, T )−Qc2,ω2(x, T )‖2Hs(T 1

d41

) ≥ N
2s−1

In the following, we study the separability of the wave packet. We choose c1 and c2 such that the
wave has separability with N−

1
2λs. In fact, we only need to choose N such that N

1
2λs+εs � (Tδ)

−1
, and

by the phase distance N1 −N2 = δNεs of (32), we have

T (c2 − c1) = T (N2 −N1)� max(
1

d41
,

1

d42
) ' N− 1

2λs.

As a summary,
‖Qc1,ω1

(x, 0)−Qc2,ω2
(x, 0)‖2Hs(T 1

d41

) ≤ δ,

Qcj ,ωj (x, T ) ∈ Hs(T 1
d41

), ‖Qc1,ω1
(x, T )−Qc2,ω2

(x, T )‖2Hs(T 1
d41

) ≥ ε.

Then this force λ > 0 and s > 0 to be{
(λ, s) | 1− 1

2
sλ > 0, −2λs+ 2s+ 1 < 0, 2 s− 1 < 0

}
.

We then have the range of the weak ill-posedness index s:

0 < s <
1

2
.

Similarly, if we solve the system{
(λ, s) | 1− 1

2
sλ > 0, −2λs+ 2s+ 1 < 0, 2 s− 1 > 0

}
,

we obtain the strong ill-posedness index s as follows:

1

2
< s <

3

2
.
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4. Ill-posedness of the non-periodic solution

In this section, we study the ill-posedness of (23) (and, at the same time, for (24) ). In R, equation

(23) is not periodic, and has limited energy in Hs(R). Therefore, we can apply the Fourier transform in

the whole real line. We define the Fourier transform of the Lebesgue integrable function f : R→ C in R
as

F2(f)(ξ) =
1√
2π

∫ +∞

−∞
f(x) e−ixξ dx

where ξ is any real number.

Denote 〈x〉 := (1 + |x|2)
1
2 . Then, the Sobolev space Hs(R) is a complete C∞ functional space with

norm

‖f‖Hs(R) := ‖〈ξ〉sF2(f)(ξ)‖L2(R).

Note that

sech(x) = 2
(
ex + e−x

)−1
,

Then, the solution in (23) can be transformed to

φ(ξ) =
√

2

(
e−
√
−c2−4ωx√−ω α2 + α c+ 1 + e

√
−c2−4ωx√−ω α2 + α c+ 1 + α c+ 2

−c2 − 4ω

)− 1
2

.

Let

A2 =
√
−c2 − 4ω, B2 =

√
−ω α2 + α c+ 1, C2 = αc+ 2.

Then, (23) is transformed to

φ(ξ) =
√

2
(

eA2ξB2

A2
2

+ e−A2ξB2

A2
2

+ C2

A2
2

)− 1
2

.

At the same time, (20) is in the form of

ψ(ξ) = −3 arctan
(

2 eA2ξB2+C2

αA2

)
+ 1

2 cξ.

Let

d4 = A2,

d5 =
√

2

√
B2

A2
2

,

and

h[2](x) =
(

eA2x + e−A2x + C2

B2

)− 1
2

.

Then,

φ(x) = d5h
[2](d4x).

Let

g[2](x) = −3 arctan
(

2 eA2xB2+C2

αA2

)
,
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and

F [2](x) = eig
[2](x)h[2](x).

By (19), we define

ϕ
[2]
c,ω(x) = Qc,ω(x, 0) = d5e

icx/2F [2](d4x),

The transformation formula in R is

F2(ϕ
[2]
c,ω)(ξ) = d5

d4
F2(F [2])( ξd4 −

c
2d4

).

Proposition 5. If α 6= 0, then the Cauchy problem of (2) could be ill-posed in Hs(Tλ). That is, Q0 →
Q(t) is not uniformly continuous. With the initial condition Q0 = ϕ

[2]
c,ω(x) = d5e

icx/2F [2](d4x), the
solution of (2) could be ill-posed in Hs(R). Moreover, we have the following:

(I) If 0 < s < 1
2 , then the solution is weakly ill-posed.

(II) If 0 < s < 1, then the solution is strongly ill-posed.

Proof. Similar to (25), we have

‖ϕ[2]
c1,ω1

− ϕ[2]
c2,ω2
‖2Hs(R) =

∫
R
〈ξ〉s|F2(ϕ[2]

c1,ω1
)(ξ)−F2(ϕ[2]

c2,ω2
)(ξ)|2dξ

' P [2]
1 + P

[2]
2 + P

[2]
3 .

(36)

where

P
[2]
1 = (d41)2s+1

∫
R
〈η〉s d

2
51

d241
|F2(F [2])(η − c1

2d41
)−F2(F [2])(

d41
d42

η − c1
2d41

)|2dη,

P
[2]
2 = (d41)2s+1

∫
R
〈η〉s d

2
51

d241
|F2(F [2])(η

d41
d42
− c1

2d41
)−F2(F [2])(η

d41
d42
− c2

2d42
)|2dη,

P
[2]
3 = (d41)2s+1

∫
R
〈η〉s|d

2
51

d241
− d252
d242
|F2(F [2])(η

d41
d42
− c2

2d42
)|2dη.

Assuming η ' cj
2d4j

, we perform the Fourier transformation on the unit sphere η ∈ B1(N1− 1
2λs). We

can estimate P
[2]
1 , as with (26), to obtain

P
[2]
1 ' (d41)2s+1 d

2
51

d241
N2s(1− 1

2λs)

∫
R
|
∫ η− c1

2d41

d41
d42

η− c1
2d41

F ′2(F [2])(β)dβ|2dη

≤ (d41)2s+1 d
2
51

d241
N2s(1− 1

2λs)

∫
R
|
∫ η− c1

2d41

η
d41
d42
− c1

2d41

dα‖
∫ η− c1

2d41

η
d41
d42
− c1

2d41

|F ′2(F [2])(β)|2dβ|dη

' (d41)2s+1 d
2
51

d241
N2s(1− 1

2λs)|1− d41
d42
|
∫
R
|η||
∫ η− c1

2d41

η
d41
d42
− c1

2d41

|F ′2(F [2])(β)|2dβ|dη,

(37)

Denote

I
[2]
1 =

∫ ∞
0

η

∫ η− c1
2d41

η
d41
d42
− c1

2d41

|L̂′(β)|2dβdη.

By Fubini’s theorem, we can change the order of integration,

I
[2]
1 =

∫ ∞
−c1
2d41

|F ′2(F [2])(β)|2
∫ (β+ c1

2d41
)
d42
d41

β+ c1
2d41

ηdηdβ

=
1

2

∫ ∞
− c1

2d41

|F ′2(F [2])(β)|2(β +
c1

2d41
)2
[
(
d42
d41

)2 − 1

]
dβ.

(38)
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Moreover, we set

I
[2]
2 =

∫ 0

−∞
η

∫ η− c1
2d41

η
d41
d42
− c1

2d41

|F ′2(F [2])(β)|2dβdη.

Similarly,

I
[2]
2 =

1

2

∫ − c1
2d41

−∞
|F ′2(F [2])(β)|2(β +

c1
2d41

)2
[
1− (

d42
d41

)2
]
dβ. (39)

Let Nj(j = 1, 2) and N be large positive integers with the following relation:

cj = Nj ' N, ωj = −Nλs
j −

N2
j

4

d4j = 2N
1
2λs
j , d5j =


√
α2(Nλs

j +N2
j /4) + αNj + 1

2Nλs
j

−
1
2

' N−
1
2+

1
2λs

j , α 6= 0.

Assume that N1 < N2. Then, we have

|d41 − d42| ' |N1 −N2|N
1
2λs−1.

Similarly,
d41

2 − d422

d41
2 =

4Nλs
1 − 4Nλs

2

4Nλs
1

' (N1 −N2)Nλs−1

Nλs
=
N1 −N2

N

and
c1

2d41
− c2

2d42
=

N1

2N
1
2λs
1

− N2

2N
1
2λs
2

' N1 −N2

N
.

Combining (37), (38), and (39), we obtain

P
[2]
1 ≤ N

1
2λ s−2+2 s |N1 −N2| (I [2]1 − I

[2]
2 )

' N 1
2λ s−2+2 s |N1 −N2|

∣∣∣∣1− (
d42
d41

)2
∣∣∣∣ ∫

R
|F ′2(F [2])(β)|2(β +

c1
2d41

)2dβ

' N 1
2λ s−2+2 s |N1 −N2|

∣∣∣∣1− (
d42
d41

)2
∣∣∣∣N2(1− 1

2λs)
∥∥∥F ′2(F [2])

∥∥∥2
L2

= N−
1
2λ s−1+2 s (N1 −N2)

2
∥∥∥F ′2(F [2])

∥∥∥2
L2
,

(40)

and, similarly,

P
[2]
2 ' (d41)2s+1 d

2
51

d241

(
d42
d41

)2s+1 ∫
R
|η|2s|F2(F [2])(η − c1

2d41
)−F2(F [2])(η − c2

2d42
)|2dη

' d251d42
2s+1

d241
N2s(1− 1

2λs)

∫
R
|
∫

η− c1
2d41

η− c2
2d42

F ′2(F [2])(α)dα|2dη

≤ d251d42
2s+1

d241
| c1
2d41

− c2
2d42
|N2s(1− 1

2λs)

∫
R

∫ η− c1
2d41

η− c2
2d42

|F ′2(F [2])(α)|2dαdη

' d251d42
2s+1

d241
| c1
2d41

− c2
2d42
|2N2s(1− 1

2λs)
∥∥∥F ′2(F [2])

∥∥∥2
L2

' N 1
2 λ s−3+2 s|N2 −N1|2

∥∥∥F ′2(F [2])
∥∥∥2
L2
.

(41)
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We compute

d51
2

d41
2 −

d52
2

d42
2 '

(
N
− 1

2+
1
2λs

1

N
1
2λs
1

)2

−

(
N
− 1

2+
1
2λs

2

N
1
2λs
2

)2

' (N1 −N2)N−2,

and so,

P
[2]
3 ' (d41)2s+1(

d251
d241
− d252
d242

)2
∫
R
|η|2s|F2(F [2])(η

d41
d42
− c2

2d42
)|2dη

' (d41)2s+1(
d251
d241
− d252
d242

)2
(
d42
d41

)2s+1 ∫
R
|η|2s|F2(F [2])(η − c2

2d42
)|2dη

' Nλ s2+ 1
2 λ s−4|N1 −N2|2

(
c2

2d42

)2s∥∥∥F2(F [2])
∥∥∥2

' N 1
2λ s−4+2 s(N1 −N2)2

∥∥∥F [2]
∥∥∥2
L2
.

(42)

Let K = C2/B2, where C̃ is a constant. Thus, we have∥∥∥F [2]
∥∥∥2
L2

=
∥∥∥h[2](x)

∥∥∥2
L2

=

∫ +∞

−∞

dx

ex + e−x +K

≤
∫ +∞

0

dx

ex
+

∫ 0

−∞

dx

e−x

≤ C̃.

(43)

Similarly, we have ∥∥∥F ′2(F [2])
∥∥∥2 =

∥∥∥xh[2](x)
∥∥∥2

=

∫ +∞

−∞

x2dx

ex + e−x +K

≤
∫ +∞

0

x2dx

ex
+

∫ 0

−∞

x2dx

e−x

≤ C̃,

(44)

If 1− 1
2λs > 0, substituting (44) with (40) and (41),

P
[2]
1 ≤ C̃N−

1
2λ s−1+2 s (N1 −N2)

2
,

P
[2]
2 ≤ C̃N

1
2 λ s−3+2 s (N1 −N2)

2
.

Combining (42) and (43), the following holds:

P
[2]
3 ≤ C̃N

1
2λ s−4+2 s(N1 −N2)2,

If − 1
2λ s− 1 + 2 s < 0, 1

2 λ s− 3 + 2 s < 0, and 1
2λ s− 4 + 2 s < 0 , (36) satisfies

‖ϕ[2]
c1,ω1

− ϕ[2]
c2,ω2
‖2Hs ≤

C̃(N1 −N2)2

N b
,
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where

b = Min

{
| − 1

2
λ s− 1 + 2 s|, |1

2
λ s− 3 + 2 s|, |1

2
λ s− 4 + 2 s|

}
.

Then, we can control the distance between solitons

N2 −N1 = δNεs

to control the norm
‖ϕ[2]

c1,ω1
− ϕ[2]

c2,ω2
‖2Hs ≤ C̃δ2N2εs−b ≤ C̃δ2. (45)

According to (43), there is an upper bound of
∥∥F [2]

∥∥2
L2 . Moreover, the lower bound of it can be

estimated as follows:∥∥∥F [2]
∥∥∥2
L2

=
∥∥∥h[2](x)

∥∥∥2
L2

=

∫ +∞

−∞

dx

ex + e−x +K

=


2√

K2−4arctanh( K√
K2−4 ), K > 2

1, K = 2
1√

−K2+4

(
−2 arctan

(
K√
−K2+4

)
+ π

)
, 0 ≤ K < 2

≥ C̃(α) > 0,

where C̃(α) is a constant that depends on α.
So, we have

‖ϕc,ω‖2Hs ' d2s+1
4

d25
d24

∫ +∞

−∞
|η|2s|F2(F [2])(η − c

2d4
)|2dη

' N 1
2λs(2s+1)N−1N2s(1− 1

2λs)‖F [2]‖2L2

' N 1
2λ s+2 s−1.

In the following deduction, we consider the time-dependent solution (i.e., the solution Q
[2]
cj ,ωj (x, T )

at t = T ). As we know, the solitary wave satisfies the translational invariance property. Thus, we have

‖Q[2]
cj ,ωj (·, T )‖2Hs = ‖ϕcj ,ωj‖2Hs ' N

1
2λ s+2 s−1.

By

‖Q[2]
c1,ω1

(·, T )−Q[2]
c2,ω2

(·, T )‖2Hs =

∫
R

(1 + |µ|2)s|Q̂[2]
c1,ω1

(µ)− Q̂[2]
c2,ω2

(µ)|2dµ,

we have
‖Q[2]

c1,ω1
(·, T )−Q[2]

c2,ω2
(·, T )‖2Hs ≥ N2s‖Q[2]

c1,ω1
(·, T )−Q[2]

c2,ω2
(·, T )‖2L2 . (46)

In addition, we noted that

Q[2]
cj ,ωj (x, T ) = e−iωjT eiψ(x−cjT )d5jh

[2](d4j(x− cj)T ),

so we restrict Q
[2]
cj ,ωj (T ) on the sphere B(d6j)−1(Tcj). At the same time, different values of cj and ωj can

be used to avoid the superposition of peaks, such that

‖Q[2]
c1,ω1

(·, T )−Q[2]
c2,ω2

(·, T )‖2L2 ' ‖Q[2]
c1,ω1

(·, T )‖2L2 + ‖Q[2]
c2,ω2

(·, T )‖2L2

' d5j2
∫
h[2]

2
(d4j(x− cj)T )dx

' 1

d4j
d5j

2‖F [2]‖2L2

' N 1
2λs−1.

(47)
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By (46) and (47), we have

‖Q[2]
c1,ω1

(·, T )−Q[2]
c2,ω2

(·, T )‖2Hs ≥ N
1
2λs+2s−1.

We now turn to the possibility of the dispersion property for the soliton solution. If Q
[2]
cj ,ωj (T ) is

on B(d4j)−1(Tcj)(j = 1, 2), we can choose c1 and c2 to ensure the dispersion on the scale of N−
1
2λs.

Specifically, we use N to ensure N
1
2λs+εs � (Tδ)

−1
. At the same time, we keep N1−N2 = δNεs, which

is also used in (45). Then, we have

T (c2 − c1) = T (N2 −N1) >> max(
1

d41
,

1

d42
) ' N− 1

2λs.

Based on the above analysis, in order to obtain weak ill-posedness, λ and s (s > 0) must fall into the
following set:{

(λ, s) | 1− 1

2
λ s > 0, −1

2
λ s+ 2 s < 1,

1

2
λ s+ 2 s < 1,

1

2
λ s+ 2 s < 3,

1

2
λ s+ 2 s < 4

}
,

which shows that the ill-posedness index is

0 < s <
1

2
.

Similarly, in order to obtain the strong ill-posedness of the solution, the set of λ and s is as follows:{
(λ, s) | 1− 1

2
λ s > 0, −1

2
λ s+ 2 s < 1,

1

2
λ s+ 2 s > 1,

1

2
λ s+ 2 s < 3,

1

2
λ s+ 2 s < 4

}
,

which indicates that the range of s is
0 < s < 1.

Proof of Theorem 2. With Proposition 4 and Proposition 5, Theorem 2 is now proved.

Proof of Theorem 1. If f(x) is square-integrable in Tγ , the Plancherel theorem states that∫
Tγ

|f(x)|2dx =

∫
Zγ

|F(f)(ξ)|2dξ

which can be used to estimate the relationship between Q and S as follows:

‖Q‖2Hs(Tγ) =

∫
Zγ

〈ξ〉s|F1(Q)(ξ)|2dξ

'
∫
Zγ

〈ξ〉s
(
|S1x|2 + |S2x|2 + |S3x|2

)
dξ

'
∫
Zγ

〈ξ〉s
(
|F1(|S1x|)(ξ)|2 + |F1(|S2x|)(ξ)|2 + |F1(|S3x|)(ξ)|2

)
dξ

'
∫
Zγ

〈ξ〉s|ξ|2
(
|F1(|S1|)(ξ)|2 + |F1(|S2|)(ξ)|2 + |F1(|S3|)(ξ)|2

)
dξ

' ‖S‖2Hs+1

S2 (Tγ)
.

Hence, we have

‖Q‖2Hs(Tγ) ' ‖S‖
2
Hs+1

S2 (Tγ)
. (48)
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Sj (j = 1, 2) falls on the sphere and Sj · Sj = 1. Furthermore, the components of the vector Sj

are non-intersecting traveling wave solutions. Hence, it may be assumed that S1,ix ' S2,ix (i = 1, 2, 3).

Then, we have

‖Q1 −Q2‖2Hs(Tγ)

=

∫
Zγ

〈ξ〉s|F1(Q1)(ξ)−F1(Q2)(ξ)|2dξ

'
∫
R
〈ξ〉s

(
|F1(Q1)(ξ)|2 + |F1(Q2)(ξ)|2 − 2|F1(Q1)(ξ)||F1(Q2)(ξ)|

)
dξ

'
∫
R
〈ξ〉s

(
|Q1|2 + |Q2|2 − 2|Q1||Q2|

)
dξ

'
∫
R
〈ξ〉s

(
||S1,1x − S2,1x|

∧|2 + ||S1,2x − S2,2x|
∧|2 + ||S3,2x − S3,2x|

∧|2
)
dξ

'
∫
R
〈ξ〉s|ξ|2

(
|F1(|S1,1 − S2,1|)(ξ)|2 + |F1(|S1,2 − S2,2|)(ξ)|2 + |F1(|S1,3 − S2,3|)(ξ)|2

)
dξ

' ‖S1 − S2‖2Hs+1

S2 (Tγ)

which indicates

‖S1 − S2‖2Hs+1

S2 (Tγ)
' ‖Q1 −Q2‖2Hs(Tγ) . (49)

Similar to (48) and (49), the non-periodic case admits the following isometric isomorphism relation-

ship:

‖Q‖2Hs(R) ' ‖S‖
2
Hs+1

S2 (R) , ‖S1 − S2‖2Hs+1

S2 (R) ' ‖Q1 −Q2‖2Hs(R) . (50)

With the equivalence relationship (48), (49), (50), and Theorem 2, we finish the proof of Theorem 1.

5. Conclusions

In this paper, we studied two different types of two-parameter solitary wave solutions to the deformed

continuous Heisenberg spin equation (1). By the derivative Schröinger equation, we constructed these

solutions and analyzed their ill-posedness in periodic space Hs
S2(T) and non-periodic space Hs

S2(R). Al-

though different spaces were used to measure the two solutions, the range of the weak ill-posedness index

was the same: 1 < s < 3
2 . It is interesting to see that s = 1

2 is a critical index that determines the ill-

posedness. However, the strong ill-posedness index differed. Following the same analysis in weak cases,

we obtained a result whereby periodic and non-periodic solutions cannot be well-posed in a bounded

subset of Hs
S2 with the indexes 3

2 < s < 5
2 and 1 < s < 2, respectively.

In both weak and strong cases, it is worth pointing out that we only discussed the α 6= 0 setting.

Whether the limα→0 case will also keep the same range of the ill-posedness index remains unknown, and

further results need to be explored in our future work. Moreover, as the solution in this paper assumes

that c1 = c2 = 0, another interesting topic is the ill-posedness property in the case where c1, c2 6= 0.
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(a) α=10, c=-10, ω=-15, x ∈ [10.4967,−9.50327]
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(b) α=50,c=-50,ω =-575, x ∈ [− 50.2221,−49.7779]
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(c) α=500,c=-500,ω=-62000, x ∈ [− 500.07,−499.93]
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(d) α=1000, c =-1000, ω=-249000, x ∈ [ −
1000.05,−999.95]

Figure 1: Complex plane image of the solution when φ(ξ) takes (21), t=1, and ω = c − c2/4. In order to ensure that the

image of periodic solution is drawn continuously, t and x shall meet −π
2

6 1
2

√
c2 + 4ω1(x − ct) 6 π

2
. It is observed from

the figure that the complex plane image of the solution is axisymmetric. Moreover, with the synchronous increase of α and

C, the number of times the complex plane images of the solution around the coordinates origin are intertwined with each

other will increase. 22
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(a) α=500,c=-501,ω=2489974, x ∈ [− 501.07,−500.93]
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(b) α=500,c=-502,ω =-62499, x ∈ [− 502.07,−501.93]
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(c) α=500,c=-503,ω=2509974, x ∈ [− 503.07,−502.93]
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(d) α=500,c=-504,ω =-63000, x ∈ [− 504.07,−503.93]

Figure 2: Complex plane image of the solution for different but similar c when φ(ξ) takes (21), t=1, and ω = c− c2/4. It

can be seen that when α is fixed and ω = c − c2/4, if c changes slightly, the solution will rotate around the coordinates

origin.
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(a) Complex plane image of the solution for different c

when φ(ξ) takes (23), t=1, α=10, ω = c − c2/4, and

x ∈ [− 15, 15].

c=-503 c=-502 c=-501 c=-499 c=-498 c=-504

-2 -1 1 2

-2

-1

1

2

(b) Complex plane image of the solution for different but

similar c when φ(ξ) takes (23), t=1, and ω = c− c2/4.

Figure 3: Comparison of the non-periodic solution and periodic solution when t = 1. It can be seen that when c increases,

the complex plane image of the solution accelerates to rotate clockwise, and the heart-shaped ring in the middle also

increases.
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(a) Complex plane image of the solution for different c

when φ(ξ) takes (23), t=1, α=0, ω = c − c2/4, and x ∈
[− 15, 15].
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(b) Complex plane image of the solution for different but

similar c when φ(ξ) takes (23), t=0, and ω = c− c2/4

Figure 4: Comparison between the non-periodic solution and periodic solution when t = 0. It can be seen that the shape of

the complex plane image of the solution is almost the same when Cchanges slightly, for both the periodic and non-periodic

solutions.
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