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Summary

This paper investigates the boundary finite-time stabilization of fractional reaction-
diffusion systems (FRDSs). First, a distributed controller is designed, and sufficient
conditions are obtained to ensure the finite-time stability (FTS) of FRDSs under the
designed controller. Then, a boundary controller is presented to achieve the FTS. By
virtue of Lyapunov functional method and inequality techniques, sufficient condi-
tions are presented to ensure the FTS of FRDSs via the designed boundary controller.
The effect of diffusion term of FRDSs on the FTS is also investigated. Both Neumann
and mixed boundary conditions are considered. Moreover, the robust finite-time sta-
bilization of uncertain FRDSs is studied when there are uncertainties in the system’s
coefficients. Under the designed boundary controller, sufficient conditions are pre-
sented to guarantee the robust FTS of uncertain FRDSs. Finally, numerical examples
are presented to verify the effectiveness of our theoretical results.
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1 INTRODUCTION

The fractional calculus attracted much concern in recent few decades since it is an effective way to describe many phenomena
such as the economy, electromagnetism, bioengineering, fluid mechanics, ecology, and so on, see1,2,3,4,5,6 and the references
therein. Comparing with integer-order differential systems, fractional-order differential systems have several advantages. First,
it can elegantly describe the memory and genetic characteristics of various phenomenons. Second, its memory is unlimited.
Third, it has more degrees of freedom7. The diffusion phenomenon is inevitable when there exists the density non-uniformity
for the state of the considered systems, such as, the air pressure, the temperature, and the electron8.The reaction-diffusion model
can excellently explain such systems with the diffusion phenomenon. In recent years, it has been widely used to describe the
system dynamics found in many applications, such as the chemical processes, fluid flows, neural networks and biological pattern
formation9,10,11,12,13. The fractional reaction-diffusion equation was investigated in14 for a continuous-time random walk model
with temporal memory and sources. From then on, a significant number of results on the fractional reaction-diffusion systems
(FRDSs) were reported15,16,17,18,19,20. Due to measurement errors and external disturbances, usually, the system parameters are
uncertain. For uncertain FRDSs, some results are presented21,22.

Finite-time stability (FTS) arises from practical applications. In the real applications, we usually prefer the states of the system
to be stable in a finite time rather than in an infinite time like asymptomatic stability and exponential stability. For example, we
need the robot reach the specified position in a finite time and meet the specified speed23. The concept of FTS was introduced
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in24, and further developed by Bhat and Bernstein25. Actually, the FTS analysis for the fractional-order differential systems also
has tremendous significance. Many results on FTS of fractional-order differential systems were reported26,27,28,29,30. In26, the
authors summarized the processing methods of FTS of fractional differential systems and divided these methods into two groups.
One mainly uses the Holder’s inequality29 while the other treats it by the generalized Gronwall’s inequality27. The stabilization
of reaction-diffusion systems (RDSs) has attracted widely attention as well31,32,33. For RDSs, there exists a specific control
strategy, boundary control, to achieve FTS33. Boundary control only places the actuators on the boundary of the spatial region.
It is an effective and commonly used control method in practical applications, and has been well researched for FRDSs34,35.
There was few results for the finite-time stabilization of FRDSs via boundary control, while FTS of RDSs by boundary control
and FTS of fractional ordinary differential systems has been sufficiently investigated, respectively.

Motivated by the above analysis, we study the FTS of FRDSs. Both FRDSs and uncertain FRDSs are considered. These are
several difficulties during our work. First, the main difficulty is the controller design. Because of the special form of Caputo
fractional derivative defined by integral, the finite-time controllers, adopted for the ordinary differential systems, fail for FRDSs.
Second, how to deal with diffusion term is also a difficulty in stabilizing the FRDSs. Due to the existence of the diffusion
term, common methods to deal with the fractional-order ordinary differential systems, such as Gronwall’s inequality, Holder’s
inequality and other inequality technology, are inaccessible to FRDSs. Third, the uncertainty is also a difficulty for the analysis
of the robustness.

In this paper, we focus on the finite-time stabilization of FRDSs. First, the distributed control is investigated to satisfy FTS
of FRDSs. Then, boundary controllers are designed. Using the FTS lemma and Wirtinger’s inequality, sufficient conditions of
FTS are derived for FRDSs based on the designed controllers. The uncertain FRDSs are also investigated under the designed
boundary controller. Moreover, the influences of the diffusion term and uncertainty term on the stability are considered. Finally,
we present numerical simulations to verify the effectiveness of our boundary controllers. The main contributions of this work
are listed as follows

• Boundary controllers are designed for FRDSs with different boundary conditions, and sufficient conditions of FTS for
FRDSs are obtained.

• The robust FTS of uncertain FRDSs is also investigated based on the boundary controller, and sufficient conditions are
derived.

• The effects of diffusion item and uncertain item on the stability are displayed from our theoretical results.
Notations: ℝ𝑛 and ℝ𝑛×𝑚 represent the 𝑛-dimensional Euclidean space and set of 𝑛 × 𝑚 real matrices, respectively. 𝐼𝑛 repre-

sents the 𝑛-dimensional unit matrix. 𝑊 𝑙,2([0, 𝐿];ℝ𝑛) is the Sobolev space which contains absolutely 𝑛-dimensional continuous
functions 𝑦(𝑥) ∶ [0, 𝐿] → ℝ𝑛 with 𝑙-th square integrable derivatives 𝑑𝑙𝑦(𝑥)

𝑑𝑥𝑙
of the order 𝑙 ≥ 1. 𝐿2([𝑎, 𝑏],ℝ𝑛) is the set of vector-

valued functions 𝑢(𝑥) ∶ [𝑎, 𝑏] → ℝ𝑛 that is square-integrable. ‖𝑢(⋅)‖ =
(

∫ 𝑏
𝑎 𝑢T(𝑥)𝑢(𝑥)d𝑥

)
1
2 is norm in 𝐿2([𝑎, 𝑏],ℝ𝑛). |𝑦(⋅)|

denotes the vector norm, that is, |𝑦(⋅)| = √

𝑦T(⋅)𝑦(⋅). 𝑀 ≥ 0 (𝑀 ≤ 0) means that the constant symmetric matrix 𝑀 is a positive
semi-definite (negative semi-definite) matrix. 𝜆min(𝑀) is the minimum eigenvalue of matrix 𝑀 .

2 MODEL DESCRIPTION AND PRELIMINARIES

Definition 1 (36). The Caputo fractional derivative of order 0 < 𝛼 < 1 of a continuous function 𝑓 (𝑡) is given by

𝐶
0 𝐷

𝛼
𝑡 𝑦 (𝑥, 𝑡) =

1
Γ (1 − 𝛼)

𝑡

∫
𝑡0

𝜕𝑦 (𝑠, 𝑡)
𝜕𝑠

d𝑠
(𝑡 − 𝑠)𝛼

, (1)

in which
Γ(𝛼) =

+∞

∫
0

𝑒−𝑡𝑡𝛼−1d𝑡.

Definition 2 (36). The Mittag-Leffler function with one parameter is defined as follows:
𝐸𝛼(𝑧) =

∞
∑

𝑘=0

𝑧𝑘

Γ(𝑘𝛼 + 1)
, (2)
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where the parameter 𝛼 > 0 and 𝑧 ∈ ℂ. For 𝛼 = 1, we have 𝐸1(𝑧) = 𝑒𝑧.
Lemma 1 (37). Let 𝑣(𝑡) ∈ ℝ𝑛 be a continuous vector function, for any time instant 𝑡 > 0, 0 < 𝛼 < 1, we have

𝐶
0 𝐷

𝛼
𝑡 𝑣

T(𝑡)𝑉 (𝑡) ≤ 2𝑣T(𝑡)𝐶0 𝐷
𝛼
𝑡 𝑣(𝑡). (3)

We consider the following fractional reaction-diffusion systems (FRDSs)
𝐶
0 𝐷

𝛼
𝑡 𝑦 (𝑥, 𝑡) = 𝑓 (𝑦 (𝑥, 𝑡)) + 𝐵

𝜕2𝑦(𝑥, 𝑡)
𝜕𝑥2

, 𝑥 ∈ (0, 1), 𝑡 > 0, (4)
where 𝑥 is the space variable, 𝑡 is the time variable, 𝑦(𝑥, 𝑡) ∈ ℝ𝑛 is the system state, and 𝐵 ∈ ℝ𝑛×𝑛 is a positive definite matrix.
𝐶
0 𝐷

𝛼
𝑡 is the Caputo derivative of order 0 < 𝛼 < 1.

The initial value of system (4) is given as
𝑦(𝑥, 0) = 𝜙(𝑥), (5)

where 𝜙(𝑥) is a given continuous function.
Assumption 1. We assume that 𝑓 (𝑦) satisfies Lipschitz condition. That is, there exists a positive constant 𝐿, for any 𝑝, 𝑞 ∈ ℝ𝑛,
we have

[𝑓 (𝑝) − 𝑓 (𝑞)]T [𝑓 (𝑝) − 𝑓 (𝑞)] ≤ 𝐿 (𝑝 − 𝑞)T (𝑝 − 𝑞) . (6)
Definition 3 (38). If there exists a constant 𝑡∗ satisfies

lim
𝑡→𝑡∗

‖𝑦 (𝑥, 𝑡) ‖ = 0, (7)
and

‖𝑦 (𝑥, 𝑡) ‖ = 0, 𝑡 > 𝑡∗, (8)
then FRDS (4) achieves finite-time stability (FTS). We call 𝑡∗ is the settling time.
Lemma 2 (38). Let 𝑉 (𝑡) be a positive continuous and differentiable function on [𝑡0,+∞). If

𝐶
0 𝐷

𝛼
𝑡 𝑉 (𝑡) ≤ −𝑘𝑉 (𝑡) − 𝛾,

where 0 < 𝛼 < 1, 𝑘 > 0 and 𝛾 > 0, then for any 𝑡 ≥ 𝑡0, we obtain

𝑉 (𝑡) ≤
(

𝑉 (𝑡0) +
𝛾
𝑘

)

𝐸𝛼(−𝑘(𝑡 − 𝑡0)𝛼) −
𝛾
𝑘
. (9)

When 𝑘 = 0, one has

𝑉 (𝑡) ≤ 𝑉 (𝑡0) −
𝛾(𝑡 − 𝑡0)𝛼

Γ(𝛼 + 1)
. (10)

Lemma 3 (Wirtinger’s Inequality39). Let 𝑦 ∈ 𝑊 𝑙,2([0, 𝐿];ℝ𝑛) be a vector function with 𝑦(0) = 0 or 𝑦(𝑙) = 0. Then for positive
definite matrix 𝑅, the following integral inequality holds

𝐿

∫
0

𝑦T(𝜂)𝑅𝑦(𝜂)d𝜂 ≤ 4𝐿2

𝜋2

𝐿

∫
0

(
d𝑦
d𝜂

)T𝑅(
d𝑦
d𝜂

)d𝜂.

3 MAIN RESULTS

In this section, we consider the FTS of FRDSs. First, we design a distributed controller to achieve the FTS of FRDSs and give
sufficient conditions for FTS. In addition, since the boundary control is easier to implement and more economical in practical
applications, we investigate it and obtain sufficient conditions to ensure the FTS of FRDSs. Both the Neumann boundary and
mixed boundary conditions are considered. The effect of diffusion term on FTS is also investigated. Moreover, for uncertain
FRDS, robust FTS is investigated under the designed boundary controller, and the corresponding sufficient condition is presented
to ensure the robust FTS.
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3.1 Distributed control
Consider the following FRDSs with the distributed controller

𝐶
0 𝐷

𝛼
𝑡 𝑦 (𝑥, 𝑡) = 𝑓 (𝑦 (𝑥, 𝑡)) + 𝐵

𝜕2𝑦(𝑥, 𝑡)
𝜕𝑥2

+ 𝑢(𝑥, 𝑡), 𝑥 ∈ (0, 1), 𝑡 > 0, (11)
where 𝑢(𝑥, 𝑡) is the distributed controller.

We consider the Neumann boundary conditions as follows
𝜕𝑦(𝑥, 𝑡)
𝜕𝑥

|

|

|

|𝑥=0
=

𝜕𝑦(𝑥, 𝑡)
𝜕𝑥

|

|

|

|𝑥=1
= 0. (12)

The distributed controller is designed as follows to obtain the FTS,

𝑢 (𝑡) =

⎧

⎪

⎨

⎪

⎩

(

−𝑎
2
−

𝛾
2|𝑦(𝑥, 𝑡)|2

)

𝑦(𝑥, 𝑡), 𝑦(𝑥, 𝑡) ≠ 0,

0, 𝑦(𝑥, 𝑡) = 0,
(13)

where 𝑎 and 𝛾 are constants to be determined, and constant 𝛾 is positive and |𝑦(𝑥, 𝑡)|2 = 𝑦T (𝑥, 𝑡) 𝑦 (𝑥, 𝑡).
Theorem 1. If the following inequality holds

1 + 𝐿 − 𝑎 ≤ 0, (14)
then, system (11) achieves FTS, and if 𝑘 = −(1 + 𝐿 − 𝑎) > 0 , the settling time 𝑡∗ satisfies

𝑡∗ ≤
(

−𝜎
𝑘

)
1
𝛼 , (15)

where
𝜎 = max

{

𝑧|𝐸𝛼(𝑧) =
𝛾

𝑘𝑉 (0) + 𝛾

}

= max

{

𝑧|𝐸𝛼(𝑧) =
𝛾

𝑘 ∫ 1
0 𝜙T(𝑥)𝜙(𝑥)d𝑥 + 𝛾

}

. (16)
If 𝑘 = −(1 + 𝐿 − 𝑎) = 0, the settling time 𝑡∗ satisfies

𝑡∗ ≤
(

Γ(𝛼 + 1)𝑉 (0)
𝛾

)
1
𝛼

. (17)
Proof. Define the Lyapunov functional as follows

𝑉 (𝑡) =

1

∫
0

𝑦T(𝑥, 𝑡)𝑦(𝑥, 𝑡)d𝑥. (18)

Taking Caputo fractional derivative of 𝑉 (𝑡) along system (11) and using Lemma 1, we have

𝐶
0 𝐷

𝛼
𝑡 𝑉 (𝑡) ≤ 2

1

∫
0

𝑦T(𝑥, 𝑡) 𝐶
0 𝐷

𝛼
𝑡 𝑦(𝑥, 𝑡)d𝑥 = 2

1

∫
0

𝑦T
[

𝑓 (𝑦 (𝑥, 𝑡)) + 𝐵
𝜕2𝑦(𝑥, 𝑡)
𝜕𝑥2

+ 𝑢(𝑥, 𝑡)
]

d𝑥. (19)

With 𝑓 (0) = 0, Assumption 1 and the inequality 2𝑦T𝑓 (𝑦) ≤ 𝑦T𝑦 + 𝑓 (𝑦)T𝑓 (𝑦), we obtain the following inequality

2

1

∫
0

𝑦T𝑓 (𝑦)d𝑥 ≤

1

∫
0

𝑦T𝑦 + 𝑓 (𝑦)T𝑓 (𝑦)d𝑥 ≤ (1 + 𝐿)

1

∫
0

𝑦T𝑦d𝑥. (20)

Hereafter, for simplicity, the variables (𝑡, 𝑥) are omitted. Using the boundary conditions (12), we have
1

∫
0

𝑦T𝐵
𝜕2𝑦
𝜕𝑥2

d𝑥 = 𝑦T𝐵
𝜕𝑦
𝜕𝑥

|

|

|

|

𝑥=1

𝑥=0
−

1

∫
0

𝜕𝑦T

𝜕𝑥
𝐵
𝜕𝑦
𝜕𝑥

d𝑥 = −

1

∫
0

𝜕𝑦T

𝜕𝑥
𝐵
𝜕𝑦
𝜕𝑥

d𝑥. (21)

Boundary conditions (12) can not yield either 𝑦(0, 𝑡) = 0 or 𝑦(1, 𝑡) = 0, which means that Lemma 3 cannot work in (21). To
deal with this problem, we take the transformation as follows

𝑦̄(𝑥, 𝑡) = 𝑦(𝑥, 𝑡) − 𝑦(1, 𝑡), (22)
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then we have 𝑦̄T(1, 𝑡) = 0. From Lemma 3, we have
1

∫
0

𝑦T𝐵
𝜕2𝑦
𝜕𝑥2

d𝑥 = −

1

∫
0

𝜕𝑦T

𝜕𝑥
𝐵
𝜕𝑦
𝜕𝑥

d𝑥 = −

1

∫
0

𝜕𝑦̄T

𝜕𝑥
𝐵
𝜕𝑦̄
𝜕𝑥

d𝑥 ≤ −𝜋2

4

1

∫
0

𝑦̄T𝐵𝑦̄d𝑥. (23)

Substituting inequalities (20) and (23) into (19) and making use of inequality (14), we obtain

𝐶
0 𝐷

𝛼
𝑡 𝑉 (𝑡) ≤ (1 + 𝐿)

1

∫
0

(

𝑦T𝑦 + 2𝑦T𝑢
)

d𝑥 − 𝜋2

2

1

∫
0

𝑦̄T𝐵𝑦̄d𝑥

=

1

∫
0

{

𝑦T
[

(1 + 𝐿 − 𝑎)𝐼𝑛
]

𝑦 − 𝜋2

2
𝑦̄T𝐵𝑦̄ − 𝛾

}

d𝑥

≤ −

1

∫
0

𝑘𝑦T𝑦d𝑥 − 𝛾

= −𝑘𝑉 (𝑡) − 𝛾,

(24)

where 𝑘 = −(1 + 𝐿 − 𝑎).
If 𝑘 = 0, that is

𝐶
0 𝐷

𝛼
𝑡 𝑉 (𝑡) ≤ −𝛾.

Making use of Lemma 2 and (18), one has
‖𝑦(⋅, 𝑡)‖2 ≤ ‖𝑦(⋅, 0)‖2 −

𝛾𝑡𝛼

Γ(𝛼 + 1)
.

To get the 𝑡∗ satisfying ‖𝑦(⋅, 𝑡∗)‖ = 0, let ‖𝑦(⋅, 0)‖2 − 𝛾𝑡𝛼

Γ(𝛼 + 1)
= 0, and we obtain the solution of 𝑡 that

𝑡1 =
(

Γ(𝛼 + 1)𝑉 (0)
𝛾

)
1
𝛼

.

Now we state that ‖𝑦(⋅, 𝑡)‖ = 0 for any 𝑡 > 𝑡1. If this is invalid, that is, there is a 𝑡∗1 > 𝑡1 satisfies ‖𝑦(⋅, 𝑡∗1)‖ > 0. Then, we get
the following contradiction

0 < ‖𝑦(⋅, 𝑡∗1)‖
2 ≤ ‖𝑦(⋅, 0)‖2 −

𝛾(𝑡∗1)
𝛼

Γ(𝛼 + 1)
< ‖𝑦(⋅, 0)‖2 −

𝛾𝑡𝛼1
Γ(𝛼 + 1)

= 0.

Therefore, one has ‖𝑦(⋅, 𝑡)‖ = 0 for any 𝑡 ≥ 𝑡1 and the settling time 𝑡∗ is estimated as follows

𝑡∗ ≤
(

Γ(𝛼 + 1)𝑉 (0)
𝛾

)
1
𝛼

.

If 𝑘 > 0, that is
𝐶
0 𝐷

𝛼
𝑡 𝑉 (𝑡) ≤ −𝑘𝑉 (𝑡) − 𝛾.

Making use of Lemma 2 and (18), one has

‖𝑦(⋅, 𝑡)‖2 ≤
(

‖𝑦(⋅, 0)‖2 +
𝛾
𝑘

)

𝐸𝛼(−𝑘𝑡𝛼) −
𝛾
𝑘
. (25)

Similar to the proof of38, let
𝑔(𝑡) =

(

‖𝑦(⋅, 0)‖2 +
𝛾
𝑘

)

𝐸𝛼(−𝑘𝑡𝛼) −
𝛾
𝑘
,

where 𝑡 ≥ 0. Note that 𝐸𝛼(−𝑘𝑡𝛼) is non-increasing for all 𝑘 > 0, it is easy to derive that 𝑔(𝑡) is a non-increasing function. Note
that 𝐸𝛼(0) = 1 and lim𝑡→+∞ 𝐸𝛼(−𝑡) = 040 , one has

𝑔(0) = ‖𝑦(⋅, 0)‖2 > 0,
and

lim
𝑡→+∞

𝑔(𝑡) = −
𝛾
𝑘
< 0.
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From the continuity of 𝑔(𝑡), we obtain that there exists 𝑡2 satisfying 𝑔(𝑡2) = 0, which is equivalent to
𝐸𝛼(−𝑘𝑡𝛼2) =

𝛾
𝑘‖𝑦(⋅, 0)‖2 + 𝛾

=
𝛾

𝑘𝑉 (0) + 𝛾
.

Notice that 𝐸𝛼(𝑧) is a non-negative and non-increasing function, and 𝑡2 satisfies
𝑡2 =

(

−𝜎
𝑘

)
1
𝛼 ,

in which
𝜎 = max

{

𝑧|𝐸𝛼(𝑧) =
𝛾

𝑘𝑉 (0) + 𝛾

}

.

Then we state that ‖𝑦(⋅, 𝑡)‖ = 0 for any 𝑡 > 𝑡2. If this is invalid, that is, there is a 𝑡∗2 > 𝑡2 satisfying ‖𝑦(⋅, 𝑡∗2)‖ > 0. Making use
of non-increasing function 𝑔(𝑡) and inequality (25), we obtain the following contradiction

0 < ‖𝑦(⋅, 𝑡∗2)‖
2 ≤ 𝑔(𝑡∗2) ≤ 𝑔(𝑡2) = 0.

This means that the settling time 𝑡∗ satisfies

𝑡∗ ≤
(

−𝜎
𝑘

)
1
𝛼 , (26)

where
𝜎 = max

{

𝑧|𝐸𝛼(𝑧) =
𝛾

𝑘𝑉 (0) + 𝛾

}

, (27)
and

𝑉 (0) =

1

∫
0

𝜙T(𝑥)𝜙(𝑥)d𝑥.

This proof is complete.

Theorem 1 is given for the FTS of system (11) with the Neumann boundary conditions. Next, we consider system (11) with
the following mixed boundary conditions

𝜕𝑦(0, 𝑡)
𝜕𝑥

= 𝑦(1, 𝑡) = 0, or 𝜕𝑦(1, 𝑡)
𝜕𝑥

= 𝑦(0, 𝑡) = 0. (28)
FTS of FRDSs using distributed controller (13) can be proved following the line of the proof of Theorem 1. What we need to

pay attention to is that Lemma 3 can be directly applied without the transformation (22), then we have the following proposition.
Proposition 1. System (11) achieves FTS under the distributed controller (13), if the following matrix inequality holds

(1 + 𝐿 − 𝑎)𝐼𝑛 −
𝜋2

2
𝐵 ≤ 0. (29)

Moreover, we set 𝑘 = −(1 + 𝐿 − 𝑎) + 𝜋2

2
𝜆min(𝐵). If 𝑘 > 0, the settling time 𝑡∗ satisfies inequality (15). If 𝑘 = 0, the settling

time 𝑡∗ satisfies inequality (17).

3.2 Boundary control
We have designed a distributed controller to achieve FTS in above subsection. Distributed control means that every point in the
spatial domain is equipped with the controllers. In practical applications, the boundary control is more economical and easier
to be implemented, and the boundary control has become a better choice for the FTS of the controlled systems.

In this subsection, we consider system (4) with the following Neumann boundary conditions
𝜕𝑦(0, 𝑡)
𝜕𝑥

= 0, and 𝜕𝑦(1, 𝑡)
𝜕𝑥

= 𝑢 (𝑡) , (30)
where 𝑢 (𝑡) is the boundary controller.

We design the following boundary controller to obtain FTS for FRDS (4).
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𝑢 (𝑡) =

⎧

⎪

⎨

⎪

⎩

𝑦(1, 𝑡)
2 |𝑦 (1, 𝑡)|2

(

−
𝛾
𝜆1

− 𝜇 ∫ 1
0 𝑦T𝑦d𝑥

)

, 𝑦(1, 𝑡) ≠ 0,

0, 𝑦(1, 𝑡) = 0,
(31)

where 𝜆1 = 𝜆min(𝐵) and |𝑦 (1, 𝑡)|2 = 𝑦T(1, 𝑡)𝑦(1, 𝑡), and 𝛾 and 𝜇 are positive constants. Now, we present a finite-time stabilization
criterion for system (4) under the boundary controller (31).
Theorem 2. If the constant 𝜇 satisfies the following inequality

1 + 𝐿 − 𝜆1𝜇 ≤ 0, (32)
then, system (4) achieves FTS, and if 𝑘 = −(1 + 𝐿 − 𝜆1𝜇) > 0, the settling time 𝑡∗ satisfies

𝑡∗ ≤
(

−𝜎
𝑘

)
1
𝛼 , (33)

in which
𝜎 = max

{

𝑧|𝐸𝛼(𝑧) =
𝛾

𝑘𝑉 (0) + 𝛾

}

, (34)
where 𝑉 (0) = ∫ 1

0 𝜙T(𝑥)𝜙(𝑥)d𝑥. If 𝑘 = 0, settling time satisfies

𝑡∗ ≤
(

Γ(𝛼 + 1)𝑉 (0)
𝛾

)
1
𝛼

. (35)
Proof. Construct the Lyapunov functional

𝑉 (𝑡) =

1

∫
0

𝑦T(𝑥, 𝑡)𝑦(𝑥, 𝑡)d𝑥. (36)

Taking Caputo fractional derivative of 𝑉 (𝑡) along system (4) and using Lemma 1, we have

𝐶
0 𝐷

𝛼
𝑡 𝑉 (𝑡) ≤ 2

1

∫
0

𝑦T 𝐶
0 𝐷

𝛼
𝑡 𝑦d𝑥 = 2

1

∫
0

𝑦T
[

𝑓 (𝑦) + 𝐵
𝜕2𝑦
𝜕𝑥2

]

d𝑥. (37)

Integrating by parts and using boundary conditions (30) result in
1

∫
0

𝑦T𝐵
𝜕2𝑦
𝜕𝑥2

d𝑥 = 𝑦T𝐵
𝜕𝑦
𝜕𝑥

|

|

|

|

𝑥=1

𝑥=0
−

1

∫
0

𝜕𝑦T

𝜕𝑥
𝐵
𝜕𝑦
𝜕𝑥

d𝑥 = 𝑦T (1, 𝑡)𝐵𝑢(𝑡) −

1

∫
0

𝜕𝑦T

𝜕𝑥
𝐵
𝜕𝑦
𝜕𝑥

d𝑥. (38)

Adopting transformation (22) and Lemma 3, we obtain
1

∫
0

𝑦T𝐵
𝜕2𝑦
𝜕𝑥2

d𝑥 = 𝑦T (1, 𝑡)𝐵𝑢(𝑡) −

1

∫
0

𝜕𝑦T

𝜕𝑥
𝐵
𝜕𝑦
𝜕𝑥

d𝑥 ≤ 𝑦T(1, 𝑡)𝐵𝑢(𝑡) − 𝜋2

4

1

∫
0

𝑦̄T𝐵𝑦̄d𝑥. (39)

By virtue of Assumption 1, we obtain

2

1

∫
0

𝑦T𝑓 (𝑦)d𝑥 ≤ (1 + 𝐿)

1

∫
0

𝑦T𝑦d𝑥. (40)
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Substituting (39) and (40) into (37) and making use of (31), we obtain

𝐶
0 𝐷

𝛼
𝑡 𝑉 (𝑡) ≤ (1 + 𝐿)

1

∫
0

𝑦T𝑦d𝑥 + 2𝑦T (1, 𝑡)𝐵𝑢 (𝑡) − 𝜋2

2

1

∫
0

𝑦̄T𝐵𝑦̄d𝑥

=

1

∫
0

[

(1 + 𝐿)𝑦T𝑦 − 𝜋2

2
𝑦̄T𝐵𝑦̄

]

d𝑥 +
𝑦T(1, 𝑡)𝐵𝑦(1, 𝑡)

|𝑦 (1, 𝑡) |2

⎛

⎜

⎜

⎝

−
𝛾
𝜆1

− 𝜇

1

∫
0

𝑦T𝑦d𝑥
⎞

⎟

⎟

⎠

≤

1

∫
0

[

(1 + 𝐿)𝑦T𝑦 − 𝜋2

2
𝑦̄T𝐵𝑦̄

]

d𝑥 − 𝛾 − 𝜆1𝜇

1

∫
0

𝑦T𝑦d𝑥

=

1

∫
0

{

(1 + 𝐿 − 𝜆1𝜇)𝑦T𝑦 −
𝜋2

2
𝑦̄T𝐵𝑦̄

}

d𝑥 − 𝛾

≤ −𝑘𝑉 (𝑡) − 𝛾,

(41)

where 𝑘 = −(1 + 𝐿 − 𝜆1𝜇) ≥ 0. Making use of Lemma 2 and techniques used in the proof of Theorem 1 yields that system (4)
achieves FTS. Moreover, the settling time 𝑡∗ satisfies (33) if 𝑘 > 0 or inequality (35) if 𝑘 = 0.

This ends the proof.
Next, we study the case of system (4) with the following mixed boundary conditions

𝑦(0, 𝑡) = 0, and 𝜕𝑦(1, 𝑡)
𝜕𝑥

= 𝑢(𝑡), (42)
in which 𝑢(𝑡) is the boundary control.

We present a sufficient condition to achieve the FTS of system (4) with the boundary controller (31) under boundary conditions
(42).
Proposition 2. With boundary conditions (42), system (4) achieves FTS under the boundary controller (31), if the following
matrix inequality holds

(1 + 𝐿 − 𝜆1𝜇)𝐼𝑛 −
𝜋2

2
𝐵 ≤ 0. (43)

Take 𝑘 = −𝜆max

(

(1 + 𝐿 − 𝜆1𝜇)𝐼𝑛 −
𝜋2

2
𝐵
)

= −(1 +𝐿 − 𝜆1𝜇) +
𝜋2

2
𝜆1, then the settling time 𝑡∗ satisfies inequality (33) if 𝑘 > 0

or inequality (35) if 𝑘 = 0.
Remark 1. From inequality (33), we see that the larger 𝛾 and 𝑘 in the boundary controller, the smaller the settling time 𝑡∗ and
the faster convergent speed. Moreover, since 𝑘 depends on control gain 𝜇, then the constants 𝛾 and 𝜇 in the boundary controller
(31) can be chosen to determine the desired settling time 𝑡∗.
Remark 2. From inequality (43), one sees that the diffusion coefficient 𝐵 affects the stabilization of FRDSs. The larger 𝜆min(𝐵),
the easier to achieve the stability. Example 1 verifies this result.

3.3 Robust finite-time stabilization
When there are uncertainties in the system’s coefficients, it is necessary to study the robust stability of the uncertain FRDSs. In
this subsection, we consider the following uncertain FRDSs

𝐶
0 𝐷

𝛼
𝑡 𝑦 (𝑥, 𝑡) = 𝑓 (𝑦(𝑥, 𝑡)) + Δ𝑓 (𝑦(𝑥, 𝑡)) + (𝐵 + Δ𝐵(𝑡))

𝜕2𝑦(𝑥, 𝑡)
𝜕𝑥2

, 𝑥 ∈ (0, 1), 𝑡 > 0, (44)
where 𝐵 > 0 is a known matrix and 𝑓 (𝑦) is a known non-linear function satisfying Assumption 1. Δ𝐵(𝑡) is an unknown matrix
presenting the temporal uncertainty with the following property

−𝜖𝐵 ≤ Δ𝐵(𝑡) ≤ 𝜖𝐵, (45)
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where 𝜖 ∈ (0, 1) is a known constant. Δ𝑓 (𝑦) is an uncertain factor, which presents potential errors such as modeling errors, and
determined by the system state. We assumed that Δ𝑓 (𝑦) satisfies the following condition

Δ𝑓T(𝑦)Δ𝑓 (𝑦) ≤ 𝛽. (46)
Definition 4 (33). System (44) achieves the robust FTS if the uncertain FRDS is finite-time stable for all admissible Δ𝐵(𝑡) and
Δ𝑓 (𝑦(𝑥, 𝑡)).

Here we again use boundary controller (31) to achieve FTS for uncertain FRDS (44) with Neumann boundary conditions (30).
Theorem 3. If constants 𝛾 and 𝜇 satisfy the following inequalities

2 + 𝐿 + (1 − 𝜖)𝜆1𝜇 ≤ 0, and 𝛽 − (1 − 𝜖)𝛾 ≤ 0, (47)
then, system (44) achieves FTS, and if 𝑘 = −(2 + 𝐿 + (1 − 𝜖)𝜆1𝜇) > 0, the settling time 𝑡∗ satisfies

𝑡∗ ≤
(

−𝜎
𝑘

)
1
𝛼 , (48)

where
𝜎 = max

{

𝑧|𝐸𝛼(𝑧) =
𝛾1

𝑘𝑉 (0) + 𝛾1

}

, (49)
and

𝛾1 = (1 − 𝜖)𝛾 − 𝛽, 𝑉 (0) =

1

∫
0

𝜙T(𝑥)𝜙(𝑥)d𝑥. (50)

If 𝑘 = 0, settling time satisfies
𝑡∗ ≤

(

Γ(𝛼 + 1)𝑉 (0)
𝛾

)
1
𝛼

. (51)
Proof. Let

𝑉 (𝑡) =

1

∫
0

𝑦T(𝑥, 𝑡)𝑦(𝑥, 𝑡)d𝑥. (52)

In light of (45) and (46), we have the following inequality
1

∫
0

2𝑦TΔ𝑓 (𝑦)d𝑥 ≤

1

∫
0

(

𝑦T𝑦 + Δ𝑓 (𝑦)TΔ𝑓 (𝑦)
)

d𝑥 ≤

1

∫
0

(

𝑦T𝑦 + 𝛽
)

d𝑥, (53)

and

2

1

∫
0

𝑦T(𝐵 + Δ𝐵(𝑡))
𝜕2𝑦
𝜕𝑥2

d𝑥 = 2𝑦T (1, 𝑡) (𝐵 + Δ𝐵(𝑡))𝑢(𝑡) − 2

1

∫
0

𝜕𝑦̄T

𝜕𝑥
(𝐵 + Δ𝐵(𝑡))

𝜕𝑦̄
𝜕𝑥

d𝑥

≤ 𝑦T(1, 𝑡)(𝐵 + Δ𝐵(𝑡))𝑦(1, 𝑡)
‖𝑦 (1, 𝑡) ‖2

⎛

⎜

⎜

⎝

−
𝛾
𝜆1

− 𝜇

1

∫
0

𝑦T𝑦d𝑥
⎞

⎟

⎟

⎠

− 𝜋2

2

1

∫
0

𝑦̄T(𝐵 + Δ𝐵(𝑡))𝑦̄d𝑥

≤ −(1 − 𝜖)𝛾 − (1 − 𝜖)𝜆1𝜇

1

∫
0

𝑦T𝑦d𝑥 − 𝜋2

2

1

∫
0

𝑦̄T(𝐵 + Δ𝐵(𝑡))𝑦̄d𝑥.

(54)

Following the line of the proof of Theorem 2, substituting equation (39), (53), (54) and (40) into (37) and making use of (47),
we obtain
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𝐶
0 𝐷

𝛼
𝑡 𝑉 (𝑡) ≤ 2

1

∫
0

𝑦T
[

𝑓 (𝑦) + Δ𝑓 (𝑦) + (𝐵 + Δ𝐵(𝑡))
𝜕2𝑦
𝜕𝑥2

]

d𝑥

≤

1

∫
0

(2 + 𝐿)𝑦T𝑦 − 𝜋2

2
𝑦̄T(𝐵 + Δ𝐵(𝑡))𝑦̄d𝑥 + 2𝑦T(1, 𝑡)(𝐵 + Δ𝐵(𝑡))𝑢(𝑡) + 𝛽

≤ −(1 − 𝜖)𝛾 + (2 + 𝐿 − (1 − 𝜖)𝜆1𝜇)

1

∫
0

𝑦T𝑦 − 𝜋2

2
𝑦̄T(𝐵 + Δ𝐵(𝑡))𝑦̄d𝑥 + 𝛽

≤ 𝛽 − (1 − 𝜖)𝛾 − 𝑘

1

∫
0

𝑦T𝑦d𝑥 = −𝛾1 − 𝑘𝑉 (𝑡),

(55)

where 𝑘 = −(2 +𝐿− (1 − 𝜖)𝜆1𝜇) and 𝛾1 = (1 − 𝜖)𝛾 − 𝛽. Making use of Lemma 2 and techniques used in the proof of Theorem
1 yields that system (44) achieves FTS. Moreover, the settling time 𝑡∗ satisfies (48).

For the case of system (44) with mixed boundary conditions (42), we have the following criterion to ensure the FTS.
Theorem 4. If matrix 𝐾 and constant 𝛾 in boundary controller (31) satisfy the following inequalities

(2 + 𝐿 − (1 − 𝜖)𝜆1𝜇)𝐼𝑛 −
(1 − 𝜖)𝜋2

2
𝐵 ≤ 0, and 𝛽 − (1 − 𝜖)𝛾 ≤ 0. (56)

Then the system (44) achieves FTS, and the settling time 𝑡∗ satisfies (48) in which 𝑘 = −(2+𝐿− (1− 𝜖)𝜆1𝜇) +
(1−𝜖)𝜋2

2
𝜆1 and

𝛾1 = (1 − 𝜖)𝛾 − 𝛽.
Remark 3. Boundary controller (31) can achieve both FTS of FRDSs and robust FTS of uncertain FRDSs. In fact, by virtue of
(50), (47) and the results in Remark 1, one sees that the larger 𝜖 and 𝛽 are, and larger 𝑡∗ is, and the harder to satisfy inequality
(47). That is to say, uncertain terms 𝜖 and 𝛽 have negative effects on the FTS.
Remark 4. We consider one form of mixed boundary conditions (42) in this paper. In fact, there exists another form of mixed
boundary conditions

𝑦(1, 𝑡) = 0, and 𝜕𝑦(0, 𝑡)
𝜕𝑥

= 𝑢(𝑡). (57)
To solve FTS of FRDSs under the boundary condition (57), we design the following boundary controller

𝑢(𝑡 =

⎧

⎪

⎨

⎪

⎩

𝑦(0, 𝑡)
2 |𝑦 (0, 𝑡)|2

(

𝛾
𝜆1

+ 𝜇 ∫ 1
0 𝑦T𝑦d𝑥

)

, 𝑦(0, 𝑡) ≠ 0,

0, 𝑦(0, 𝑡) = 0,
(58)

where 𝜆1 = 𝜆min(𝐵) and |𝑦 (0, 𝑡)|2 = 𝑦T(0, 𝑡)𝑦(0, 𝑡) . Constants 𝛾 and 𝜇 are positive constants. With the boundary controller
(58), the FRDSs (4) and uncertain FRDSs (44) with boundary conditions 57 can achieve FTS , and the corresponding sufficient
conditions are easy to present and can be proven by the techniques used in the previous proofs and we omit them.

4 NUMERICAL SIMULATIONS

In this section, we give numerical examples to show the effectiveness of our theoretical results.
Example 1. Considering the following FRDSs

𝐶
0 𝐷

0.95
𝑡 𝑦 (𝑥, 𝑡) = 0.05𝑦(𝑥, 𝑡) + 0.23

𝜕2𝑦(𝑥, 𝑡)
𝜕𝑥2

, 𝑥 ∈ (0, 1), 𝑡 > 0, (59)
where 𝛼 = 0.95, 𝐵 = 0.23 and 𝑓 (𝑦) = 0.05𝑦(𝑥, 𝑡). System (59) has the following initial function

𝜙(𝑥) = 1.5 + 0.25 sin(2𝜋𝑥),
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and the boundary conditions (30). By solving inequality (32) in Theorem 2, we have the following boundary controller

𝑢 (𝑡) =

⎧

⎪

⎨

⎪

⎩

𝑦(1, 𝑡)
2‖𝑦 (1, 𝑡) ‖2

(

− 0.1
0.29

− 7.0 ∫ 1
0 𝑦T𝑦d𝑥

)

, 𝑦(1, 𝑡) ≠ 0,

0, 𝑦(1, 𝑡) = 0,
(60)

in which 𝛾 = 0.1 and 𝜇 = 7.0.
Through the calculations, the settling time 𝑡∗ ≤ 11.0494. This means that system (59) achieves FTS theoretically. To show the

effectiveness of our designed controller (60), we set 𝑢(𝑡) = 0 in (31), and give the system state and corresponding norm in Figure
1 . We observe that system (59) is not finite-time stable. Then, we apply boundary controller (60), and the corresponding state
𝑦(𝑥, 𝑡) and corresponding norm are shown in Figure 2 . We notice that system (59) achieves FTS with the boundary controller
(60).

Now, we show the influence of diffusion item 𝐵 on the FTS which stated in Remark 2. We take 𝐵 = 0.41 in system (59).
Figure 3 shows the corresponding state norms of the systems. Note that the larger 𝐵 is, the smaller 𝑡∗ is and system is easier to
achieve FTS, which verifies our statement in Remark 2.

1
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(a) 𝑦(𝑥, 𝑡) for system (59)
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(b) ‖𝑦(⋅, 𝑡)‖2 for system (59)

FIGURE 1 State responses of system (59) without a controller.

Example 2. To verify the uncertain finite-time stabilization of the boundary controller, the following robust FRDS is given
𝐶
0 𝐷

0.90
𝑡 𝑦 (𝑥, 𝑡) = 0.29𝑦(𝑥, 𝑡) + 0.1 sin 𝑦 + (0.26 + 0.026 sin(𝜋𝑡))

𝜕2𝑦(𝑥, 𝑡)
𝜕𝑥2

, 𝑥 ∈ (0, 1), 𝑡 > 0, (61)
where Δ𝑓 (𝑦(𝑥, 𝑡)) = 0.1 sin 𝑦, Δ𝐵(𝑡) = 0.026 sin(𝜋𝑡) satisfy conditions (45) and (46) with 𝜖 = 0.1 and 𝛽 = 0.01. System (61)
is subject to the following initial function

𝑦(𝑥, 0) = 1.5 − sin(𝜋
3
𝑥),

and Neumann boundary conditions (30). The boundary controller is designed as

𝑢 (𝑡) =

{

𝑦(1,𝑡)
2‖𝑦(1,𝑡)‖2

(

− 0.1
0.26

− 11.5 ∫ 1
0 𝑦T𝑦d𝑥

)

, 𝑦(1, 𝑡) ≠ 0,
0, 𝑦(1, 𝑡) = 0.

(62)
According to Theorem 3, we verify that system (61) achieve robust FTS under the boundary controller theoretically, and the

settling time 𝑡∗ ≤ 13.9593. Figures 4 and 5 present the system states 𝑦(𝑥, 𝑡) and corresponding norms ‖𝑦(⋅, 𝑡)‖2 without and
with the boundary controller, respectively. These figures verify our designed boundary controller is effective.
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(b) ‖𝑦(⋅, 𝑡)‖2 for system (59)

FIGURE 2 State responses of system states with boundary controller (60).
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FIGURE 3 Corresponding state norms of the systems.

5 CONCLUSIONS

This paper addresses the problem of finite-time stability (FTS) of fractional reaction-diffusion systems (FRDSs) under the
boundary control. Using Lyapunov functional method and Wirtinger’s inequality, sufficient conditions are obtained to ensure
the FTS of FRDSs. Then the robust FTS for the uncertain FRDSs is investigated through the boundary controller. We also
study the effects of diffusion coefficient and the strength of uncertain items. Finally, numerical examples are given to show the
effectiveness of boundary controllers we designed. The design of the boundary controller to achieve the FTS of FRDSs may
apply to the FTS of other FRDSs, such as the delay and stochastic FRDSs. Indeed, these are our future works.
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