References
Abdel-Gawad, F. K., Khalil, W. K. B., Bassem, S. M., Kumar, V., Parisi, C., Inglese, S., Temraz, T. A., Nassar, H. F., & Guerriero, G. (2020). The Duckweed, Lemna minor Modulates Heavy Metal-Induced Oxidative Stress in the Nile Tilapia, Oreochromis niloticus. Water , 12 (11), 2983. https://doi.org/10.3390/w12112983
AWEL. (2006). Wasserqualitaet der Seen, Fliessgewaesser und des Grundwassers im Kanton Zuerich . Baudirektion Kanton Zürich.
Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting Linear Mixed-Effects Models Using lme4. Journal of Statistical Software ,67 (1), 1–48. https://doi.org/10.18637/jss.v067.i01
Bundesamt für Umwelt BAFU. (2019). Zustand und Entwicklung Grundwasser Schweiz . 138.
Callaway, R. M. (1995). Positive interactions among plants. The Botanical Review , 61 (4), 306–349. https://doi.org/10.1007/BF02912621
Callaway, R. M., Brooker, R. W., Choler, P., Kikvidze, Z., Lortie, C. J., Michalet, R., Paolini, L., Pugnaire, F. I., Newingham, B., Aschehoug, E. T., Armas, C., Kikodze, D., & Cook, B. J. (2002). Positive interactions among alpine plants increase with stress.Nature , 417 (6891), 844–848. https://doi.org/10.1038/nature00812
Cardwell, A. J., Hawker, D. W., & Greenway, M. (2002). Metal accumulation in aquatic macrophytes from southeast Queensland, Australia. Chemosphere , 48 (7), 653–663. https://doi.org/10.1016/s0045-6535(02)00164-9
Clatworthy, J. N., & Harper, J. L. (1962). The Comparative Biology of Closely Related Species Living in the Same Area: V. Inter-and intraspecific interference within cultures of Lemna spp. and Salvinia Natans. Journal of Experimental Botany , 13 (2), 307–324.
Gaur, J. P., Noraho, N., & Chauhan, Y. S. (1994). Relationship between heavy metal accumulation and toxicity in Spirodela polyrhiza (L.) Schleid. And Azolla pinnata R. Br. Aquatic Botany , 49 (2), 183–192. https://doi.org/10.1016/0304-3770(94)90037-X
Gopal, B., & Goel, U. (1993). Competition and Allelopathy in Aquatic Plant Communities. Botanical Review , 59 (3), 155–210.
Hart, S. P., Turcotte, M. M., & Levine, J. M. (2019). Effects of rapid evolution on species coexistence. Proceedings of the National Academy of Sciences , 116 (6), 2112–2117. https://doi.org/10.1073/pnas.1816298116
Hicks, L. E. (1932). Flower Production in the Lemnaceae. The Ohio Journal of Science , 32 (2), 16.
Jayasri, M. A., & Suthindhiran, K. (2017). Effect of zinc and lead on the physiological and biochemical properties of aquatic plant Lemna minor: Its potential role in phytoremediation. Applied Water Science , 7 (3), 1247–1253. https://doi.org/10.1007/s13201-015-0376-x
Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. B. (2017). lmerTest Package: Tests in Linear Mixed Effects Models. Journal of Statistical Software , 82 (13), 1–26. https://doi.org/10.18637/jss.v082.i13
Lahive, E., O’ Halloran, J., & Jansen, M. A. K. (2011). Differential sensitivity of four Lemnaceae species to zinc sulphate.Environmental and Experimental Botany , 71 (1), 25–33. https://doi.org/10.1016/j.envexpbot.2010.10.014
Lahive, E., O’Callaghan, M. J. A., Jansen, M. A. K., & O’Halloran, J. (2011). Uptake and partitioning of zinc in Lemnaceae.Ecotoxicology , 20 (8), 1992. https://doi.org/10.1007/s10646-011-0741-y
Laird, R. A., & Barks, P. M. (2018). Skimming the surface: Duckweed as a model system in ecology and evolution. American Journal of Botany , 105 (12), 1962–1966. https://doi.org/10.1002/ajb2.1194
Landolt, E. (1986). Biosystematic investigation in the family of duckweeds (“Lemnaceae”). Vol. 2: The family of “Lemnaceae” : a monographic study. Volume 1 [Text/html,application/pdf]. https://doi.org/10.5169/SEALS-308748
Landolt, E. (1996). Duckweeds (Lemnaceae): Morphological and ecological characteristics and their potential for recycling of nutrients. In J. Staudemann, A. Schonborn, & C. Etnier (Eds.), Recycling the Resource: Proceedings of the Second International Conference on Ecological Engineering for Wastewater Treatment (Vols. 5–6, pp. 289–296). Trans Tech Publications Ltd. https://www.webofscience.com/wos/alldb/full-record/WOS:000074669800042
Liu, Y., Xu, H., Yu, C., & Zhou, G. (2021). Multifaceted roles of duckweed in aquatic phytoremediation and bioproducts synthesis.GCB Bioenergy , 13 (1), 70–82. https://doi.org/10.1111/gcbb.12747
Megateli, S., Semsari, S., & Couderchet, M. (2009). Toxicity and removal of heavy metals (cadmium, copper, and zinc) by Lemna gibba.Ecotoxicology and Environmental Safety , 72 (6), 1774–1780. https://doi.org/10.1016/j.ecoenv.2009.05.004
Peeters, E. T. H. M., Neefjes, R. E. M., & van Zuidam, B. G. (2016). Competition between Free-Floating Plants Is Strongly Driven by Previously Experienced Phosphorus Concentrations in the Water Column.PLoS ONE , 11 (9). https://doi.org/10.1371/journal.pone.0162780
R Development Core Team. (2021). R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org.
Rout, G. R., & Das, P. (2009). Effect of Metal Toxicity on Plant Growth and Metabolism: I. Zinc. In E. Lichtfouse, M. Navarrete, P. Debaeke, S. Véronique, & C. Alberola (Eds.), Sustainable Agriculture (pp. 873–884). Springer Netherlands. https://doi.org/10.1007/978-90-481-2666-8_53
Senevirathna, K. M., Crisfield, V. E., Burg, T. M., & Laird, R. A. (2021). Hide and seek: Molecular barcoding clarifies the distribution of two cryptic duckweed species across alberta. Botany . https://doi.org/10.1139/cjb-2021-0058
Vaughan, D., & Baker, R. G. (1994). Influence of nutrients on the development of gibbosity in fronds of the duckweed Lemna gibba L.Journal of Experimental Botany , 45 (270), 129–133.
Vaughan, D., DeKock, P. C., & Ord, B. G. (1982). The nature and localization of superoxide dismutase in fronds of Lemna gibba L. and the effect of copper and zinc deficiency on its activity. Physiologia Plantarum , 54 (3), 253–257. https://doi.org/10.1111/j.1399-3054.1982.tb00256.x
Wołek, J. (1972). A preliminary investigation on interactions (competition, allelopathy) between some species of Lemna, Spirodela, and Wolffia [Text/html,application/pdf]. https://doi.org/10.5169/SEALS-377679
Zayed, A., Gowthaman, S., & Terry, N. (1998). Phytoaccumulation of Trace Elements by Wetland Plants: I. Duckweed. Journal of Environmental Quality , 27 (3), 715–721. https://doi.org/10.2134/jeq1998.00472425002700030032x
Table 1. Summary of the Type 3 ANOVA’s showing the influence of the setting (isolated vs. mixed), the Zn concentration (factorial) and the composition (isolated, pairing with species 1, pairing with species 2) on the three study species. Significant (<0.05) and near-significant (<0.06) p-values are in bold. The linear mixed models for setting and composition included position (outer vs. inner) as random factor, the linear mixed model for concentration included composition as random factor. Within species, interaction terms were never significant and thus not shown here (but see Table S2).