References

Aksamit, C. K., Carolli, M., Vanzo, D., Weber, C., & Schmid, M. (2021). Macroinvertebrate recovery to varying hydropeaking frequency: A small hydropower plant experiment. Frontiers in Environmental Science , 8, 602374. doi: 10.3389/fenvs.2020.602374
Bo, T., Fenoglio, S., Malacarne, G., Pessino, M., & Sgariboldi, F. (2007). Effects of clogging on stream macroinvertebrates: An experimental approach. Limnologica , 37, 186-192. doi: 10.1016/j.limno.2007.01.002
Boes, R., Burlando, P., Evers, F., Felix, D., Hohermuth, B., Schmid, M., … Manso, P. (2021). Swiss potential for hydropower generation and storage. Synthesis report . ETH Zurich, Zurich, Switzerland.
Bretschko, G., & Moog, O. (1990). Downstream effects of intermittent power generation. Water Science & Technolgy , 22, 127–135. doi: 10.2166/wst.1990.0020
Bruder, A., Tonolla, D., Schweizer, S. P., Vollenweider, S., Langhans, S. D., & Wüest, A. (2016). A conceptual framework for hydropeaking mitigation. Science of the Total Environment , 568, 1204–1212. doi: 10.1016/j.scitotenv.2016.05.032
Bruno, M. C., Maiolini, B., Carolli, M., & Silveri, L. (2010). Short time-scale impacts of hydropeaking on benthic invertebrates in an Alpine stream (Trentino, Italy). Limnologica , 40, 281–290. doi: 10.1016/j.limno.2009.11.012
Bruno, M. C., Siviglia, A., Carolli, M., & Maiolini, B. (2013). Multiple drift responses of benthic invertebrates to interacting hydropeaking and thermopeaking waves. Ecohydrology , 6, 511 – 522. doi: 10.1002/eco.1275
Bruno, M. C., Cashman, M. J., Maiolini, B., Biffi, S., & Zolezzi, G. (2016). Responses of benthic invertebrates to repeated hydropeaking in semi-natural flume simulations. Ecohydrology 9, 68–82. doi: 10.1002/eco.1611
de Brouwer, J. H. F., Besse-Lototskaya, A. A., ter Braak, C. J. F., Kraak, M. H. S., & Verdonschot, P. F. M. (2017). Flow velocity tolerance of lowland stream caddisfly larvae (Trichoptera).Aquatic Sciences , 79: 419–425. doi: 10.1007/s00027-016-0507-y
Céréghino, R., & Lavandier, P. (1998). Influence of hypolimnetic hydropeaking on the distribution and population dynamics of Ephemeroptera in a mountain stream. Freshwater Biology , 40, 385–399. doi: 10.1046/j.1365-2427.1998.00353.x
Céréghino, R., Cugny, P., & Lavandier, P. (2002). Influence of intermittent hydropeaking on the longitudinal zonation patterns of benthic invertebrates in a mountain stream. Internationale Revue der gesamten Hydrobiologie und Hydrographie , 87, 47 – 60. doi: 10.1002/1522-2632(200201)87:1<47::AID-IROH47>3.0.CO;2-9
Ciborowski, J. H. (1987). Dynamics of drift and microdistribution of two mayfly populations: a predictive model. Canadian Journal of Fisheries and Aquatic Sciences, 44, 832–845. doi: 10.1139/f87-101
Crosa, G., Castelli, E., Gentili, G., & Espa, P. (2010). Effects of suspended sediments from reservoir flushing on fish and macroinvertebrates in an alpine stream. Aquatic Science , 72, 85–95. doi: 10.1007/s00027-009-0117-z
Cushman, R.M. (1985). Review of ecological effects of rapidly varying flows downstream from hydroelectric facilities. North American Journal of Fisheries Management, 5, 330–339. doi: 10.1577/1548-8659(1985)5<330:ROEEOR>2.0.CO;2
Dolédec, S., Olivier, J. M., & Statzner, B. (2000). Accurate description of the abundance of taxa and their biological traits in stream invertebrate communities: Effects of taxonomic and spatial resolution. Archiv für Hydrobiologie , 148, 25–43. doi: 10.1127/archiv-hydrobiol/148/2000/25
Elgueta, A., Górski, K., Thoms, M., Fierro, P., Toledo, B., Manosalva, A., & Habit, E. (2021). Interplay of geomorphology and hydrology drives macroinvertebrate assemblage responses to hydropeaking. Science of the Total Environment , 768, 144262. doi: 10.1016/j.scitotenv.2020.144262
Elliott, J. M. (1967). Invertebrate drift in a Dartmoor-stream.Archiv für Hydrobiologie , 63, 202–237.
Elliott, J.M. (1971). The distances travelled by drifting invertebrates in
a Lake District stream. Oecologia , 6, 191–220. doi: 10.1007/BF00389109
Gayraud, S., Statzner, B., Bady, P., Haybachp, A., Scholl, F., Usseglio-Polatera,
P., & Bacchi, M. (2003). Invertebrate traits for the biomonitoring of large European rivers: An initial assessment of alternative metrics.Freshwater Biology , 48, 2045–2064. doi: 10.1046/j.1365-2427.2003.01139.x
Gibbins, C. N., Vericat, D., Batalla, R. J., & Buendia, C. (2016). Which variables should be used to link invertebrate drift to river hydraulic conditions? Fundamental and Applied Limnology , 187, 191–205. doi: 10.1127/fal/2015/0745
Graf, W., Leitner, P., Moog, O., Steidl, C., Salcher, G., Ochsenhofer, G., & Müllner, K. (2013). Schwallproblematik an Österreichs Fließgewässern – Ökologische Folgen und Sanierungsmöglichkeiten. Datenerhebung und Analyse Benthische Invertebrtaten . Vienna, Austria.
Greimel, F., Zeiringer, B., Höller, N., Grün, B., Godina, R., & Schmutz, S. (2016). A method to detect and characterize sub-daily flow fluctuations. Hydrological Processes , 30, 2063–2078. doi: 10.1002/hyp.10773
Halleraker, J. H., Saltveit, S. J., Harby, A., Arnekleiv, J. V., Fjeldstad, H. P., & Kohler, B. (2003). Factors influencing stranding of wild juvenile brown trout (Salmo trutta ) during rapid and frequent flow decreases in an artificial stream. River Research and Applications , 19: 589–603. doi: 10.1002/rra.752
Hauer, C., Holzapfel, P., Leitner, P., & Graf, W. (2017). Longitudinal assessment of hydropeaking impacts on various scales for an improved process understanding and the design of mitigation measures.Science of the Total Environment , 575, 1503–1514. doi: 10.1016/j.scitotenv.2016.10.031
Hauer, C., Holzapfel, P., Tonolla, D., Habersack, H., & Zolezzi, G. (2019). In situ measurements of fine sediment infiltration (FSI) in gravel-bed rivers with a hydropeaking flow regime. Earth Surface Processes and Landforms , 44, 433–448. doi: 10.1002/esp.4505
Holzapfel, P., Leitner, P., Habersack, H., Graf, W. & Hauer C. (2017). Evaluation of hydropeaking impacts on the food web in alpine streams based on modelling of fish- and macroinvertebrate habitats.Science of The Total Environment , 575, 1489–1502. doi: 10.1016/j.scitotenv.2016.10.016
Imbert, J. B., & Perry, J. A. (2000). Drift and benthic invertebrate responses to
stepwise and abrupt increases in non-scouring flow. Hydrobiologia436, 191–208. doi: 10.1023/A:1026582218786
Jones, J. I.,Murphy, J. F., Collins, A. L., Sear, D. A., Naden, P. S., & Armitage, P. D., (2012). The impact of fine sediment on macro-invertebrates. River Research and Applications , 28, 1055–1071. doi: 10.1002/rra.1516
Kennedy, T. A., Muehlbauer, J. D., Yackulic, C. B., Lytle, D. A., Miller, S. W., Dibble, K. L., … Baxter, C. V. (2016). Flow management for hydropower extirpates aquatic insects, undermining river food webs. BioScience , 66, 561–575. doi: 10.1093/biosci/biw059
Kjærstad, G., Arnekleiv, J. V., Speed, J. D. M., & Herland, A. K. (2018). Effects of hydropeaking on benthic invertebrate community composition in two central Norwegian rivers. River Research and Applications , 34, 218–231. doi: 10.1002/rra.3241
Kroger, R. L. (1973). Biological effects of fluctuating water levels in the Snake River, Grand Teton National Park, Wyoming. The American Midland Naturalist , 89, 478–481. doi: 10.2307/2424055
Lancaster, J. (2000). Geometric scaling of microhabitat patches and their efficacy as refugia during disturbance. Journal of Animal Ecology , 69, 442–457. doi: 10.1046/j.1365-2656.2000.00407.x
Li, T., & Pasternack, G. B. (2021). Revealing the diversity of hydropeaking flow regimes. Journal of Hydrology , 598: 126392. doi: 10.1016/j.jhydrol.2021.126392
Leitner, P., Hauer, C., & Graf, W. (2017). Habitat use and tolerance levels of macroinvertebrates concerning hydraulic stress in hydropeaking rivers – A case study at the Ziller River in Austria. Science of The Total Environment , 575, 112–118. doi: 10.1016/j.scitotenv.2016.10.011
Miller, S. W., & Judson, S. (2014). Responses of macroinvertebrate drift, benthic assemblages, and trout foraging to hydropeaking.Canadian Journal of Fisheries and Aquatic Sciences , 687, 675–687. doi: 10.1139/cjfas-2013-0562
Milner, A. M. (1994). Colonization and succession of invertebrate communities in a new stream in Glacier Bay National Park, Alaska.Freshwater Biology , 32, 387–400. doi: 10.1111/j.1365-2427.1994.tb01134.x
Milner, V. S., Yarnell, S. M., & Peek, R. A. (2019). The ecological importance of unregulated tributaries to macroinvertebrate diversity and community composition in a regulated river. Hydrobiologia , 829, 291-305. doi: 10.1007/s10750-018-3840-4
Moog, O. (1993). Quantification of daily peak hydropower effects on aquatic fauna and management to minimize environmental impacts.Regulated Rivers: Research & Management , 8, 5–14. doi: 10.1002/rrr.3450080105
Moreira, M., Hayes, D. S., Boavida, I., Schletterer, M., Schmutz, S., & Pinheiro, A. (2019). Ecologically-based criteria for hydropeaking mitigation: a review. Science of The Total Environment , 657, 1508–1522. doi: 10.1016/j.scitotenv.2018.12.107
Naman, S. M., Rosenfeld, J. S., & Richardson J. S., (2016). Causes and consequences of invertebrate drift in running waters: from individuals to populations and trophic fluxes. Canadian Journal of Fisheries and Aquatic Sciences , 73, 1292–1305. doi: 10.1139/cjfas-2015-0363
Naman, S. M., Rosenfeld, J. S., Richardson J. S., & Way, J. L. (2017). Species traits and channel architecture mediate flow disturbance impacts on invertebrate drift. Freshwater Biology, 62, 340–355. doi: 10.1111/fwb.12871
Oksanen, J., Guillaume Blanchet, F., Friendly, M., Kindt, R., Legendre, P., McGlinn,
D., … Wagner, H. (2019). Vegan: Community Ecology Package. R package version 2.5-6. Retrieved from: https://cran.r-project.org/web/packages/vegan/
Pearce, J. L., Smokorowski, K. E., Brush, J., Timusk, E., Marty, J., & Power, M. (2019). Unrestricted ramping rates and long-term trends in the food web metrics of a boreal river. River Research and Applications , 35, 1575–1589. doi: 10.1002/rra.3516
Pegel, M. (1980). Zur Methodik der Driftmessung in der Fließgewässerökologie unter besonderer Berücksichtigung der Simuliidae (Diptera). Journal of Applied Entomology . 89, 198–214. doi: 10.1111/j.1439-0418.1980.tb03459.x
Perry, S. A., & Perry, W. B. (1986). Effects of experimental flow regulation on invertebrate drift and stranding in the Flathead and Kootenai Rivers, Montana, USA. Hydrobiologia , 134, 171–182. doi: 10.1007/BF00006739
R Core Team. (2021). R: a language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria. Retrieved from: https://www.r-project.org/
Rader, R. B. (1997). A functional classification of the drift: traits that influence invertebrate availability to salmonids. Canadian Journal of Fisheries and Aquatic Sciences , 54, 1211–1234. doi: 10.1139/f97-025
RHEOPHYLAX. (2021). Working group RHEOPHYLAX (BOKU, Vienna). New biological traits and ecological preferences of European freshwater organisms for freshwaterecology.info
Ruhi, A., Dong, X., McDaniel, C. H., Batzer, D. P., & Sabo, J. L. (2018). Detrimental effects of a novel flow regime on the functional trajectory of an aquatic invertebrate metacommunity. Global Change Biology , 24, 3749–3765. doi: 10.1111/gcb.14133
Schülting, L., Feld, C. K., Zeiringer, B., Huđek, H., & Graf, W., 2018a. Macroinvertebrate drift response to hydropeaking: an experimental approach to assess the effect of varying ramping velocities.Ecohydrology 12, e2032. doi: 10.1002/eco.2032
Schülting, L., Dossi, F., Tonolla, D., Di Cugno, N., Hauer, C., & Graf, W. (2018b). Assessment of hydropeaking impacts on the drift of aquatic macroinvertebrates – Flume and field experiments . Preliminary Report for the Swiss Federal Office for the Environment (FOEN), Water Division, Berne, Switzerland.
Schülting, L., Dossi, F., Graf, W., & Tonolla, D. (2021). Flow amplitude or up-ramping rate? Quantifying single and combined effects on macroinvertebrate drift during hydropeaking simulations, considering sensitive traits. Manuscript submitted for publication in River Research and Applications , ‘Special Issue Innovations in Hydropeaking Research.
Smokorowski, K. E. (2021). The ups and downs of hydropeaking: A Canadian perspective on the need for, and ecological costs of, peaking hydropower production. Hydrobiologia . doi: 10.1007/s10750-020-04480-y
Tachet, H., Richoux, P., Bournaud, M., & Usseglio-Polatera, P., (2000).Invertébrés d’eau douce, systématique, biologie, écologie . Paris: CNRS Editions.
Tanno, D., Wächter, K., & Schmidlin, S. (2016). Stranden von Wasserwirbellosen bei Schwallrückgang – Ergebnisse einer Pilotstudie.Wasser Energie Luft , 108 (4), 277–284.
Tanno, D., Wächter, K., & Gerber, R. (2021). Stranden von Wasserwirbellosen bei Schwallrückgang – Fallstudie am Hinterrhein.Wasser Energie Luft , 113 (2), 89–96.
Timusk, E. R., Smokorowski, K. E., & Jones, N. E. (2016). An experimental test of sub-hourly changes in macroinvertebrate drift density associated with hydropeaking in a regulated river. Journal of Freshwater Ecology , 31, 555–570. doi: 10.1080/02705060.2016.1193064
Tonolla, D., Bruder, A., & Schweizer, S. (2017). Evaluation of mitigation measures to reduce hydropeaking impacts on river ecosystems – a case study from the Swiss Alps. Science of The Total Environment , 574, 594–604. doi: 10.1016/j.scitotenv.2016.09.101.
Tonolla, D., Kastenhofer, O., Vögeli Kummert, S., & Gufler, C. (2020).Assessment of hydropeaking impacts on the drift of organic matter (biomass) and comparison with the residual flow reaches – Field experiments . Final report for the Swiss Federal Office for the Environment (FOEN), Water Division, Berne, Switzerland.
Vanzo, D., Zolezzi, G., & Siviglia, A. (2016). Eco‐hydraulic modelling of the interactions between hydropeaking and river morphology.Ecohydrology 9, 421-437. doi: 10.1002/eco.1647
Waters, F. T. (1972). The drift of stream insects. Annual Review of Entomology , 17, 253–272. doi: 10.1146/annurev.en.17.010172.001345
Whiting, P. J., & Dietrich, W. E. (1990). Boundary shear stress and roughness over mobile alluvial bed. Journal of Hydraulic Engineering , 116, 1495–1511. doi: 10.1061/(ASCE)0733-9429(1990)116:12(1495)
Wilzbach, M., Cummins, K., & Knapp, R. (1988). Toward a functional classification of stream invertebrate drift. Internationale Vereinigung für theoretische und angewandte Limnologie: Verhandlungen , 23, 1244–1254. doi: 10.1080/03680770.1987.11899798
Young, P. S., Cech, J. J., & Thompson, L. C., 2011. Hydropower-related pulsed-flow impacts on stream fishes: A brief review, conceptual model, knowledge gaps, and research needs. Reviews in Fish Biology and Fisheries , 21, 713–731. doi: 10.1007/s11160-011-9211-0