10.1111/1755-0998.13448
Eichmiller, J. J., Miller, L. M., & Sorensen, P. W. (2016). Optimizing techniques to capture and extract environmental DNA for detection and quantification of fish. Molecular Ecology Resources ,16 (1), 56–68. doi: 10.1111/1755-0998.12421 .
Fornillos, R. J. C., Sato, M. O., Tabios, I. K. B., Sato, M., Leonardo, L. R., Chigusa, Y., Minamoto, T., Kikuchi, M., Legaspi, E. R., & Fontanilla, I. K. C. (2019). Detection of Schistosoma japonicum and Oncomelania hupensis quadrasi environmental DNA and its potential utility to Schistosomiasis japonica surveillance in the Philippines. PLOS ONE , 14 (11), e0224617. doi:10.1371/journal.pone.0224617 .
Hinlo, R., Gleeson, D., Lintermans, M., & Furlan, E. (2017). Methods to maximise recovery of environmental DNA from water samples. PLOS ONE , 12 (6), e0179251. doi: 10.1371/journal.pone.0179251 .
Katano, I., Harada, K., Doi, H., Souma, R., & Minamoto, T. (2017). Environmental DNA method for estimating salamander distribution in headwater streams, and a comparison of water sampling methods.PLOS ONE , 12 (5), e0176541. doi:10.1371/journal.pone.0176541 .
Minamoto, T., Miya, M., Sado, T., Seino, S., Doi, H., Kondoh, M. (2021). An illustrated manual for environmental DNA research: Water sampling guidelines and experimental protocols. Environmental DNA , 3(1), 8–13. doi: 10.1002/edn3.121 .
Miya, M., Minamoto, T., Yamanaka, H., Oka, S. I., Sato, K., Yamamoto, S., Sado, T., & Doi, H. (2016). Use of a filter cartridge for filtration of water samples and extraction of environmental DNA.Journal of Visualized Experiments: JoVE , 117 (117), e54741. doi: 10.3791/54741 .
Muha, T. P., Robinson, C. V., Garcia de Leaniz, C., & Consuegra, S. (2019). An optimised eDNA protocol for detecting fish in lentic and lotic freshwaters using a small water volume. PLOS ONE14 (7), e0219218. doi: 10.1371/journal.pone.0219218 .
Nguyen, P. L., Sudheesh, P. S., Thomas, A. C., Sinnesael, M., Haman, K., & Cain, K. D. (2018). Rapid detection and monitoring of Flavobacterium psychrophilum in water by using a handheld, field‐portable quantitative PCR system. Journal of Aquatic Animal Health , 30 (4), 302–311. doi: 10.1002/aah.10046 .
R Core Team (2021). R: A language and environment for statistical computing. Retrieved from https://www.r-project.org/. Vienna, Austria: R Foundation for Statistical Computing.
Sakata, M. K., Yamamoto, S., Gotoh, R. O., Miya, M., Yamanaka, H., & Minamoto, T. (2020). Sedimentary eDNA provides different information on timescale and fish species composition compared with aqueous eDNA. Environmental DNA2 (4), 505–518. doi:10.1002/edn3.75 .
Sassoubre, L. M., Yamahara, K. M., Gardner, L. D., Block, B. A., & Boehm, A. B. (2016). Quantification of environmental DNA (eDNA) shedding and decay rates for three marine fish. Environmental Science and Technology , 50 (19), 10456–10464. doi:10.1021/acs.est.6b03114 .
Takahara, T., Minamoto, T., Yamanaka, H., Doi, H., & Kawabata, Z. (2012). Estimation of fish biomass using environmental DNA. PLOS ONE , 7 (4), e35868. doi: 10.1371/journal.pone.0035868 .
Thomas, A. C., Howard, J., Nguyen, P. L., Seimon, T. A., & Goldberg, C. S. (2018). eDNA Sampler: A fully integrated environmental DNA sampling system . Methods in Ecology and Evolution , 9 (6), 1379–1385. doi: 10.1111/2041-210X.12994 .
Thomas, A. C., Tank, S., Nguyen, P. L., Ponce, J., Sinnesael, M., & Goldberg, C. S. (2020). A system for rapid eDNA detection of aquatic invasive species. Environmental DNA , 2 (3), 261–270. doi:10.1002/edn3.25 .
Tsuji, S., Takahara, T., Doi, H., Shibata, N., & Yamanaka, H. (2019). The detection of aquatic macroorganisms using environmental DNA analysis—A review of methods for collection, extraction, and detection. Environmental DNA , 1(2), 99–108. doi: