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Abstract 13 

1. Competition from invasive species is an increasing threat to biodiversity. In Southern 14 

California, the western gray squirrel (Sciurus griseus, WGS) is facing increasing competition 15 

from the fox squirrel (Sciurus niger, FS), an invasive congener. 16 

2. We used spectral methods to analyze 140 consecutive monthly censuses of WGS and FS 17 

within a 11.3 ha section of the California Botanic Garden. Variation in the numbers for both 18 

species and their synchrony was distributed across long timescales (> 15 months).  19 

3. After filtering out annual changes, concurrent mean monthly temperatures from nearby 20 

Ontario Airport (ONT) yielded a spectrum with a large semiannual peak and significant 21 

spectral power at long timescales (> 30 months). Squirrel-temperature cospectra showed 22 

significant negative covariation at long timescales (> 35 months) for WGS and smaller 23 

significant negative peaks at 6 months for both species. 24 

4. Simulations from a Lotka-Volterra model of two competing species indicates that the risk of 25 

extinction for the weaker competitor increases quickly as environmental noise shifts from 26 

short to long timescales. 27 

5. We analyzed the timescales of fluctuations in detrended mean annual temperatures for the 28 

time period 1915-2014 from 1218 locations across the continental USA. In the last two 29 

decades, significant shifts from short timescales to long timescales have occurred, changing 30 

from less than 3 years to 4-6 years. 31 

6. Our results indicate that (i) population fluctuations in co-occurring native and invasive tree 32 

squirrels are synchronous, occur over long timescales, and may be driven by fluctuations in 33 

environmental conditions; (ii) long timescale population fluctuations increase the risk of 34 

extinction in competing species, especially for the inferior competitor; and (iii) the timescales 35 



of interannual environmental fluctuations may be increasing from recent historical values. 36 

These results have broad implications for the impact of climate change on the maintenance of 37 

biodiversity. 38 
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1  INTRODUCTION 42 

Competition from non-native, invasive species is an increasing threat to the biodiversity of native 43 

species in a globalized world. Invasive species are often considered one of the most important 44 

threats to ecological function and a top driver of species extinctions (Flory & Lockwood 2020; 45 

Dueñas et al. 2021). The presence of invasive species can alter animal communities, trigger 46 

trophic cascades, displace native species, and even lead to hybridizations with similar or related 47 

species (Huxel 1999; Doody et al. 2017). The ability to be more competitive over limited 48 

resources is one of the characteristics that enables invasive species to be successful. In addition, 49 

they are often characterized by having life history traits with colonizer characteristics: short 50 

generation times, high reproduction rates, and fast growth rates (Sakai et al. 2001). With this 51 

competitive edge, they can invade and displace native species. 52 

An example where a native species is threatened in some habitats by competition from an 53 

invasive species occurs in Southern California, where the western gray squirrel (Sciurus griseus, 54 

WGS, Fig. 1A) is facing increasing competition from the fox squirrel (Sciurus niger, FS, Fig, 55 

1B), a non-native, invasive congener. WGSs are native to the western coast of North America 56 

with a historical distribution extending from central Washington to Baja California (Carraway & 57 

Verts 1994; Escobar-Flores et al. 2011). Populations of WGSs have been declining in areas of 58 

Washington, Oregon, and California (Muchlinski et al. 2009; Stuart 2012; Cooper 2013; Cooper 59 

& Muchlinski 2015). In Washington, they are listed as a state-threatened species (Linders & 60 

Stinson 2007), while in Oregon they are an Oregon Conservation Strategy Species (Oregon 61 

Department of Fish and Wildlife 2016). While there have been only a few studies regarding 62 

populations of WGSs in California, there is a noticeable trend in the decline of these squirrels in 63 



areas below an elevation of 457m (Cooper 2013; Cooper & Muchlinski 2015). As of now, the 64 

WGS does not have special conservation status in California.   65 

The FS has a historical native range in the eastern and central United States and the 66 

southern prairie provinces of Canada, south of approximately 48ºN latitude (Koprowski 1994), 67 

where they are known to live in forests, woodlands, agricultural landscapes, and urban areas 68 

(Kleiman et al. 2004). Through both natural and human-assisted range expansion, the FS is now 69 

common in many areas west of its historical range (iNaturalist accessed 24 July 2021, 70 

https://www.inaturalist.org/taxa/46020-Sciurus-niger). FSs have been introduced or have 71 

expanded their range into Arizona, California, Colorado, Idaho, Montana, New Mexico, Oregon, 72 

Utah, Washington, and Wyoming (Wolf & Roest 1971; Flyger & Gates 1982; Koprowski 1994; 73 

Jordan & Hammerson 1996; Steele & Koprowski 2001; Brady et al. 2017).  74 

FSs have dispersed from original points of introduction through natural dispersal and 75 

through intentional movement of animals by humans (Frey & Campbell 1997; Geluso 2004; 76 

King et al. 2010). Since the original introduction to Los Angeles County (Becker & Kimball 77 

1947), the FS has expanded its range at a rate of 1.60 to 3.00 km/yr in heavily suburbanized 78 

areas of Southern California (Garcia & Muchlinski 2017). Although the FS has generally 79 

remained restricted to areas of human habitation, with continued range expansion the FS has 80 

become sympatric in some isolated suburban habitat fragments and in certain foothill areas with 81 

the native WGS (Hoefler & Harris 1990).    82 

FSs may compete with native WGSs for resources such as nesting sites and food, and the 83 

FS has replaced the WGS within certain habitats in Southern California (Muchlinski et al. 2009; 84 

Cooper & Muchlinski 2015). Los Angeles County can be considered an ideal location for 85 

invasion by the FS given the mild Mediterranean climate and year-round food supply offered by 86 



exotic plant species, accompanied by the absence of the native WGS throughout much of the Los 87 

Angeles Basin. The FS is both morphologically, ecologically, and behaviorally similar to this 88 

native species, thus these overlaps in form, function, activity, and presence provides a situation 89 

where interactions between the two species can be studied (Ortiz 2021). 90 

Many factors can influence population persistence, but one that has received 91 

comparatively less attention is the timescale of environmental fluctuations. By analogy with the 92 

spectrum of visible light, time series fluctuations that occur over long timescales are referred to 93 

as having a red spectrum and those occurring over short timescales as having a blue spectrum 94 

(Lawton 1988). These are distinguished from white noise random fluctuations which have no 95 

serial autocorrelations. In general, theoretical analyses from single-species unstructured 96 

population models suggest that reddened environmental spectra increase extinction risk for 97 

slowly growing populations and blue spectra increase extinction risk for rapidly growing 98 

populations (Ripa & Lundberg 1996; Petchey et al. 1997; Ripa & Heino 1999; Schwager et al. 99 

2006; Ruokolainen et al. 2009; García-Carreras & Reuman 2011; Mustin et al. 2013; Danielian 100 

2016), although these conclusions often depend on modeling details (Heino 1998; Heino et al. 101 

2000). In their simulations of three competing species, Ruokolainen and Fowler (2008) found 102 

that extinction risk increased with reddened environmental noise when species responded 103 

independently to the environment but decreased when there was a strong correlation between 104 

species-specific responses. On the empirical side, Pimm and Redfearn (1988) looked at 100 time 105 

series from insects, birds, and mammals, and found that the variance of the population 106 

fluctuations increased with the window of time used in the calculation, suggesting that these 107 

populations have red spectra. García-Carreras & Reuman (2011) analyzed the dynamics of 147 108 

animal populations and climate data for the population locations and found a positive correlation 109 



between the biotic and climatic spectral exponents (a measure of spectral color), with most 110 

spectra being red-shifted. Inchausti & Halley (2003) directly examined the relationship between 111 

population variability and quasi-extinction time (measured as the time required to observe a 90% 112 

decline of population abundance) for a large set of data comprised of 554 populations for 123 113 

animal species that were censused for more than 30 years. The results showed that the quasi-114 

extinction time was shorter for populations having higher temporal variability and redder 115 

dynamics. 116 

Spectral methods are a powerful tool for characterizing the timescales of fluctuations in a 117 

time series (Brillinger 2001). A univariate time series can be transformed into a power spectrum, 118 

which describes the distribution of the variance of the time series at different frequencies. The 119 

sum of the spectral powers across frequencies is proportional to the total variance of the time 120 

series. If the time series is multivariate, in addition to the spectra, there are also cross-spectra for 121 

each pair of time-series variables. The cross-spectrum is a complex-valued function of 122 

frequency. The real part is the cospectrum, which describes the distribution of the in-phase 123 

covariance between the time series at different frequencies, and the imaginary part is the 124 

quadrature spectrum, which is a phase-shifted covariance. The sum of the cospectral powers 125 

across frequencies is proportional to the total covariance of the two time series. The cospectrum 126 

can also be viewed as the distribution of the correlation coefficient across frequencies. Since 127 

frequency, f, is the inverse of the period, the spectral and cospectral power provide information 128 

on the variance and correlation, respectively, at the timescale 1/f. 129 

The color of a power spectrum can be characterized using a spectral exponent (Vasseur & 130 

Yodzis 2004; García-Carreras & Reuman 2011). If Sf is the power of the spectrum at frequency f, 131 

the spectral exponent can be computed as the slope of a least squares linear regression of log(Sf) 132 



versus log(f ). Negative spectral exponents are characteristic of spectra dominated by long 133 

timescale variation (red spectra) and positive values are indicative of short timescale variation 134 

(blue spectra). White noise spectra will have a spectral exponent of zero. When applied to 135 

environmental and population time series, spectral color allows one to better assess the risk of 136 

ecological extinction. 137 

Wavelet analyses have been used in ecology to identify changes in the spectral 138 

distributions of population and environmental fluctuations over time (Cazelles et al. 2008). 139 

Whereas spectral analyses assume that the statistical properties of the time series do not vary 140 

with time, wavelet analysis can be applied to non-stationary time series. A filtering function is 141 

applied to the time series signal to allow a local estimation of spectral characteristics of the 142 

signal at a point in time. The filtering function can be adjusted to look at different times and 143 

frequencies. The result is a two-dimensional picture of the wavelet power as a function of 144 

frequency and time. Wavelets can be used, for example, to investigate the impact on ecological 145 

populations of climate regime shifts, such as the North Atlantic Oscillation (Sheppard et al. 146 

2016), or changes in the timescale of environmental fluctuations due to climate change. 147 

Global climate is undergoing rapid changes (Pachauri et al. 2014). While the threats to 148 

biodiversity have focused mostly on increasing temperatures, it is feasible that disruptions to 149 

climate patterns may also affect the timescale of environmental fluctuations, and, if so, this may 150 

have ecological implications for population persistence. For example, García-Carreras & 151 

Reuman (2011) analyzed detrended mean summer temperature time series from weather stations 152 

on six continents and found significant shifts to shorter timescales (blue shifts) in the spectral 153 

exponents for the years 1951-1990 compared to 1911-1950. For conservation purposes, it is 154 

important to gain a better understanding of how changes in climate may be associated with 155 



changes in the timescale of environmental fluctuations and how this may impact extinction risks 156 

for natural populations. 157 

The objectives of the present study were (1) to evaluate, using spectral methods, the 158 

timescale of population fluctuations in a long time series (140 months) where the WGS and FS 159 

have coexisted together, (2) to determine the extent to which the timescale of the squirrel 160 

population fluctuations are determined by environmental factors, (3) to infer, using model 161 

simulations, how changes in the timescale of environmental fluctuations could impact the 162 

timescale of population fluctuations and the risk of extinction in a system of two competing 163 

species, and (4) to assess the extent to which the timescale of year-to-year environmental 164 

fluctuations around their trends are changing, possibly as a result of human impacts on climate, 165 

and to assess the implications of these results on the potential loss of native biodiversity. 166 

2  MATERIALS AND METHODS 167 

2.1  Collection of census data 168 

We established three transect lines within a 11.3 ha section of the California Botanic Garden 169 

(CBG) in Claremont, CA during October of 2009. We defined sampling points along transect 170 

lines at 40 m intervals providing 35 viewpoints within the study area. Two researchers conducted 171 

a census along the transect lines once per month from October 2009 through May 2021. The 172 

researchers spent 3 minutes at each sampling point, with each researcher responsible for counting 173 

animals within a separate 180-degree arc from the viewpoint. We began each monthly census at 174 

0800 hrs and ended at approximately 1030 hrs. We switched the starting transect line for the 175 

monthly census between Line 1 and Line 3 on alternate months.   176 



Researchers conducting each census were conservative in counting the number of 177 

squirrels observed, thereby giving an estimate of observable population size at a point in time. If 178 

there was any chance that a squirrel observed at a sampling point had been counted at a previous 179 

sampling point, that individual was not counted as a new observation unless the animal was 180 

obviously different from the animal previously observed (a juvenile instead of an adult or a male 181 

instead of a female, when gender could be assessed). Numbers may vary due to factors such as 182 

natality, mortality, dispersal, and activity levels which could change due to seasonality or 183 

reproductive activity. 184 

The four corners of the 11.3 ha study area were defined by the following GPS 185 

coordinates: SE 34.110262 & –117.714651, SW 34.110258 & –117.715921, NE 34.115883 & –186 

117.714419, NW 34.115684 & –117.715891. CBG is a native California garden, meaning all 187 

plants are native to California, but not specifically Southern California. At the beginning of the 188 

study in 2009, the habitat within the study area included 1,048 trees along with numerous shrubs 189 

and bushes. Of the trees, 31% were deciduous species, 17% were coniferous species, 42% were 190 

in the genus Quercus, and 6% were in the genus Pinus. The composition of the study area did 191 

change over the time period of the censuses with the death and removal of several trees. Death of 192 

trees in the study area was due mainly to a prolonged drought within Southern California from 193 

2011 through 2016. 194 

2.2  Spectral analyses of census data 195 

We used spectral methods to analyze the monthly census data. We used fast Fourier transforms 196 

to compute the raw spectra and cross-spectrum of the bivariate time series. Computations were 197 

conducted using the spec.pgram algorithm from R modified to run in MATLAB. No trends were 198 

removed from the data prior to analysis. Since raw spectra and cross-spectra are usually jagged, 199 



we applied two iterations of a window-averaging smoothing Daniell kernel with spans of 5 and 7 200 

data points, modified with clipped windows at the endpoints to preserve the number of data 201 

values. We divided the spectral powers by their sum across frequencies. This yielded a 202 

normalized spectral power plot for each species which shows the distribution of variation across 203 

timescales. We used the real part of the cross-spectrum to obtain a smoothed cospectral power 204 

plot for the covariance between the two species. We normalized the cospectrum so that its sum 205 

equals the correlation coefficient. 206 

We conducted computations to detect significant (P < 0.05) peaks or valleys in the 207 

observed spectra for the null hypothesis that there is no frequency dependence in the variance 208 

and covariance of the time series fluctuations (i.e., independent “white noise” time series). We 209 

shuffled the temporal order of the bivariate time-series by generating a random permutation of 210 

the integers 1 through n, where n = 140 is the number of monthly observations. We then used the 211 

permutation to reorder the bivariate monthly censuses of the two species. Next, we computed 212 

two smoothed normalized spectra and a smoothed normalized cospectrum in the same way as the 213 

correctly ordered data. We repeated this random reshuffling process 2000 times and used the 214 

2.5th and 97.5th percentiles at each frequency to define 95% confidence limits for the null 215 

hypothesis that there are no timescale components to the variance and covariance of the observed 216 

time series. This method of generating the spectra preserves the time-independent statistical 217 

properties of the two time-series (means, variances, distribution, correlation, etc.), while varying 218 

only the time-dependence of the bivariate data values. 219 

2.3  Analyses of weather data 220 

We obtained weather data for Ontario Airport (ONT) from the Climate Data Online web site of 221 

NOAA’s National Centers for Environmental Information (https://www.ncdc.noaa.gov/cdo-222 



web/). ONT is located about 12 km from the CBG and should be an accurate representation of 223 

the temperature profile of the study site. We focused on the reported “average monthly 224 

temperature,” which is computed by averaging the daily maximum and minimum temperatures 225 

for each month. We avoided rainfall totals because many months have zeros, which is a problem 226 

for spectral analyses, and much of the vegetation in the CBG is irrigated. We obtained a 227 

temperature time series for the same months as the census data and applied the same spectral 228 

methods to obtain a smoothed normalized power spectrum. 229 

Since annual seasonal changes dominated the temperature time series, we used the 230 

MATLAB “bandstop” function to attenuate cyclic components with periodicities in the range of 231 

9-15 months. This produced a filtered time series with annual effects removed. We then 232 

produced a smoothed normalized spectrum for the filtered temperature time series. We also 233 

generated smoothed normalized cospectra between the filtered temperature time series and both 234 

the WGS and EF census time series. Using the methods described above, we obtained 95% 235 

confidence intervals for these spectra and cospectra. 236 

2.4  Model simulations 237 

We conducted model simulations to obtain a better understanding of the implications of 238 

timescale-specific environmental variation on the dynamics of two competing species. We used 239 

the following discrete-time version of the Lotka-Volterra competition equation: 240 

 
( )( )
( )( )

1 1 1 1 1 2 1 1 1

2 2 2 2 2 1 2 2 2

( 1) ( )exp ( ) ( ) ( ) ,
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N t N t r K N t N t K t

N t N t r K N t N t K t
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β σ ε

+ = − − +

+ = − − +
  (1) 241 

where r1 and r2 are the intrinsic rates of population increase, K1 and K2 are the carrying 242 

capacities, and α and β are the competition coefficients for the two species. The variables ε1(t) 243 

and ε2(t) represent random environmental noise with a mean of zero and variance of 0.5. We 244 



used the coefficients σ1 and σ2 to scale the magnitude of the noise. For the purposes of 245 

discussion, species 1 will represent a native species and species 2 will represent an invasive 246 

species. 247 

We introduced frequency-specific biases into the noise variables using an algorithm 248 

devised by Chambers (1995). This method generates a multivariate random time series based on 249 

any specified theoretical spectral matrix that is a function of frequency. The diagonal elements of 250 

that matrix are the theoretical spectra (frequency decompositions of the variances) and the off-251 

diagonal elements are theoretical cross-spectra (complex numbers). The real parts of the cross-252 

spectra are the theoretical cospectra (frequency decompositions of the covariances) and the 253 

complex parts are the quadrature spectra (frequency-specific phase shifts). For the model (1), we 254 

used identical spectra that were linear functions of frequency for the two species. High-255 

frequency-biased blue noise was represented with a linear spectrum that varied from a power of 256 

0.0 for a frequency of f = 0.0 to a power of 1.0 for a frequency of f = 0.5 (maximum possible 257 

frequency). Low-frequency-biased red noise was represented with a linear spectrum that varied 258 

from a power of 1.0 for a frequency of f = 0.0 to a power of 0.0 for a frequency of f = 0.5. 259 

Unbiased white noise had a constant power of 0.5 across all frequencies. A gradual shift from 260 

blue to white to red noise was accomplished by varying the slope of the noise spectrum in 101 261 

increments while keeping the average of the spectrum constant at 0.5. This produced a constant 262 

total variance of ε1(t) and ε2(t) equal to 0.5 while changing only its frequency-specificity. For the 263 

covariance between the random variables ε1(t) and ε2(t), we used a cospectrum function that was 264 

equal to a constant fraction, 0.9, of the spectrum. This resulted in a frequency-specific correlation 265 

of 0.9 across all frequencies. A high correlation was used since it was assumed that the native 266 

and invasive species are ecologically similar and occupy the same habitat. The quadrature 267 



spectrum was set to zero (no frequency-specific phase shifts). To summarize, the timescales of 268 

the random environmental noise were varied from short (blue) to uniform (white) to long (red) 269 

with a frequency-independent correlation in the effects of the noise on the growth of the two 270 

species. 271 

In addition to the spectral frequency of the environmental noise, the simulation protocol 272 

also involved varying the intensity of the competitive effects of the invasive species on the native 273 

species. We set the value of the competition coefficient α to 0.25 (weak competition), 0.50 274 

(moderate competition), and 0.75 (strong competition). We kept the competitive effects of the 275 

native species on the invasive species at a value of β = 0.25. The remaining model parameters 276 

had constant values of r1 = r2 = 0.5, K1 = K2 = 50, and σ1 = σ2 = 0.75. For the assessment of 277 

extinction risk, when the population density of a species fell below 5% of its carrying capacity, 278 

we set it to zero. For simulations not involving extinction risk, the threshold was set to zero. We 279 

ran each simulation for 200 time steps. 280 

For every set of parameter values and environmental noise color, we conducted 2000 281 

replicate simulations. For blue, white, and red environmental noise, we computed smoothed 282 

normalized power spectra and cospectrum of the species and averaged these over replicates to 283 

see how the timescale for population fluctuations are affected by different colors of noise. To 284 

investigate gradual shifts in the effects of frequency-biased environmental noise on the 285 

population spectra and probability of extinction, we chose a slope for the environmental spectra, 286 

varying the slopes in 101 gradual increments, beginning at blue noise (slope = 2) and ending at 287 

red noise (slope = –2). For each choice of the environmental spectra, we simulated the 288 

population trajectories of the two species, estimated the unsmoothed normalized population 289 

spectra, computed the two spectral exponents and averaged them. We repeated these 290 



computations for each of the 2000 replicate simulations and computed an overall average for the 291 

spectral exponent. To investigate the effects of frequency-biased environmental noise on the 292 

population persistence, the number of instances where the native species went extinct was 293 

divided by 2000 to yield an estimate of the extinction risk. The extinction risk for the invasive 294 

species was always less than or equal to the risk for the native species and was not considered in 295 

the analyses. 296 

2.5  Analyses of climate data 297 

We obtained climate data from the U.S. Historical Climatology Network (USHCN) which is 298 

freely available online (https://www.ncei.noaa.gov/products/land-based-station/us-historical-299 

climatology-network). We used version 2.5 of the monthly temperature records which contains 300 

long-term data from 1218 stations across the continental United States. Menne et al. (2009) 301 

describe the adjustments used to remove biases due to factors such as relocation of recording 302 

stations, changes in instrumentation, and urbanization. USHCN monthly average temperatures 303 

were computed as the average over the month of the daily maximum and daily minimum 304 

temperatures. The mean annual temperature for each year is the average of the 12 mean monthly 305 

temperatures. We used the mean temperatures for the 100-year range from 1915 through 2014, 306 

the latter being the latest year available. 307 

We looked at changes in the distribution of spectral exponents for the fluctuations in the 308 

mean annual temperatures. First, we broke the 100-year range into four 25-year spans. Next, we 309 

detrended the temperature time series for each 25-year span by fitting a quadratic polynomial 310 

using least squares regression and computed the standardized residuals. Then we computed an 311 

unsmoothed spectrum for each residual time series and estimated the spectral exponent as the 312 



slope of a linear regression of log(spectral power) versus log(frequency). Histograms were 313 

created with the 1218 spectral exponents (one per station) for each of the 25-year time spans. 314 

Although it would be tempting to analyze the changes in the spectral exponents using a 315 

repeated measures ANOVA, with stations as the subjects, spatial autocorrelations exist among 316 

stations that are in the same geographical proximity, inflating the Type I error rates. A solution to 317 

this problem was suggested by Clifford et al. (1989) and modified by Dutilleul (1993), which 318 

yields an “effective sample size” based on the spatial structure of the data. It is appropriate for 319 

paired observations distributed in space. We used the software package SAM (Spatial Analysis 320 

in Macroecology; Rangel et al. 2006) to compute effective sample sizes for the following three 321 

sets of paired data: [1915-1939] vs. [1940-1964], [1940-1964] vs. [1965-1989], and [1965-1989] 322 

vs. [1990-2014]. We conducted paired sample t-tests for the spectral exponents from these three 323 

paired data sets and adjusted the standard errors for the test statistics and degrees of freedom for 324 

the statistical significance values using the effective sample sizes. We then applied a Bonferonni 325 

correction to account for the multiple comparisons. 326 

We also conducted a mean field wavelet analysis on the 100-year time series of mean 327 

annual temperatures. For each station, we detrended the time series using a quadratic polynomial 328 

and computed the standardized residuals. Next, we used the MATLAB continuous wavelet 329 

transform function “cwt” to compute wavelet powers for the residual time series using the 330 

analytic Morse filter (Olhede & Walden 2002) with the default values of 3 for the symmetry 331 

parameter and 60 for the time-bandwidth product. Lastly, we averaged the wavelet powers across 332 

all stations for each time-frequency combination. We chose the Morse wavelet because it is 333 

useful for analyzing signals with time-varying amplitude and frequency. We investigated varying 334 

the symmetry and time-bandwidth product parameters, but the results were not much different 335 



from what was obtained using the default values. We also used a Morlet wavelet which has equal 336 

variance in time and frequency, but, again, the results were like the Morse wavelet with default 337 

parameters. We experimented with cubic and quartic polynomials for detrending, but these gave 338 

mean field wavelets that were much like the one obtained with a quadratic function. 339 

To identify wavelet powers that were statistically significant, we used the surrogate time 340 

series approach (Schreiber & Schmitz 2000). We took a random permutation of the mean annual 341 

temperature time series for all stations in tandem and computed a mean field wavelet as 342 

described above. We repeated this process 2000 times and computed the upper 95th percentile of 343 

the wavelet powers for each combination of time and frequency. This provided a set of critical 344 

values for identifying “hot spots” on the mean field wavelet under the null hypothesis of no 345 

timescale dependence in the fluctuations of the mean annual temperature residuals around the 346 

trends. 347 

3  RESULTS 348 

3.1  Census data 349 

Figure 2 shows the time series of monthly census values for the WGS and the FS. The large 350 

increase in census numbers during 2013 and 2014 corresponded with production of a large acorn 351 

crop during the fall of 2013 (mean ± SE of 608.3 ± 120.1 g/m2 in a 1 m2 plot under each of six 352 

trees used to assess acorn production, Appendix A). Mean acorn production measured in the 353 

same 1 m2 plots during other years ranged from a low of 5.7 ± 2.7 g/m2 in 2014 to a high of 67.5 354 

+ 35.5 g/m2 in 2012. Availability of acorns appears to have a major impact on the number of 355 

WGSs and FSs in the CBG. 356 



The fluctuations in census numbers show signs of synchrony. The estimated Pearson 357 

correlation coefficient in animal numbers is r = 0.581 which is statistically significant from zero 358 

(P = 5.20×10–14). The total variation in the numbers for each species and their synchrony seems 359 

to be distributed across different time scales. Long intervals can be seen where the numbers of 360 

both species are elevated and depressed (Fig. 2). Superimposed on this long timescale variation 361 

are random short timescale fluctuations. We quantify this timescale component of variation with 362 

the spectral analyses in the next section. 363 

3.2  Population spectra and cospectrum 364 

Figures 3A and 3B show the smoothed normalized spectra for the WGS and the FS. For both the 365 

WGS and the FS, the spectra suggest that the largest variation in numbers occurs at frequencies 366 

below 0.0833 which corresponds to a timescale of more than 12 months. The WGS spectrum 367 

crosses the upper significance threshold at timescale of around 15 months. The FS spectrum 368 

crosses the upper significance threshold at timescale of around 19 months. The spectrum for the 369 

FS shows a small peak at 6 months, but that peak is not statistically significant. Since the total 370 

variation remains constant across frequencies for the confidence bands from the randomly 371 

ordered data, the larger variation in WGS and FS at long timescales is compensated for by 372 

significantly smaller variation at timescales of about 4 months or less. 373 

The smoothed normalized cospectrum (Fig. 3C) shows how the total correlation in 374 

population numbers between the two species is distributed across timescales. Covariance 375 

between WGS and FS is significantly biased towards long timescales, with a smaller 376 

nonsignificant peak at a timescale of around 6 months. The cospectrum crosses the upper 377 

significance threshold at timescale of about 18 months. The total correlation between the 378 

numbers of the WGS and FS is r = 0.581. Using the unsmoothed cospectrum, we can partition 379 



this total correlation by timescale intervals: r1 = 0.409 for >12 months, r2 = 0.162 for 4–12 380 

months, and r3 = 0.010 for ≤ 4 months, where r = r1 + r2 + r3. Thus, 70% of the total correlation 381 

occurs at timescales exceeding one year. We can infer that population synchrony for these two 382 

species occurs mostly at long timescales. 383 

3.3  Spectral analyses of weather data 384 

Figure 4A shows the time series of mean monthly temperatures for Ontario Airport (ONT), 385 

which is 12 km from the study site. As one would expect, there is a strong seasonal component to 386 

these temperatures. Figure 4B shows the smoothed normalized spectrum for the mean monthly 387 

temperatures, which is dominated by a strong peak for the annual cycle. Since the squirrel 388 

spectra show no indication of an annual cycle (Fig. 3), we applied a band-stop filter to remove 389 

the annual cycle and plotted the resulting time series (Fig. 4A, dashed line). The smoothed 390 

normalized spectrum for the filtered mean monthly temperatures appears in Fig. 4C. There is a 391 

peak at low frequencies which begins to increase at a timescale of about 12 months and crosses 392 

the upper threshold for statistical significance at a timescale of approximately 30 months. There 393 

is also a large spectral peak at 6 months.  394 

There is a negative correlation between the filtered temperature time series and the 395 

squirrel census data. For the WGS, the correlation is statistically significant (r = –0.194, P = 396 

0.022) and, as indicated by the smoothed normalized cospectrum (Fig. 5A), is distributed at long 397 

timescales and at a timescale of 6 months. The correlation between the filtered temperature time 398 

series and the FS census data is also negative, but not statistically significant overall (r = –0.146, 399 

P = 0.085). The cospectrum between the filtered temperature time series and FS census data 400 

shows a large significant peak a 6-month timescale (Fig. 5B). These results suggest that the 401 



distribution of variation in the squirrels’ population fluctuations may be driven, in part, by 402 

fluctuations in weather and climate outside of the annual seasonal cycle. 403 

3.4  Simulation results 404 

Our analyses of the simulations of the Lotka-Volterra competition model (1) are summarized in 405 

Fig. 6. Our focus was on the effects of the timescale of environmental fluctuations on the spectral 406 

properties of population numbers and the probability of extinction for the native species. 407 

Figure 6A shows the protocol we used for the random environmental noise. We assumed 408 

a linear spectrum which varied from short timescale fluctuations (slope = 2, blue noise), to 409 

fluctuations with no autocorrelation (slope = 0, white noise), to long timescale fluctuations (slope 410 

= –2, red noise). The random time series generated by these spectra have the same mean of zero 411 

and same variance, the latter being proportional to the total area under the spectrum; they differ 412 

only in their timescale properties. For the simulations involving the computation of spectral 413 

exponents and extinction probabilities, we varied the spectral slope of the environmental noise in 414 

small increments from +2 to –2, as indicated by the curved arrow in Fig. 6A. 415 

Figure 6B shows the population spectrum and cospectrum for the simulations involving 416 

blue noise, white noise, and red noise (Fig. 6A). Since the parameter values for the two 417 

competing species are identical, and the properties of their environmental noise inputs are the 418 

same, the mean curves shown apply to both populations. As described in section 2.4, we used a 419 

cospectrum function that was equal to a constant fraction, 0.9, of the spectrum, so, for each color 420 

of environmental noise, the population spectrum and cospectrum are similar. For blue 421 

environmental noise, the smoothed normalized spectrum and cospectrum have low power at long 422 

timescales which increases and levels off at frequencies exceeding 0.1. This reflects the fact that, 423 

for the intrinsic rates of increase used in the simulations (r1 = r2 = 0.5), population growth is 424 



undercompensating, that is, perturbations from a stable equilibrium do not show damped 425 

oscillations in the deterministic version of the model. Previous work for single species 426 

population models has shown that undercompensating populations are sensitive to long timescale 427 

environmental noise, whereas overcompensating populations are sensitive to short timescale 428 

noise (e.g., Danielian 2016). In effect, the slower response times of populations with small 429 

intrinsic rates of increase “filter out” the short timescale components of the environmental noise 430 

(Desharnais et al. 2018). This phenomenon can also be seen in the smoothed normalized 431 

spectrum and cospectrum for the populations subjected to white environmental noise. The 432 

population fluctuations are less sensitive to the shorter timescale components of the flat 433 

environmental spectrum producing a population spectrum and cospectrum that is biased towards 434 

long timescales (Fig. 6B). Lastly, when the populations are subjected to environmental noise 435 

biased towards long timescales, the longer timescale components of the noise are enhanced and 436 

the shorter timescale components are suppressed, producing a smoothed normalized spectrum 437 

and cospectrum that is more strongly biased towards long timescales than the environmental 438 

noise (Fig. 6B). 439 

Figure 6C shows how the population spectral exponents change as the environmental 440 

noise is shifted gradually from blue, to white, to red (arrow in Fig. 6A). Positive spectral 441 

exponents indicate spectra which are biased towards short timescales and negative spectral 442 

exponents are indicative of long timescale fluctuations. The population spectral exponents 443 

decrease monotonically as the spectra for the environmental noise redden. However, the 444 

population spectral exponent first becomes negative while the environmental spectrum is still 445 

strongly blue. The bluest linear spectrum for environmental noise begins with a linear slope of 446 

2.00 and the first negative population spectrum appears when the linear slope has decreased to 447 



1.72. As mentioned above, with the model parameter values used in our simulations, the 448 

dynamics of the two competing species acts as a “reddening filter,” producing population spectra 449 

that are more biased towards long timescales. 450 

Of interest for conservation purposes is how the timescale of the fluctuations in the 451 

environmental noise influences the persistence of the native species. Figure 6D is based on 452 

simulations where an extinction threshold has been set arbitrarily to 5% of the carrying capacity. 453 

All other model parameter values are identical to the ones used for the simulations in Figs. 6B 454 

and 6C. When the competition coefficients are equal (α = β = 0.25), the extinction probability for 455 

both species remains close to zero until the color of the environmental noise begins to redden 456 

(Fig. 6D). For the reddest environmental spectrum, both species have about a 42% probability of 457 

extinction. If the non-native species has a competitive advantage, the influence of reddened 458 

environmental spectra on population persistence becomes more pronounced. Figure 6D shows 459 

how increasing the competition coefficient for the invading species to α = 0.75 increases the 460 

likelihood that the native species will be lost. A reddening of the environmental spectrum 461 

quickly elevates the probability of extinction from a value of about 6% for the bluest 462 

environmental noise to a value which asymptotes at about 98% for the reddest environmental 463 

noise (Fig. 6D). This suggests the possibility of a synergy between the effects of reddening 464 

environmental noise and competition from non-native species for the risk of extinction for native 465 

populations. 466 

3.5  Climate data 467 

We know that human impact on the climate system has resulted in an increasing trend of 468 

warming temperatures (Pachuri et al. 2014). Given the observations and results of the previous 469 

sections, an important related question is whether there have been changes in the timescale of 470 



random environmental fluctuations around these trends. Our analyses make use of a 100-year 471 

record (1915-2014) of mean annual temperatures from 1218 weather stations obtained from the 472 

U.S. Historical Climatology Network (Menne et al. 2009). Figure 7 shows the locations of the 473 

weather stations. Although not uniform in their distribution, they cover every state and region in 474 

the continental United States. 475 

To investigate evidence for change in the color of the mean annual temperature spectra 476 

over time, we divided the 100-year record from each station into four 25-year intervals and 477 

computed the spectral exponents for each time interval (see section 2.5). Figure 8 shows the 478 

histograms of spectral exponents for the 1218 stations. The dashed line represents the zero value 479 

(white noise environmental fluctuations); spectral exponents to the left indicate a red noise bias 480 

and those to the right represent a blue noise bias. The arrow at the top of each histogram shows 481 

the mean. The mean values are 0.500, 0.313, 0.432, and –0.160 for the range of years 1915-1939, 482 

1940-1964, 1965-1989, and 1990-2015, respectively. It appears that there was a shift from 1990-483 

2014 from blue-shifted spectra to red-shifted spectra. The significance values for the changes 484 

between adjacent time intervals are P = 0.046, P = 0.654, and P = 1.676×10–10. 485 

The spectral analyses conducted for Fig. 8 assume that the residual deviations from the 486 

fitted quadratic trends for each 25-year time period are stationary, that is, the probability 487 

distribution and timescale properties of the residual time series are invariant. A mean field 488 

wavelet analysis which relaxes the stationarity assumption is presented in Fig. 9 for the entire 489 

100-year time period. The regions of statistically significant wavelet power are outlined in black. 490 

They indicate that the timescale of the fluctuations in mean annual temperature, when averaged 491 

over all weather stations, has shifted to long timescale values of approximately 3.5-7 years for 492 



the period after 1980, again suggesting that there has been a recent reddening of the timescale for 493 

random fluctuations in mean annual temperatures around their changing trends. 494 

4  DISCUSSION 495 

Our spectral analyses of the WGS and FS census data suggest that most of the variation in 496 

animal numbers occurs on timescales that exceed 15 months. In the case of the FS, there is also 497 

evidence for variation on a six-month timescale. This timescale-specific variation may be due to 498 

changes in resource abundance, the timing and frequency of reproduction, and reproductive 499 

output. 500 

Changes in population numbers on a long timescale could be due to variation in the 501 

supply of food resources on multi-year, highly variable timescales. For example, acorns provide 502 

a valuable source of food for tree squirrels (Steele & Yi 2020), but a very large (> 600 g/m2) 503 

mast crop was only produced in one of the nine years in which we measured relative acorn 504 

production (Appendix A). We observed production of a very large mast crop within our study 505 

area in the fall of 2013 (Table A1). Census counts for both species began to increase in the late 506 

spring and summer of 2013 and continued to increase through the spring of 2014 (Fig. 2). A 507 

precipitous decrease in abundance was observed throughout the summer of 2014 which may 508 

have been brought about by dispersal of animals out of our study site. A very small acorn crop (< 509 

6 g/m2) was produced in the fall of 2014. A modest sized crop of acorns (~ 35 g/m2) produced in 510 

the fall of 2015 was followed by an increase in census counts for both species through the 511 

summer of 2016. Acorn production was very low in the fall of 2016, 2017, 2018, and 2019, and 512 

this long time-period without a modest to large sized acorn crop corresponded to relatively low 513 

census counts for both species (≤ 20 animals). A modest acorn crop produced in the fall of 2020 514 

again corresponded to an increase in census counts for both species during the summer and fall 515 



of 2020. Acorns are present in the trees for a prolonged period before they appear in significant 516 

quantities on the ground, so this food resource is also available to the animals prior to the fall of 517 

the year which may account for the high census counts in the summers prior to our acorn crop 518 

sampling periods. 519 

The yearly record of observations of juvenile and sub-adult individuals for both species 520 

shown in Appendix B illustrates the effect that long-term variability of food resources may have 521 

on reproduction by the WGS and the FS over long timescales. As stated above, production of 522 

acorns varied widely between years and the production of other food supply items could 523 

certainly vary widely between years. Variability in the availability of food items each year along 524 

with changes in the number of juvenile and subadult animals could lead to population variability 525 

on long timescales, as observed in the spectral analyzes of our data (Fig. 3). 526 

The availability of food in our study site also varied on a six-month timescale. Items such 527 

as catkins from oak and walnut trees, flowers on Fremontodendron spp. and Arctostaphylos spp., 528 

and male cones on pine trees became available in the spring. Items such as acorns, walnuts, and 529 

fruit bodies from the California Bay Laurel (Umbellularia californica) and California Buckeye 530 

(Aesculus californica) became available in the fall of the year (Ortiz & Muchlinski 2015). The 531 

timings (spring and fall) of the first availability of these food items on a yearly basis fit well with 532 

the potential timing of reproduction on a yearly basis by both the FS and WGS.    533 

Two distinct periods of potential reproduction for the FS in Southern California were 534 

documented by King’s (2004) study of 135 litters submitted to three wildlife rehabilitation 535 

centers during 2002. Approximately 60% of litter production documented by King (2004) was 536 

associated with the months of February, March, and April, with the largest number of litters born 537 

in March. A second pulse of litter production occurred during the months of August, September, 538 



and October with the largest number of litters born in September, six months after the largest 539 

pulse of litters born during the spring. Although production of litters by the FS on a semi-annual 540 

basis is possible, thus leading to an increase in observed population size on a semi-annual basis, 541 

the number of juvenile/subadult animals observed during census counts in this study varied 542 

widely among years (Fig. A1). 543 

The WGS appears to exhibit a yearly pattern of reproduction different than the FS. Most 544 

research documents breeding activity in late fall and early winter months with birth of most 545 

litters in spring and early summer months (Carraway & Verts 1994; King 2004). A few pregnant 546 

females were observed in June, July, August, and September (Fletcher 1963) and lactating 547 

females have been observed as late as October in Californian (Swift 1977). However, no definite 548 

records of multiple pregnancies not attributable to intrauterine loss of the first litter are available 549 

(Bailey 1936; Fletcher 1963; Swift 1977; Jameson & Peeters 1988). The difference in 550 

reproductive patterns between the FS and the WGS could bring about the presence of a 6-month 551 

cycle in abundance of the FS and the absence of a similar 6-month cycle in the WGS. The 552 

difference in reproductive patterns could also give a competitive advantage to the FS in certain 553 

habitats through higher natality in years of good resource production. 554 

 Muchlinski et al. (2012) produced a Habitat Suitability Model (HSM) for the WGS and 555 

the FS which allowed short-term and longer-term coexistence habitats to be identified using a 556 

linear combination of three habitat variables: percent canopy cover, percent of deciduous trees, 557 

and average height of ground cover. Habitats with a low percentage of canopy cover, a high 558 

percentage of deciduous trees, and a low height of ground cover were classified as short-term 559 

coexistence habitats. Locations with a high percentage of canopy coverage, a low percentage of 560 

deciduous trees, and a low height of ground cover were classified as longer-term coexistence 561 



sites. (Sites with a high height of ground cover, a high percentage canopy cover, and a low 562 

percentage deciduous trees were identified as “exclusion habitats” where only the WGS is found, 563 

but the FS exists in adjacent habitats.) For example, Muchlinski et al. (2009) reported that the FS 564 

replaced the WGS in four years at a short-term coexistence habitat, California State Polytechnic 565 

University, Pomona, which contained manicured and more natural areas on the campus with 566 

paved pathways and buildings surrounded by a mixture of Juglans, Eucalyptus, Washingtonia, 567 

Pinus, and other tree species. In contrast, the two species have coexisted within longer-term 568 

coexistence habitats of Griffith Park in Los Angeles, CA for more than 60 years, which were 569 

more natural in appearance consisting of Pinus, Quercus, Umbellularia, Sequoia, and Ulmus 570 

species, but with human-influenced aspects such as picnic tables, a playground, and restrooms 571 

(King 2004; King et al. 2010; DeMarco et al. 2020). The study area at CBG has been classified 572 

as a longer-term coexistence habitat by Muchlinski et al. (2012). How long coexistence can 573 

continue in longer-term coexistence habitats is unknown. Many longer-term coexistence sites are 574 

fragments of habitat where the FS, but not the WGS, exists in surrounding habitats. The WGS is 575 

also subject to loss of genetic diversity in these habitat fragments as described by DeMarco et al. 576 

(2020). 577 

The predictions of the competition model presented in section 3.4 can be interpreted in 578 

terms of the HSM developed by Muchlinski et al. (2012). The HSM implies that the competitive 579 

effects of the FS on the WGS is high in a short-term coexistence site such as California State 580 

Polytechnic University, Pomona, and other former lowland coexistence sites (Cooper & 581 

Muchlinski 2015). In terms of the competition model presented in Fig. 6, the value of the 582 

competition coefficient α would be large relative to the coefficient β, and extinction of the WGS 583 

could occur under conditions of blue as well as red environmental noise. Conversely, a lower 584 



level of competition in a longer-term coexistence site implies the values of α and β are similar 585 

and a higher level of reddened environmental noise would be needed to bring about extinction of 586 

the WGS (Fig. 6D). Our results from section 3.5 suggest that climate changes are increasing the 587 

timescale of yearly environmental fluctuations. Our spectral analyses of monthly census data 588 

suggest that most of the variation in numbers of the WGS and FS occurs over timescales of more 589 

than 15 months (Fig. 2). Thus, aside from the effects of a warming climate, any changes in the 590 

timescale of temperature fluctuations around the increasing trend could represent an additional 591 

risk factor for the persistence of the WGS in some of its native range. 592 

After the annual changes in mean monthly temperature were removed from the ONT data 593 

using a band-stop filter, the remaining variation in temperature fluctuations were composed of a 594 

strong six-month cycle and significant variation on timescales that exceeded 30 months (Fig. 595 

4C). Meteorologists and climate scientists have used harmonic analysis to document semi-annual 596 

cycles in rainfall and temperatures whose amplitude and phase shift vary by geographical 597 

location, with moderate amplitudes for the southwest United States (Hsu & Wallace 1976; White 598 

& Wallace 1978). Analyzing North American temperature data from 1979-2018, North et al. 599 

(2021) used Bayesian analysis to fit a model with annual and semi-annual harmonics that vary 600 

over space and time. They identify geographical regions with significant changes in the 601 

contributions of the two harmonics to seasonal cycles. In Appendix C, we use least squares to fit 602 

a model with annual and semi-annual harmonics to the unfiltered mean monthly temperature data 603 

in Fig. 4A and show that a model that includes both annual and semi-annual cycles provides a 604 

significantly better fit to the data than a model based on the annual cycle alone. The cospectra of 605 

Fig. 5 indicate a significant negative correlation between the squirrel census data and the ONT 606 



filtered weather data at a timescale of six months. While we cannot demonstrate a causal 607 

mechanism for this correlation, this observation could motivate further research. 608 

It was not possible to specify an estimated peak value for the timescale of low frequency 609 

variation in the squirrel numbers or mean monthly temperatures. The 140 months of the time 610 

series represent less than 12 years. In spectral analyses, estimates of long period, low frequency 611 

cycles are less precise since they cannot be as readily observed as short period, high frequency 612 

oscillations. In the estimated spectra of Figs. 3 and 4, the spectral power continues to increase as 613 

the frequency decreases. However, the record of mean annual temperatures for Ontario Airport 614 

extends back to 1999, providing a 22-year time series. In Appendix D we show that a significant 615 

peak in the spectrum of annual temperatures occurs on a timescale of about 7 years, which is 616 

consistent with the wavelet analysis in Fig. 9. If annual changes in environmental conditions are 617 

driving the long-term variation in squirrel numbers, which seems to be the case for the WGS 618 

(Fig.5A), this estimate could also represent the timescale of those fluctuations. 619 

We presented simulation results in section 3.4 that were designed to explore the effects of 620 

changes in the timescale of environmental noise on the outcome of competition between 621 

ecologically similar native and non-native species. We showed that an increase in the timescale 622 

of environmental noise reddens the spectrum of population fluctuations and decreases the 623 

likelihood of coexistence, especially when the non-native is a better competitor. This result 624 

differs from one of the findings of Ruokolainen & Fowler (2008), who concluded that extinction 625 

risk decreased with a reddening of environmental noise when, like in our model, there was a 626 

strong correlation in the species response to the environmental fluctuations. However, their 627 

simulation protocols differed from ours in several ways. First, they looked at a community of 628 

three competing species. Second, their environmental noise was generated using an 629 



autoregressive process and was added to the carrying capacity for each species. Third, and most 630 

importantly, in their models the intrinsic rate of increase for each species was set to ri = 1.8, 631 

whereas in our model we chose r1 = r2 = 0.5, which is more consistent with the reproductive 632 

capabilities of tree squirrels. In deterministic models of the type used our simulations and those 633 

of Ruokolainen & Fowler (2008), values of 1 > r > 2 lead to overcompensating dynamics, where 634 

the approach to equilibrium exhibits damped oscillations. Although Ruokolainen & Fowler 635 

(2008) claimed that their results are qualitatively similar for values of r < 1, previous work with 636 

single-species models (e.g., Danielian 2016) has shown that extinction risk increases with a 637 

reddening of environmental noise when the deterministic model, like ours, has 638 

undercompensating dynamics (ri < 1), but decreases with a reddening of environmental noise 639 

when the deterministic model has overcompensating dynamics (1 < ri < 2). Since the apparent 640 

contradiction between our results and those of Ruokolainen & Fowler (2008) occurred when 641 

there was a strong synchrony among the three species due to the high correlation of the effects of 642 

environmental noise, their result is consistent with what one would expect from a single-species 643 

model. When we repeated our simulations using values of r1 = r2 = 1.8, we observed a result 644 

consistent with Ruokolainen & Fowler (2008). 645 

Our simulation results were limited in their scope. They were motivated by our analyses 646 

of timescale differences in the variability of population fluctuations for two sympatric species of 647 

tree squirrels. Simulation analyses of the type conducted in this paper could be expanded to 648 

include a broader examination of parameter space, other ecological interactions such as predator 649 

and prey, and larger communities of interacting species. Our approach could also be adapted to 650 

applied conservation models where environmental variability is a part of the simulation 651 

protocols. The inference in section 3.5 that timescale shifts in environmental fluctuations may be 652 



occurring due to climate change would be a motivation to explore the impacts for populations of 653 

interest to conservationists and natural resource managers. 654 

Our analyses of spectral exponents for mean annual temperatures suggest that there has 655 

been a reddening of the timescale of climate fluctuations for the continental United States during 656 

the time period 1990-2014. García-Carreras & Reuman (2011) conducted a global analysis of 657 

spectral exponents for the time period 1911-1990. They split the time series into two halves and 658 

concluded that, while most of the spectral exponents were red-shifted, the red shift was smaller 659 

in 1951-1990 compared to 1911-1950. This was true for all continents except Asia, which was 660 

redder in 1951-1990 than it was in 1911-1950. Thus, in general, they observed a shift to shorter 661 

timescales in more recent times, while we observed the opposite. This inconsistency may be due 662 

to differences in our analyses. García-Carreras & Reuman (2011) used a linear function to 663 

detrend their data, while we used a quadratic function. They divided their time series into two 664 

segments of 40 years each, while we divided ours into four segments of 25 years each. Most 665 

importantly, our last time series segment covered 1990-2014 which went beyond the latest year 666 

that they examined. It was in this last 25-year period that we saw a strongly significant shift from 667 

blue-tinged fluctuations to red-tinged fluctuations (Fig. 8). It may be the case that the 668 

lengthening of the timescale of mean annual temperature fluctuations is a relatively recent 669 

phenomenon. 670 

Our analyses of changes in climate fluctuations could be extended in several ways. The 671 

distributions in Fig. 8 shows that there is variation in the values of the spectral exponents among 672 

weather stations. The sampling locations, which are scattered across the continental United 673 

States (Fig. 7), could be subdivided by region (e.g., northeast, southwest, etc.) to see if there are 674 

significant differences in the values of the spectral exponents due to geographic location. 675 



Following García-Carreras & Reuman (2011), our analyses could be expanded to include 676 

sampling stations on other continents and other measures, such as mean seasonal temperatures, 677 

could be analyzed. Total annual precipitation could also be included in the analyses. Further 678 

research is needed to see if our inference that climate changes are lengthening the timescales for 679 

environmental fluctuations is robust. This could have implications, not only for conservation 680 

biology and resource management, but also for other areas such as forest fire management and 681 

agriculture. 682 

5  CONCLUSIONS 683 

Using spectral analyses, we have shown that the variations in monthly fluctuations of population 684 

numbers for native and non-native tree squirrels coexisting in the same habitat are distributed 685 

mostly over long timescales (> 15 months) and their numbers are synchronous over long 686 

timescales. After annual cycles are filtered from the time series for mean monthly temperatures 687 

from nearby Ontario Airport, there remains a strong six-month cycle and significant fluctuations 688 

at timescales that exceed 15 months. There was a significant negative correlation between the 689 

temperature data and squirrel numbers for both WGS and EF at a six-month timescale and a 690 

significant amount of long timescale correlation between mean monthly temperatures and WGS 691 

numbers. We used model simulations to show that environmentally-induced long timescale 692 

variation in population numbers for two competing species with moderate rates of reproduction 693 

greatly increases the probability of extinction of the inferior competitor. Finally, we conducted 694 

spectral and wavelet analyses for 100 years of mean annual temperatures from 1218 weather 695 

stations across the continental United States. Our results suggest that the timescale of 696 

fluctuations around the changing climate trends have increased in the last few decades, providing 697 

another environmental aspect that could threaten the maintenance of biodiversity. 698 



This study documents long timescale variation in natural populations of conservation 699 

interest, shows that long timescale variation can accelerate the loss species diversity, and 700 

provides evidence that the timescales of environmental fluctuations have increased in recent 701 

times. We hope this serves as a cautionary message for conservationists and natural resource 702 

managers that an examination of timescales for environmental and population fluctuations are 703 

factors worthy of consideration. 704 
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