
APPENDIX A 1 

Numbers of Acorns 2 

Estimates of acorn production were made in years 2012 through 2020 by measuring during the 3 

middle of October the mass of acorns in a one square meter plot under each of six oak trees 4 

within the study area. The same trees and the same plots were used each year for estimation of 5 

acorn production to assess variability among years and relationship to changes in abundance of 6 

the tree squirrels. The data appear in Table A1. 7 

Table A1. Mass of acorns (g) in a 1 m2 plot under each tree in the study area. 

 Year 

Tree 2012 2013 2014 2015 2016 2017 2018 2019 2020 

Blue Oak  0  250  6  83  0  7  12  0  98 

Canyon Oak  230  960  0  53  54  19  27  84  68 

Coast Live Oak  18  290  18  29  3  5  3  0  5 

Coast Live Oak  75  880  6  0  2  4  0  1  16 

Coast Live Oak  69  590  2  34  39  4  0  0  24 

Coast Live Oak  2  680  2  10  14  0  0  0  136 

Mean ± s.e. 
65.7 

± 35.5 

608.3 

± 120.1 

5.7 

± 2.7 

34.8 

± 12.3 

18.7 

± 9.2 

6.5 

± 2.7 

7.0 

± 4.4 

14.2 

± 14.0 

57.8 

± 21.2 
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APPENDIX B 9 

Numbers of Juvenile and Subadult Squirrels 10 

Starting in January 2015, observers at our field site started distinguishing among adults, 11 

subadults, and juveniles. The latter two categories can serve as a proxy for reproduction. Figure 12 

A1 shows the numbers of juveniles and subadults for the WGS and the FS. For both species, 13 

juveniles and subadults are seen more often in spring and fall (Fig. A1, shaded areas), especially 14 

in the case of the FS. However, there is a great deal of year-to-year variation (long timescales) in 15 

the numbers. 16 

 17 

 18 

Figure A1. Monthly time series for numbers of juveniles and subadults for (A) the WGS and (B) 19 

the FS from January 2015 through May 2021. The shaded regions represent spring (March-May) 20 

and fall (September-November).  21 

Ju
ve

ni
le

s a
nd

 su
ba

du
lts

Ju
ve

ni
le

s a
nd

 su
ba

du
lts



APPENDIX C 22 

Annual and Semiannual Temperature Cycles 23 

Meteorologists and climatologists have used harmonic analysis to identify seasonal cycles in 24 

atmospheric temperature (White & Wallace 1978). In addition to a strong annual cycle, a semi-25 

annual cycle, which can vary by year and location, has been identified (White & Wallace 1978; 26 

North et al. 2021). In their equation (1), North et al. (2021) used the first two terms of a Fourier 27 

representation of an annual temperature times series. Their equation, using months as the time 28 

unit, is given by 29 
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Where xt is the temperature (in °C), t is the time (in months), a0 is the center value for the 31 

temperature oscillations (in °C), Ai is the amplitude (in °C) and φi is the phase shift (in months) 32 

of the annual (i=1) and semi-annual (i=2) component cycles. 33 

We fit equation (A1) to the mean monthly temperature data from Ontario Airport (ONT) 34 

(Fig. 4a) using the method of nonlinear least squares. The parameter estimates and their standard 35 

errors appear in Table A2. The phase shifts are relative to the month of September. The 36 

temperature data and the fitted function appear in Fig. A2. The fitted function provides a good 37 

description of the observed temperature time series. 38 

Figure A2 also shows, separately, the two component cycles. The annual cycle is the 39 

larger of the two and is obtained by setting A2 = 0 in equation (A1). It peaks in July-August and 40 

has its trough in January-February. The smaller semi-annual cycle, obtained by setting A1 = 0 in 41 

equation (A1), peaks twice per year in February-March and August-September and has its 42 



troughs in November-December and May-June. The amplitude of the semi-annual cycle is 21% 43 

the size of the amplitude of the annual cycle. 44 

We fit equation (A1) to the observed temperature time series with A2 = 0, so that only the 45 

annual cycle was present. The parameter estimates and their standard errors are also presented in 46 

Table A2. We computed the following Akaike Information Criterion (AIC) for both fitted 47 

models: 48 

 ln 2ESSAIC n k
n

 = + 
 

, 49 

where n = 140 is the sample size, SSE is the residual sum of squares for the regression, and k is 50 

the number of fitted parameters (k = 3 for the annual model and k = 5 for the model with both 51 

annual and semi-annual cycles). The annual model had an AIC of 165.02 and the model with 52 

both annual and semi-annual cycles had an AIC of 114.82. The smaller AIC suggests that the 53 

model with both cyclic components is a better description of the seasonal temperature changes. 54 

The magnitude of the difference, ΔAIC = 50.20, suggests that the annual model has little support 55 

relative to the full model. 56 

  57 



 58 

Table A2. Parameter estimates and standard errors for full and annual models. 

Parameter Description 
Estimate (± SE) 

for Full Model 

Estimate (± SE) 

for Annual Model 

a0 center value of cycles (°C) 19.50 ± 0.12 19.49 ± 0.15 

A1 amplitude of annual cycle (°C) 6.82 ± 0.18 6.80 ± 0.21 

φ1 phase of annual cycle (mo.) 1.52 ± 0.05 1.53 ± 0.06 

A2 amplitude of semi-annual cycle (°C) 1.42 ± 0.18 — 

φ2 phase shift of semi-annual cycle (mo.) 0.48 ± 0.12 — 

 59 

  60 



 61 

 62 

Figure A2. (A) Time series for observed and fitted mean monthly temperatures from Ontario 63 

Airport. (B) Plots of the component annual and semiannual cycles from the full model (C1). 64 
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APPENDIX D 66 

Mean Annual Temperature Data for Ontario Airport 67 

We conducted a spectral analysis of mean annual temperatures for Ontario Airport (ONT). The 68 

data values are the averages of the 12 mean monthly temperatures for each year. The first year of 69 

complete data is for 1999, so the time series spans 22 years from 1999 through 2021 (Fig. A3, 70 

panel A). We used the same methods as described section in section 2.5 for climate data: we 71 

detrended the data by fitting a quadratic polynomial using least squares, computed the 72 

standardized residuals, and computed a smoothed normalized spectrum for the residual time 73 

series. Because the time series is relatively short, we used smaller spans of 3 and 3 data points 74 

for the two iterations of the smoothing algorithm. We computed 95% significance thresholds by 75 

generating 2000 random permutations of the residuals, obtaining a smoothed normalized 76 

spectrum for each, and using the 2.5th and 97.5th percentiles of these surrogate spectra for the 77 

95% limits. 78 

Figure A3 shows the ONT temperature data and spectrum. The fitted quadratic 79 

polynomial (dashed line in Fig. A3, panel A) is nearly linear and suggests a trend of increasing 80 

temperatures. Although the significance band is wide due to the short length of the time series, 81 

the spectrum for the residuals shows a significant peak at a timescale of about 7 years (Fig. A3, 82 

panel B). This corresponds to the timescale range of the local peak in mean wavelet power in the 83 

lower right corner of Fig. 8.  84 



 85 

 86 

Figure A3. (A) Time series for observed mean annual temperatures from Ontario Airport. The 87 

dashed line is the fitted quadratic trend curve which is nearly linear. (B) Smoothed normalized 88 

spectrum for the standardized residuals from the temperature time series in panel A. Dashed lines 89 

are 95% significance thresholds for the null hypothesis of no timescale dependence in the 90 

ordering of the residuals. 91 
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