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Abstract8

Population dynamics are functions of several demographic processes including survival,9

reproduction, somatic growth, and maturation. The rates or probabilities for these pro-10

cesses can vary by time, by location, and by individual. These processes can co-vary and11

interact to varying degrees, e.g., an animal can only reproduce when it is in a particular12

maturation state. Population dynamics models that treat the processes as independent13

may yield somewhat biased or imprecise parameter estimates, as well as predictions of14

population abundances or densities. However, commonly used integral projection models15

(IPMs) typically assume independence across these demographic processes. We examine16

several approaches for modelling between process dependence in IPMs, and include cases17

where the processes co-vary as a function of time (temporal variation), co-vary within each18

individual (individual heterogeneity), and combinations of these (temporal variation and19
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individual heterogeneity). We compare our methods to conventional IPMs, which treat20

vital rates independent, using simulations and a case study of Soay sheep (Ovis aries). In21

particular, our results indicate that correlation between vital rates can moderately affect22

variability of some population-level statistics. Therefore, including such dependent struc-23

tures is generally advisable when fitting IPMs to ascertain whether or not such between24

vital rate dependencies exist, which in turn can have subsequent impact on population25

management or life-history evolution.26

Keywords— copula models, correlated vital rates, generalized linear mixed models, population27

growth rate, reproduction investment, Soay sheep28
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1 Introduction29

Population models use estimated (or assumed) vital rates at the individual level to understand many30

aspects of a population’s ecology and evolution: its long-term abundance trajectory and age-, size-,31

or state-distribution; its sensitivities and elasticities relevant for management; and its optimal life-32

history strategy, among others. Variation in vital rates can have important affects on populations33

(Vindenes and Langangen, 2015; Hamel et al., 2018). This broad concept encompasses variation34

across individuals, across cohorts, and/or through time in ways described more below. In many35

models, potential variation in multiple vital rates is artificially assumed to be independent.36

Looking beyond independent vital rates, ecologists have also long recognized the potential importance37

of non-independent – i.e. correlated – vital rates on demography and life history evolution (Benton38

and Grant, 1999; Doak et al., 2005; Fieberg and Ellner, 2001). Correlations between growth, survival,39

reproduction, and/or other traits can change demographic conclusions (Coulson et al., 2005). For40

example, whereas independent temporal heterogeneity in vital rates has been generally predicted to41

decrease population growth rate, it can actually increase population growth rate when multiple vital42

rates are correlated (Doak et al., 2005). A completely different example is that persistent individual43

heterogeneity in vital rates can reveal different optimal life history strategies in different environmental44

conditions (Kentie et al., 2020).45

Integral projection models (IPMs) are the framework for discrete-time population dynamics with46

continuous individual state variables (e.g. mass, size) (Easterling et al., 2000). Compared to age- or47

stage-structured matrix population models, which track abundance for each discrete state category,48

IPMs track abundance as a distribution (density) for continuous state values. This enables IPMs to49

more accurately represent populations in which continuous state variables are important predictors50

of individual dynamics such as growth, reproduction and survival (Ellner et al., 2016; Merow et al.,51

2014; Rees et al., 2014). Thus, it may be important to incorporate both variation in vital rates and52

correlations among multiple vital rates into IPMs.53

To what extent have correlated vital rates been incorporated into both estimation and analysis of54

IPMs? At a basic level, correlation in individual vital rates arising from stochastic life trajectories is55

almost inherent to a non-trivial IPM. For example, in a size-structured IPM, correlation in growth56

and survival will arise when both depend on size and individual size trajectories vary due to stochastic57

growth. Temporal correlations among vital rates (e.g. a good year is good for each of growth,58
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survival and reproduction) are captured naturally when year-specific transition kernels are estimated59

or correlated random effects are estimated (Childs et al., 2004; Metcalf et al., 2015; Hindle et al., 2018).60

Correlations in individual heterogeneity among multiple traits have been considered for life-history61

tradeoffs and eco-evolutionary IPMs (Kentie et al., 2020; Coulson et al., 2021). However, there remains62

a need for systematic formulation and comparison of multiple kinds of correlated vital rates. This63

will allow identification of gaps in statistical estimation and IPM analysis methods and comparison of64

impacts on demographic conclusions for the same data. Some IPM formulations have been sufficiently65

general to encompass these kinds of correlations from a mathematical perspective (Childs et al., 2016;66

Coulson et al., 2017), but case studies and estimation tools have not been as highly developed.67

In this paper, the general concept of non-independence among vital rates includes three quite different68

categories: (i) labile individual heterogeneity, (ii) temporal heterogeneity, and (iii) persistent individual69

heterogeneity. Labile individual heterogeneity refers to differences arising from phenotypic plasticity70

and the random events of a life course (Childs et al., 2016). This is also called dynamic condition71

(Forsythe et al., 2021) or transient heterogeneity (Brooks et al., 2017). For example, an individual72

that by luck experiences high-growth conditions in early years may continue to be above average in73

size throughout its life. Labile heterogeneity can also arise from physiological tradeoffs such as costs74

of reproduction. For example, if an individual gives birth during the spring, its growth rate over sub-75

sequent months may be lower than if it had not given birth. In this example, the heterogeneity could76

be viewed as an individual-level trade-off between reproducing or growing more, although rigorously77

proving such causality cannot be done without a controlled experiment (Coulson, 2012; Knops et al.,78

2007). In statistical models, labile individual heterogeneity can be incorporated by making the tran-79

sition (projection) kernels for multiple vital rates interdependent. Below we consider both a standard80

regression framework and introduce a new copula approach for modelling such interdependence.81

Temporal heterogeneity is driven by a shared covariate, which may be observed or unobserved (latent),82

that affects multiple traits (Compagnoni et al., 2016; Coulson et al., 2011; Hindle et al., 2018; Metcalf83

et al., 2015; Vindenes et al., 2014). For example, such a covariate could be annual (or breeding-84

season) food supply that has a positive correlation with both survival probability and fecundity.85

Demographic data spanning multiple years would then show a positive correlation between population-86

level survival and fecundity values. Note that a factor such as food supply could contribute to both87

temporal heterogeneity – to the extent individuals experience similar growth in a year due to the same88

conditions – and/or labile heterogeneity – to the extent individuals experience different growth due to89
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heterogenous food conditions in the same year. We will present two different approaches for modelling90

correlated temporal heterogeneity, one being to explicitly include a shared and measured covariate91

that affects multiple vital rates and the other being to implicitly include shared, but unmeasured92

covariates by including correlated temporal random effects.93

Persistent individual heterogeneity in multiple traits refers to between-individual differences that last94

their entire life (Brooks et al., 2017). This is also called fixed condition (Forsythe et al., 2021) or95

heterogeneity (Steiner et al., 2010). For example, one individual’s average growth and fecundity rates96

could remain consistently higher than another individual’s rates due to fixed heterogeneity. Persistent97

individual heterogeneity can be as simple as an univariate quality affecting a single trait (Ellner and98

Rees, 2006) or as complicated as a multivariate vector affecting the duration of the different life stages99

of an individual (de Valpine et al., 2014). Persistent individual heterogeneity is necessary to represent100

genetic variation in models of eco-evolutionary dynamics (Childs et al., 2016; Vindenes and Langangen,101

2015), but it can also represent only phenotypic variation potentially shaped by good site conditions102

at birth, for example. Processes such as energy acquisition-allocation (van Noordwijk and de Jong,103

1986), or reproductive strategy trade-offs (Benton and Grant, 1999) could be considered as labile104

heterogeneity and/or persistent heterogeneity in different cases. In this paper the statistical models of105

correlated persistent individual heterogeneity use correlated individual random effects (Brooks et al.,106

2017; Knape et al., 2011), although they can also use individual-level covariates (Moyes et al., 2011).107

In summary, the three kinds of individual heterogeneity are biologically and statistically distinct, at108

least in principle.109

Numerous IPM studies have incorporated one or more type of heterogeneity in vital rates, but few110

have incorporated non-independent forms of heterogeneity (beyond the correlated vital rates arising111

from a basic IPM formulation). For example, Ellner and Rees (2006) incorporated persistent and labile112

individual heterogeneity without correlation, and Ellner and Rees (2007) incorporated temporal het-113

erogeneity without correlation. As described by Vindenes and Langangen (2015), some studies include114

heterogeneity in estimation but then use only mean traits for analysis and prediction. Evolutionar-115

ily explicit IPMs have included both quantitative genetic traits and phenotypes as state variables,116

which together can be a kind of correlated persistent heterogeneity (Childs et al., 2016; Coulson et al.,117

2017; Rees and Ellner, 2019; Coulson et al., 2021). Although these have mathematical similarity in118

IPM formulation, they are distinct in goals and statistical parameterisation methods compared to a119

non-evolutionary model with correlated individual traits. Kentie et al. (2020) considered correlated120
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persistent heterogeneity among growth, survival and reproduction, although they did not estimate121

these in a hierarchical statistical modeling framework as we do here. It is important to realize that122

each kind of correlated heterogeneity introduces different implementation challenges both for estima-123

tion and for IPM analysis involving multidimensional numerical integration, discussed more below.124

Statistical estimation of different forms of non-independent vital rates can draw on methods from other125

kinds of ecological analyses that, in some cases, have not typically been used for parameterization of126

IPMs. For labile individual heterogeneity, one current phenotypic value can be used to predict changes127

in another, which is basic to the formulation of IPMs. Such dependence can in principle include time128

lags, although these are not explored here. A potential limitation of the simple regression approach129

is that correlation among vital rates can be induced only be modifying the marginal distribution130

of the traits. We introduce the use of statistical copulas in this context as an alternative way to131

model labile correlations. For correlated temporal heterogeneity, one can include correlated temporal132

random effects or shared explanatory variables (Evans and Holsinger, 2012; Metcalf et al., 2015; Hindle133

et al., 2018). Alternatively, one can estimate different kernels for each of many years (Childs et al.,134

2004). Relevant to persistent individual heterogeneity, statistical models for individual demographic135

data routinely include random effects for individual heterogeneity, and multivariate random effects136

can be correlated (van de Pol and Verhulst, 2006; Bonnet and Postma, 2016). In the case of marked137

animals with imperfect detection or recapture, capture-mark-recapture methods can also incorporate138

correlated individual random effects (Cam et al., 2013; Gimenez et al., 2018).139

In this paper we systematically present statistical methods to estimate different kinds of correlations in140

vital rates and incorporate those correlations into IPMs. We give methods for modelling correlations141

in vital rate arising in each of the three categories of heterogeneity, including a new copula method for142

individual heterogeneity. We show how the methods can be used in a hierarchical statistical framework143

and discuss some of the computational and implementation challenges involved. In a case study with144

Soay sheep data, we illustrate that the same data can imply different demographic conclusions when145

different kinds of correlated vital rates are considered. In addition, even when including correlations146

does not change point results such as population growth rate or elasticities, it can change the width147

of uncertainty (credible or confidence interval) propagated from uncertainties in parameter estimates.148

The structure of this paper is the following. We begin with a general description of IPMs (Section 2.1),149

and consider IPMs with independent vital rates (Section 2.2). We next discuss the area of primary150

focus: IPMs with heterogeneous and non-independent vital rates (Section 2.3). We note here that151
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while dependency and correlation are not exactly equivalent, we will use the terms interchangeably152

because of common practice. This is followed by a description of simulation studies and a case study153

using data from a population of Soay sheep (Ovis aries) in Scotland (Sections 2.5 and 2.6). The results154

of these studies (Section 3) focus on differences arising from the non-independent vital rate models155

on (i) the log population growth rate and (ii) population growth rate elasticities. We conclude with a156

discussion of the implications of the proposed methods (Section 4).157

2 Methods158

2.1 General Integral Projection Models159

We begin with a description of a family of IPMs that permits the incorporation of temporal, persistent160

and/or labile individual heterogeneity, using the notation from Childs et al. (2016). Let x denote161

the individual state variables, hereafter called “i-states”. The i-states comprise labile traits that162

vary over the life cycle in response to the environment such as body mass, length or breeding status163

(Coulson, 2012; Merow et al., 2014; Rees et al., 2014). In addition, individuals are further characterised164

by “q-states”, denoted by z. The q-states comprise unmeasured, non-labile characteristics that are165

fixed during the lifetime of the individual. In this article, we assume that (i) individuals can be166

uniquely characterized by (x, z), which essentially assumes that individuals with the same (x, z) are167

interchangeable, (ii) all vital rate models depend on x, and (iii) selected vital rate models depend on168

z. The values of (x, z) at one discrete time step later are denoted as (x′, z′).169

The state of the population is described by the abundance density, denoted n(x, z, t). The abundance170

density is defined such that the number of individuals at time t with states in a small interval (x, z) to171

(x+∆x, z+∆z) is approximately n(x, z, t)∆x∆z. Then the total abundance at t can be expressed172

as Nt, such that173

Nt =

∫ ∫
n(x, z, t)dxdz. (1)174

The projection of the abundance density over time is described by the following equation,175

n(x′, z′, t+ 1) =

∫ ∫
n(x, z, t)k(x′, z′ | x, z,dt)dxdz, (2)176

where k(x′, z′ | x, z,dt) is the time-varying projection (transition) kernel, i.e. the density of individuals177

evolving from (x, z) to (x′, z′) (Ellner and Rees, 2007). The term dt denotes measured and/or un-178
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measured time-specific environmental conditions that account for temporal variation. The functional179

form of the projection kernel depends on the parameterization of vital rate models and the life cycle180

of the study species. In this article, the formulation of the projection kernel is motivated by the life181

cycle of Soay sheep (Clutton-Brock and Pemberton, 2004; Coulson, 2012) such that,182

k(x′, z′ | x, z,dt) = s(x, z,dt)
[
b(x, z,dt)h(x

′, z′ | x, z,dt) + g(x′, z′ | x, z,dt)
]
, (3)183

where s(·) denotes survival probability; b(·) the number of offspring of survived individuals; h(·) the184

density of offspring with (x′, z′) from a reproducing individual with (x, z); and g(·) the density of185

individuals growing from (x, z) to (x′, z′). The IPM kernel is a large-population approximation, so186

these rates are expected values. Most births of Soay sheep are singletons and for simplicity we ignore187

twinning (Coulson, 2012).188

In the following sections, we discuss different ways to construct vital rate models when rates are189

independent or dependent, given the i-states, x. Motivated by reproduction cost (Gittleman and190

Thompson, 1988; Tavecchia et al., 2005), we restrict attention to the dependence between growth and191

reproduction.192

2.2 Independent Vital Rate Models193

Before describing different formulations of vital rate models, we introduce some additional notation. To194

begin we assume that there is only one element in the labile traits, x, and that is the natural logarithm195

of body mass. For individual j at time t, let mj,t denote the log body mass (given survival); aj,t the196

alive (1) vs dead (0) state; rj,t the reproductive (1) vs non-reproductive (0) state (given survival); and197

cj,t the offspring log body mass (given reproduction). The discrete times are t = 1, . . . , T .198

In terms of parameters, fixed effect parameters are referenced as β with subscripts defining the vital199

rate and the variables they influence, respectively. For instance, βg,0 is the intercept for the growth200

model and βs,m is the slope for the survival model corresponding to the variablem. Also, residual (non-201

random effect) variances are denoted by σ2 with the subscript defining the vital rate. In addition to202

fixed effects, we consider random effects on year and individual for temporal and persistent individual203

heterogeneity, respectively. These random effects are placed on the growth and reproduction models204

to capture the potential dependence of interest. The unobserved temporal or individual random effects205

are denoted by u and v respectively. For example, ub,t is the reproduction random year effect in year t,206
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while vg,j is the growth random individual effect on individual j. Random effect variances are denoted207

by ν2 and θ2; and correlation parameters by ρ and ψ, respectively.208

Assuming independence between vital rates, parameters for each vital rate model can be estimated209

separately. For that case, we summarize three of the most commonly used approaches to formulate210

vital rate models.211

2.2.1 Vanilla Model (I1)212

We initially define the “vanilla model”, denoted as model I1, as the widely used approach where the213

vital rates depend only on the labile phenotype, x, corresponding to the log body mass (m) in our214

Soay sheep example (Easterling et al., 2000; Ellner and Rees, 2006). In particular, parameters are215

estimated given the individual-level demographic data such that,216

aj,t+1 | mj,t ∼ Bernoulli
(
logit−1(βs,0 + βs,mmj,t)

)
rj,t+1 | mj,t ∼ Bernoulli

(
logit−1(βb,0 + βb,mmj,t)

)
mj,t+1 | mj,t ∼ N(βg,0 + βg,mmj,t, σ

2
g)

cj,t+1 | mj,t ∼ N(βh,0 + βh,mmj,t, σ
2
h),

(4)217

where logit−1(a) = 1/(1+e−a) is the inverse of the logistic transformation. To apply the vanilla model218

to the projection kernel in Equation (3), we rearrange the vital rate models such that,219

s(m) = logit−1(βs,0 + βs,mm)

b(m) = logit−1(βb,0 + βb,mm)

g(m′ | m) ≡ ϕ(m′;βg,0 + βg,mm,σ
2
g)

h(m′ | m) ≡ ϕ(m′;βh,0 + βh,mm,σ
2
h),

(5)220

where ϕ(a;µ, σ2) denotes the density function of N(µ, σ2) evaluated at a. Here x = m and there is no221

z or dt. The equation for h(·) represents an inheritance or “parent–offspring phenotypic similarity”222

function (Coulson et al., 2021), with offspring size depending on parent size. For the following models,223

we assume the same vital rate models as described above if they are not mentioned in the model224

description.225
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2.2.2 Temporal Heterogeneity (I2)226

Models with temporal heterogeneity connect vital rates through time-varying factors, such as resource227

availability, natural enemies, and abiotic conditions. We consider a hierarchical model with indepen-228

dent random effects (Bolker et al., 2009; McCulloch and Searle, 2001) such that,229

rj,t+1 | mj,t, ub,t ∼ Bernoulli
(
logit−1(βb,0 + βb,mmj,t + ub,t)

)
mj,t+1 | mj,t, ug,t ∼ N(βg,0 + βg,mmj,t + ug,t, σ

2
g)

ub,t ∼ N(0, ν2b )

ug,t ∼ N(0, ν2g ),

(6)230

where the random effects ub,t and ug,t are independent to avoid inducing dependence between different231

vital rate models.232

Similar to Equation (5), the vital rate models are rearranged such that,233

b(m,ub,t) = logit−1(βb,0 + βb,mm+ ub,t)

g(m′ | m,ug,t) ≡ ϕ(m′;βg,0 + βg,mm+ ug,t, σ
2
g).

(7)234

Here x = m, dt = (ub,t, ug,t), and there is no z.235

2.2.3 Persistent Individual Heterogeneity (I3)236

The persistent individual heterogeneity model, denoted I3, differs from the temporal heterogeneity237

model (I2) by including random effects for each individual instead of each time step. The individ-238

ual random effects represent phenotypic variability that persists through each individual’s life. In239

particular we specify,240

rj,t+1 | mj,t, vb,j ∼ Bernoulli
(
logit−1(βb,0 + βb,mmj,t + vb,j)

)
mj,t+1 | mj,t, vg,j ∼ N(βg,0 + βg,mmj,t + vg,j , σ

2
g)

vb,j ∼ N(0, θ2b )

vg,j ∼ N(0, θ2g),

(8)241
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where the random effect distributions are independent to avoid inducing dependence. In this case, the242

vital rate models are re-arranged as,243

b(m, vb) = logit−1(βb,0 + βb,mm+ vb)

g(m′, v′g | m, vg) ≡ ϕ(m′;βg,0 + βg,mm+ vg, σ
2
g)I(v

′
g = vg)

h(m′, v′b, v
′
g | m) ≡ ϕ(m′;βh,0 + βh,mm,σ

2
h)ϕ(v

′
b; 0, θ

2
b )ϕ(v

′
g; 0, θ

2
g),

(9)244

where v′b and v
′
g denote the random individual effects for the offspring. Here x = m, z = (vb, vg), and245

there is no dt. We assume offspring size depends on parent size while offspring random effects are246

independent of parent random effects.247

2.3 Non-independent Vital Rate Models248

We now discuss different ways to induce the dependence structure between vital rate models. Corre-249

sponding to the three types of heterogeneity are three categories of models, with a category representing250

labile individual heterogeneity having two models (D1a and D1b), the temporal heterogeneity cate-251

gory having two models (D2a and D2b), and the persistent individual heterogeneity category having252

one model (D3).253

2.3.1 Labile Individual Heterogeneity (D1a and D1b)254

Models in this category extend the vanilla model I1 to create dependence between reproduction and255

growth. We construct two types of dependent vital rate models: (i) the reproduction conditional256

model, and (ii) the copula model. The former model treats breeding status as a covariate within257

the growth model; while the latter model utilizes the copula structure to jointly model growth and258

reproduction. The latter necessitates estimating multiple kernel functions together, while the former259

does not.260

D1a. Reproduction Conditional Model This approach models the growth rate of an indi-261

vidual as a function of the breeding status. In particular, the binary variable, rt+1,j , is a covariate in262

the growth model such that,263

mj,t+1 | mj,t, rj,t+1 ∼ N(βg,0 + βg,mmj,t + βg|rrj,t+1, σ
2
g). (10)264

11



Integrating out rj,t+1 to obtain the marginal growth model for the projection kernel, we note that,265

g(m′ | m) = b(m)ϕ(m′;βg,0 + βg,mm+ βg|r, σ
2
g) +

[
1− b(m)

]
ϕ(m′;βg,0 + βg,mm,σ

2
g), (11)266

where the marginal growth distribution is now a mixture of two Gaussian distributions and hence267

potentially bimodal. Here x = (m, r), and there is no z and dt.268

This model induces a dependency between growth and reproduction that is reflected in the covariance,269

cov(m′, r′) = βg|rvar(r
′) = βg|rb(m)

[
1 − b(m)

]
. This covariance is maximized when b(m) = 0.5 and270

minimized as b(m) approaches 0 or 1.271

D1b. Copula Model Copula methods are a popular approach to construct a joint distribution for272

correlated random variables given assumed marginal distributions (see e.g. Chapter 6 of Song, 2007).273

These models extend univariate linear models to general multivariate models with vector responses274

and provide a flexible approach to the regression analysis of correlated discrete, continuous, or mixed275

responses (Anderson et al., 2019; de Valpine et al., 2014).276

The copula method relies on Sklar’s theorem (Sklar, 1959) which states that any multivariate distri-277

bution can be constructed by combining the marginal distributions with a suitable copula function278

describing the association between the variables. Mathematically, given the marginal cumulative dis-279

tribution function (CDF) F1(·), . . . , Fn(·) of variables Y1, . . . , Yn, and a copula function C, the joint280

CDF can be expressed as,281

F1,...,n(y1, . . . , yn) = P (Y1 ≤ y1, . . . , Yn ≤ yn) = C(P (Y1 ≤ y1), . . . , P (Yn ≤ yn)), (12)282

where Fi(y) = P (Yi ≤ y), i = 1 . . . n.283

There are a variety of copula functions available that permit different behaviours of multi-dimensional284

distributions and typically lead to different dependence structures. However, the marginal distribu-285

tions of the random variables remain the same irrespective of the choice of copula function. We use286

the Gaussian copula function to handle the dependence structure for simplicity (Nelsen, 2006; Song287
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et al., 2009). The Gaussian copula function is defined such that,288

F1,...,n(y1, . . . , yn) = ΦD
{
Φ−1[F1(y1)], . . . ,Φ

−1[Fn(yn)]
}

f1,...,n(y1, . . . , yn) = ϕD
{
Φ−1[F1(y1)], . . . ,Φ

−1[Fn(yn)]
} n∏
i=1

fi(yi)

ϕ
(
Φ−1

(
Fi(yi)

)) , (13)289

where Φ−1(·) denotes the inverse CDF of a standard Gaussian distribution; ΦD(·) and ϕD(·) are the290

CDF and density, respectively, of a n-dimensional Gaussian distribution with a zero vector as mean291

and covariance matrix D. The diagonal elements of D are all scaled to unity without the loss of292

generality.293

As an example we briefly describe the copula model used in the Soay sheep case study for correlated294

growth and reproduction, involving the combination of a continuous and discrete random variable.295

In particular, we use the Gaussian copula function with a normally distributed random variable for296

growth, Y1, and a Bernoulli distributed random variable for reproduction, denoted Y2. Note that the297

density function and CDF of Y1 is expressed as,298

f1(y1) = ϕ(y1;µ, σ
2)

F1(y1) = Φ

(
y1 − µ

σ

)
,

(14)299

where µ is the expected value of Y1; and σ2 is the variance of Y1. For the reproduction (Bernoulli)300

variable, as the raw scale is discrete we introduce an auxiliary variable X, which is distributed as301

an uniform distribution (i.e. X ∼ U [0, 1]), and define the new random variable Y3 = Y2 + X. The302

probability mass function for Y2, the probability density function for Y3, and the CDFs for both are303
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then expressed as,304

f2(y2) =



q if y2 = 0

1− q if y2 = 1

0 otherwise

f3(y3) =



q if 0 ≤ y3 < 1

1− q if 1 ≤ y3 ≤ 2

0 otherwise

⇒

F2(y2) =



0 if y2 < 0

q if 0 ≤ y2 < 1

1 if y2 ≥ 1

F3(y3) =



0 if y3 < 0

qy3 if 0 ≤ y3 < 1

q + (1− q)(y3 − 1) if 1 ≤ y3 ≤ 2

1 if y3 ≥ 2

(15)305

where q = Pr(Y2 = 0). Combining Equations (13) and (15), we derive the joint density of (Y1, Y3)306

such that,307

f(y1, y3) ≡ ϕD

{
y1 − µ

σ
,Φ−1[F3(y3)]

}
1

σ

f3(y3)

ϕ
(
Φ−1

(
F3(y3)

)) . (16)308

We can then substitute the growth and reproduction model for Y1 and Y2 to obtain their corresponding309

joint density for parameter estimation. The notation becomes x = (m, r), and there is no z and dt.310

Despite the appealing features of copula models, IPMs with copula models give the same projection311

kernel as the vanilla model, which leads to the identical projection of the population dynamics. This is312

true because (i) correlations in the copula model do not modify the marginal distributions and (ii) the313

involved vital rate models (reproduction and growth) are an additive structure. Further details are314

presented in appendix S1. Demographically, population change is the same whether individuals who315

grow less are the ones who reproduced more or not. However, as discussed more below, the copula316

remains interesting because it may give different answers for life history questions involving trade-offs,317

or estimated parameters may be different, or it may give different kernels when used with time lags318

or other extensions.319

2.3.2 Temporal Heterogeneity (D2a and D2b)320

These models induce dependence on vital rates by the time-varying factors, extending the independent321

temporal heteroegeneity model, I2. In particular, when the conditions of a given year are “good” for322

both growth and reproduction, temporal heterogeneity will create positive temporal correlation among323
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these vital rates, which may generally be the case (Hindle et al., 2018). We consider two models: (i)324

the shared drivers model, and (ii) the correlated random year effect model. The former model accounts325

for the temporal effect explicitly with additional covariate(s); while the latter model utilizes random326

year effects to implicitly model the impacts of unknown temporal factors.327

D2a. Shared Drivers Model This approach includes observed time-varying covariates in the328

regression functions for vital rate models (Dalgleish et al., 2011; Simmonds and Coulson, 2015; van329

Benthem et al., 2017). Common choices include environmental indices; e.g., North Atlantic Oscillation,330

precipitation, temperature, etc. To quantify the additional influence of the drivers on the vital rates,331

let qt denotes the vector of covariates with an associated vector of regression coefficients β·,q, namely332

rj,t+1 | mj,t,qt ∼ Bernoulli
(
logit−1(βb,0 + βb,mmj,t + βb,qqt)

)
mj,t+1 | mj,t,qt ∼ N(βg,0 + βg,mmj,t + βg,qqt, σ

2
g).

(17)333

The vital rate models are re-arranged for the projection kernel such that,334

b(m,qt) = logit−1(βb,0 + βb,mm+ βb,qqt)

g(m′ | m,qt) ≡ ϕ(m′;βg,0 + βg,mm+ βg,qqt, σ
2
g).

(18)335

Here x = m, dt = qt and there is no z.336

D2b. Correlated Random Year Effect Model The second model extends the independent337

temporal random effects model (model I2). Generalizing these hierarchical models by allowing de-338

pendencies in the random effect distributions induces dependencies between vital rates (Hindle et al.,339

2018; Metcalf et al., 2015) such that,340

rj,t+1 | mj,t, ub,t ∼ Bernoulli
(
logit−1(βb,0 + βb,mmj,t + ub,t)

)
mj,t+1 | mj,t, ug,t ∼ N(βg,0 + βg,mmj,t + ug,t, σ

2
g)ub,t

ug,t

 ∼ N


0

0

 ,

 ν2b ρνbνg

ρνbνg ν2g


 .

(19)341
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The vital rate models are re-arranged for the projection kernel such that,342

b(m,ub,t) = logit−1(βb,0 + βb,mm+ ub,t)

g(m′ | m,ug,t) ≡ ϕ(m′;βg,0 + βg,mm+ ug,t, σ
2
g).

(20)343

Here x = m, dt = (ub,t, ug,t) and there is no z.344

2.3.3 Persistent Individual Heterogeneity (D3)345

Similar to the temporal heterogeneity, the model in this category extends model I3 to induce depen-346

dence between vital rates for the persistent individual heterogeneity case.347

D3. Correlated Random Individual Effect Model We consider a hierarchical model with348

dependent random effects distribution, similar to model D2b. In particular we specify,349

rj,t+1 | mj,t, vb,j ∼ Bernoulli
(
logit−1(βb,0 + βb,mmj,t + vb,j)

)
mj,t+1 | mj,t, vg,j ∼ N(βg,0 + βg,mmj,t + vg,j , σ

2
g)vb,j

vg,j

 ∼ N


0

0

 ,

 θ2b ψθbθg

ψθbνg θ2g


 .

(21)350

The vital rate models are re-arranged for the projection kernel such that,351

b(m, vb) = logit−1(βb,0 + βb,mm+ vb)

g(m′, v′g | m, vg) ≡ ϕ(m′;βg,0 + βg,mm+ vg, σ
2
g)I(v

′
g = vg)

h(m′, v′b, v
′
g | m) ≡ ϕ(m′;βh,0 + βh,mm,σ

2
h)ϕind(v

′
b, v

′
g),

(22)352

where ϕind(·) is the density function of the random individual effects distribution, and specified in the353

last part of Equation (21). Here x = m, z = (vb, vg) and there is no dt.354

2.3.4 Comparison of the Models355

In Figure 1, we present a graphical representation of the differences between the proposed heterogeneity356

models. In each of the four scenarios, the individual growth model, g(·), depends on exactly one factor.357

358

16



1

2

3

4

5

6

1 2 3 4 5 6

Time

In
d

iv
id

u
a

l

(a): Varying i−states

1

2

3

4

5

6

1 2 3 4 5 6

Time

In
d

iv
id

u
a

l

(b): Varying breeding status
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(c): Varying temporal factors
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(d): Varying q−states

Figure 1: Growth Rate, g(·), of individuals. (a): g(·) depend on the i-states only, hence are constant within a group of
individuals sharing the same i-states (model I1); (b): g(·) depend on the breeding status only, hence are constant within the
breeding group and the non-breeding group (model D1a,D1b); (c): g(·) depend on the temporal factor only, hence are constant
across individual but varying across time (model I2, D2a,D2b); (d): g(·) depend on the q-states only, hence are varying across
individual but constant across time (model I3, D3).

2.3.5 Hybrid Models359

The proposed models can occur individually or be combined within and/or between the categories360

(labile individual, temporal, and persistent individual). For instance, combining models within the361

temporal category uses the correlated random year effects to explain the unaccounted correlation by362

the observed drivers. Alternatively, combining models between the labile individual and persistent363

individual heterogeneity accounts for two axes of correlations in one model. These different forms of364

combination of models expand the possibility of IPMs with non-independent vital rates.365

2.4 Numerical Implementation366

2.4.1 Parameter Estimation of Vital Rate Models367

In this paper, the vital rate models are fitted using the Markov chain Monte Carlo (MCMC) algorithms368

(Brooks et al., 2011) in NIMBLE (de Valpine et al., 2017, 2020a,b) given individual-level demographic369
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data. Different from the usual approach in IPMs that each vital rate model is fitted separately, the370

proposed dependent models may require a joint estimation with multiple vital rate models. This may371

hence increase the computational cost and change the mixing behaviour of the MCMC algorithm.372

Random effects in the models (I2, I3, D2b, I3) are treated as unobserved parameters, or auxiliary373

variables, and sampled within each iteration of the MCMC algorithm. Similarly, the auxiliary variables374

in the copula model (D2a) are sampled as unobserved parameters in the MCMC algorithm. We note375

that the random effects for the temporal and individual random effects induce very different mixing376

properties.377

Prior distributions for all parameters are set to be non-informative and are presented in Appendix378

S2. We use the trace plot and Brooks-Gelman-Rubin statistic to assess convergence (Gelman and379

Shirley, 2011). Chains with a value of Brooks-Gelman-Rubin statistic being less than 1.05 are treated380

as converged.381

2.4.2 Approximation of log λs382

We use the asymptotic log population growth rate, log λ, as one metric to compare models. Mathe-383

matically, λ is defined as limt→∞(Nt+1/Nt), where Nt is the population abundance and can be approx-384

imated by solving the integral in Equation (2). It has been shown that log λ converges asymptotically,385

even in the temporally stochastic case (Ellner and Rees, 2007).386

The log population growth rate of IPMs without temporal heterogeneity can be approximated via the387

midpoint rule (Easterling et al., 2000). To briefly illustrate the mid-point rule, the projection kernel is388

discretized into a projection matrix by a sufficient number of mesh points that are of uniform length to389

discretize (x, z) (Ellner and Rees, 2006). The population growth rate is then obtained as the leading390

eigenvalue of the projection matrix (Caswell, 2001). Alternatively, we can consider using mesh points391

that are uniform quantiles of z as the distribution of z is known.392

However, when the IPMs include temporal heterogeneity, the midpoint rule becomes inapplicable. In393

this case, we use the simulation technique of “element-selection” to approximate the log population394

growth rate (Ellner and Rees, 2007; Rees and Ellner, 2009). This approach creates a series of projection395

matrices, Kt with the population abundance Nt obtained by repeatedly multiplying the projection396

matrices with a discrete approximation of n(x, z, t). The (stochastic) log population growth rate is397
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approximated using the empirical mean given by,398

l̂ogλs(L,L0) =
1

(L− L0)

L−1∑
t=L0

log

(
Nt+1

Nt

)
=

1

(L− L0)
log

(
NL

NL0

)
, (23)399

where data in the first L0 < L years are excluded as transient dynamic to reduce the influence400

of random initialization. We note that this estimator carries an extra variability caused by finite401

simulation. Ellner and Rees (2007) showed that the estimator converges to a normal distribution such402

that,403

l̂ogλs(L,L0) ∼ N

[
logλs,

1

(L− L0)
Var

{
log

(
Nt+1

Nt

)} ∣∣∣∣
t=L0,...,L−1

]
. (24)404

In addition to the log λs itself, we are also interested in the variability on log λs caused by parameter405

uncertainty. This parameter uncertainty can be easily propagated within the Bayesian framework406

since we are able to obtain samples from the posterior distribution of the parameters, which in turn407

can be used to calculate the value of log λ, and hence obtain summary statistics of the posterior408

distribution.409

2.4.3 Sensitivity and Elasticity Analysis410

We also estimate the sensitivity and elasticity of the asymptotic log growth rate, log λs, with respect411

to selected vital rate parameters (Tuljapurkar, 1990; Rees and Ellner, 2009; Vindenes et al., 2014).412

In particular, we note that Coulson et al. (2005) suggests that models incorporating between-process413

correlations may alter the sensitivity estimate which in turn has implication for management decisions.414

Here we apply a central-differencing approach to approximate the sensitivity such that,415

∂λs
∂β

=
λs(β + ϵ)− λs(β − ϵ)

2ϵ
, (25)416

where λs(β+ϵ) is the estimate of λs when the target parameter equals to β+ϵ. By running preliminary417

tests, we found that ϵ = 0.005β is small enough to give precise estimate for all sensitivities of interest.418

Given the estimate of sensitivity, elasticity of β is obtained as,419

∂λs
∂β

β

λs
. (26)420

We note that the sensitivities/elasticities of the copula model (D1b) are the same as for the vanilla421

model (I1), similar to λ. To see this, we derive the analytical equations of sensitivity (see chapter 4422

19



of Ellner et al., 2016) such that,423

∂λs
∂β

=

∫ ∫
∂λs

∂k(x′ | x)
∂k(x′ | x)

∂β
dx′dx, (27)424

where both terms in the integral remain unchanged because the copula model does not distort the425

marginal vital rate models.426

2.5 Simulation study427

We conducted a simulation study to investigate how sensitive the summary statistics (log λ and elas-428

ticities) are to the different kinds of vital rate heterogeneity for parameters relevant to the Soay sheep429

example below. For target parameters of interest that toggle among models, we considered 2-3 values430

of interest, including a 0 value to compare to a simpler model. For example, model I2 (independent431

temporal heterogeneity) can be compared to model D2b (correlated temporal heterogeneity) by set-432

ting ρ to 0 (I2) or non-zero (D2b). Other parameters were either randomly generated from chosen433

distributions with 100 replications (Table 1) or fixed (Table 2). Randomly generated parameters al-434

lowed us to look at how summary statistics change over small ranges of variation in a coarse way,435

without looking at changes in relation to each parameter one by one. The distributions and values436

are motivated from the data in the case study, but slightly adjusted to show the difference between437

models with and without correlations.438

The simulation study looks at theoretical behavior of the IPM models, not at statistical properties439

of parameter estimation. It reveals how model summary statistics shift with particular parameters440

but not how parameter estimation performs if the wrong model is fitted to the data. Within the441

simulation study, we compare the independent models (I1 − I3) and three of the dependent models442

(D2a,D2b,D3). We do not include the models with labile individual heterogeneity as: (i) the impacts443

on log λ by the reproduction conditional models (D1a) are always negative when β′ < 0, and (ii)444

the copula model (D1b) and vanilla model (I1) are theoretically equivalent due to the unchanged445

marginal property (given the same parameter values). For models with temporal heterogeneity, we446

set L0 = 1000 and L = 10, 000.447

2.6 Soay sheep case study448

We apply the different models to data on Soay sheep. The individual-level demographic data consist of449

information from marked female sheep in the Village Bay area on the island of Hirta in the St. Kilda450
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Distributions

βs,0 N(−4.25, 0.052)

βs,m N(1.92, 0.012)

βb,0 N(−1.47, 0.052)

βb,m N(0.50, 0.012)

βg,0 N(1.20, 0.052)

βg,m N(0.63, 0.012)

βh,0 N(0.46, 0.052)

βh,m N(0.57, 0.012)

Table 1: Random Parameters

Values

βg,q 0.01

σ2
g 0.092

σ2
h 0.22

ν2g 0.032

ν2b 0.452

θ2g 0.032

θ2b 0.452

Table 2: Fixed Parameters

archipelago, Scotland, from 1986 to 1996. Details of the Soay sheep and data collection protocol can451

be found in Clutton-Brock and Pemberton (2004), and the data are available from Coulson (2012).452

Using preliminary runs for the estimation of parameters of the vital rate models, we set the burn-in453

and total iteration numbers for the MCMC algorithm to be 20, 000 and 100, 000 for the majority454

of the models; for the random individual effects models we used 40, 000 and 200, 000 (uncorrelated455

case, I3) and 200, 000 and 1, 000, 000 (correlated case, D3). For the shared drivers model (D2a),456

we consider the winter North Atlantic Oscillation index (NAO) as the additional covariate (Clutton-457

Brock and Pemberton, 2004). We follow Simmonds and Coulson (2015) and apply the average NAO458

for December, January, February, and March as the covariate, which are obtained from the Climate459

Research Unit at the University of East Anglia. For the distributions of NAO, we apply a normal460

distribution with mean −0.019 and standard deviation 1.09. For the copula model (D1b), parameter α461

denotes the off-diagonal element of the covariance matrix D in the multivariate Gaussian distribution.462

For the reproduction conditional model (D1a), exploratory data analysis using a grid-search approach463

suggested that newborns are likely to suffer from reduced growth in relation to reproduction. Thus,464

we refine the reproduction conditional model such that βg|r only accounts for the reduced growth of465

newborns in the growth model.466

In addition, individual-level demographic data of the case study contain missing data. For instance,467

we lack reproduction records of some marked individuals in the survey. This poses challenge on the468

proposed models that intend to capture the correlation between reproduction and growth. In this469

article, we analytically marginalise out the missing data to estimate parameters of interest.470
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3 Results471

3.1 Simulation study472

In Figure 2, we present the pairwise results of the vanilla model (I1) and the proposed (in)dependent473

models (I2, I3, D2a,D2b,D3). The models are compared with respect to log λs (top row) and elastic-474

ities of growth intercept (bottom row) with known vital rate parameters.
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Figure 2: Comparison across models in simulation with 100 replications. (a): log λs(D2a) − log λs(I1); (b): log λs(I2, D2b)
− log λs(I1); (c): log λs(I3, D3) − log λs(I1); (d): %change of elasticity of βg,0 of model D2a over model I1; (e): % change of
elasticity of βg,0 of model I2, D2b over model I1; (f): % change of elasticity of βg,0 of model I3, D3 over model I1. The dashed
line is the reference line for I1.

475

Our simulations show that the variability of the given estimated quantities generally increases with476

increasing correlation in almost all scenarios; the exception is Figure 2(f) where the correlation appears477

to have little impact on the variability. The increase in variability is more substantial for models with478

temporal heterogeneity, especially the shared driver model (D2a). Further, we observe that correlation479

in both forms of heterogeneity can lead to both increased or decreased values log λs (Figures 2(a)-(c)).480

This is in line with the result that although uncorrelated temporal heterogeneity is generally predicted481

to decrease log λs, correlated temporal heterogeneity can increase log λs (Doak et al., 2005; Fieberg482

and Ellner, 2001). The temporal heterogeneity models and persistent individual heterogeneity model483

cause different impacts on log λs. For example, temporal heterogeneity appears to lead to reduced484
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log λs; similarly increasing the correlation in temporal heterogeneity models leads to a decrease in485

log λs (Figure 2(a) & 2(b)). However, persistent individual heterogeneity models have the reverse486

effects (Figure 2(c)). Finally, we note that the trend on log λs against correlation does not translate487

into that of elasticities. The decreasing trend of the temporal heterogeneity disappears (Figure 2(a)488

& 2(b) vs 2(d) & 2(e)) while the trend of the persistent individual heterogeneity is reversed (Figure489

2(c) vs 2(f)).490

3.2 Case study on Soay sheep491

In Appendix S3, we present the posterior summary estimates of the model parameters for different492

models. Three dependent models (D1a,D2b,D3) indicate a significant correlation between growth493

and reproduction (the symmetric 95% credible intervals of α, βb,q in model D1b,D2a contain 0).494

The reproduction conditional model (D1a) and the correlated random individual effects model (D3)495

indicate a negative association between growth and reproduction (β̂g|r < 0, ψ̂ < 0); while the correlated496

random year effects model (D2b) estimates a positive correlation (ρ̂ > 0). Note that these results in497

different sign of correlation do not contradict with each other because these models are driven by498

different biological mechanisms.499

Comparison of log λs We use 500 parameter values sampled from the posterior distribution to500

approximate the (stochastic) log population growth rate. The uncertainty from parameter estimation501

are hence propagated into the posterior distribution of log λs. In the temporally stochastic models, we502

set L0 = 1, 000 and L = 10, 000 to approximate log λs. Table 3 provides the corresponding summary503

statistics of log λs for each model.

Mean 95% Credible Interval
I1 0.0301 ( 0.0005, 0.0565)
I2 0.0380 (-0.0062, 0.0846)
I3 0.0312 ( 0.0022, 0.0562)
D1a 0.0330 ( 0.0048, 0.0598)
D1b 0.0394 (-0.0003, 0.0706)
D2a 0.0368 ( 0.0074, 0.0648)
D2b 0.0358 (-0.0054, 0.0790)
D3 0.0292 ( 0.0017, 0.0554)

Table 3: Summary statistics of the (stochastic) log population growth rate with parameter uncertainty on Soay sheep.

504

We first observe that the mean of log λs ranges approximately from 0.03 to 0.04, which translates505

into a 3 to 4% annual population growth rate. There is considerably more variability, however, in the506
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uncertainty about log λs. In particular, the width of the credible intervals of log λs by models with507

random year effects (I2, D2b) are around 35% larger than that of the rest of the models. Secondly, we508

observe that the uncertainty on log λs caused by parameter uncertainty is larger than the bias caused509

by ignoring the correlation structure. This is similar to the empirical result of Compagnoni et al. (2016)510

that parameter uncertainty outweighs the bias caused by ignoring the correlation structure. Further,511

we note that log λ of the vanilla model (I1) and the copula models (D1b) are slightly different despite512

the theoretical equivalence between the IPMs. This is because the parameter estimates between the513

models are different.514

Finally, we note that the predictions of the shared drivers IPM (D2a) depend on the distribution of515

the winter NAO. Adjusting the distribution of the winter NAO may lead to different distributions of516

log λs hence interpretation. In appendix S4, we consider three other distributions obtained by using517

a non-parametric bootstrapping approach of the NAO in different years.518

Comparison of Elasticity We approximate the elasticities of four parameters, again using the519

sampled parameter values from the posterior distribution, presented in Table 4. We observe that520

models with random temporal effects lead to a larger variability in the elasticities, which is similar to521

log λs itself. Additionally, we note that the correlated random individual effects model (D3) consis-522

tently gives different results across all four elasticities of interest. This leads to the interesting result523

that different models of non-independence among demographic rates may yield different elasticities524

even when the log λs are quite similar (Table 3).525

4 Discussion526

Model Summary In this paper, we have presented a general framework and several specific ap-527

proaches to modelling between-process dependencies in IPMs. In particular, motivated by reproduc-528

tion cost, we propose three categories of models (labile individual, temporal, and persistent individual529

heterogeneity) that reflect different biological mechanisms for the correlation structure between growth530

and reproduction. Unlike independent IPMs, these modelling approaches explicitly characterise the531

dependency between vital rates, permitting the quantification of between-process correlation. As a532

data-driven method, this is better than assuming either no correlation, or assuming perfect correlation533

across vital rates, i.e. assuming the correlation coefficient to be 1 or −1 (Benton and Grant, 1999;534

Coulson et al., 2011).535
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βg,0 βg,m βb,0 βb,m
I1 1.6312 1.7602 -0.5519 0.5083

(1.451,1.787) (1.516,1.990) (-0.675,-0.451) (0.402,0.630)

I2 1.5941 1.7253 -0.5213 0.4856
(1.384,1.823) (1.454,1.989) (-0.691,-0.359) (0.300,0.642)

I3 1.5888 1.5793 -0.5506 0.5058
(1.410,1.752) (1.325,1.863) (-0.673,-0.443) (0.391,0.632)

D1a 1.6381 1.7020 -0.5520 0.5097
(1.463,1.801) (1.487,1.916) (-0.675,-0.458) (0.413,0.629)

D1b 1.6142 1.7561 -0.5527 0.5121
(1.417,1.774) (1.504,2.021) (-0.658,-0.452) (0.410,0.608)

D2a 1.6606 1.7721 -0.5548 0.5175
(1.479,1.831) (1.553,2.008) (-0.673,-0.455) (0.417,0.631)

D2b 1.6212 1.7725 -0.5424 0.5047
(1.376,1.865) (1.483,2.067) (-0.754,-0.322) (0.290,0.698)

D3 1.6878 1.6604 -0.6238 0.5819
(1.523,1.856) (1.436,1.907) (-0.757,-0.507) (0.461,0.714)

Table 4: Summary statistics of elasticities of four selected parameters with parameter uncertainty on Soay sheep. Present are
posterior mean and 95% credible interval. Note that models with random year effects (I2, D2b) usually have larger variability (in
bold) and model D3 yields different elasticities (in italics).

Amongst the proposed methods, application of the copula method for modelling vital rates is novel to536

IPMs. However, given the same estimates for the common parameters, the dependence structure of an537

IPM using copula models may lead to theoretically equivalent projections as the independent (vanilla)538

IPM. This is because (i) correlations in the copula model do not modify the marginal distributions539

and (ii) the involved vital rate models (reproduction and growth in our analysis) have an additive540

structure. In practice, however, copula IPMs will still differ from the vanilla IPMs due to differences541

in parameter estimates. Further, such theoretical equivalence will not remain with alternative copula542

structures, for example, when we consider the previous breeding status (rj,t) as opposed to the current543

breeding status (rj,t+1) in the copula structure with the growth vital rate. It may be appropriate544

to condition reproduction at time t + 1 on reproduction at time t for some species, particularly545

when multiple reproduction-related activities can cause energy loss in the parents including mating,546

gestation, parturition, lactation, etc (Gittleman and Thompson, 1988). Also, copula models can be547

applied to other aspects of IPMs. For instance, the multi-dimensional random effect distribution can548

be constructed by copula models, which bring extra flexibility to the models (de Valpine et al., 2014).549

The use of copula models within this general context is an area of current research.550

Simulation and Case Study In the case study of Soay sheep, the different IPM structures551

yielded relatively similar population estimates. This is most likely because the parameter uncertainty552

(which was ignored in the simulation studies) outweighed the impact of between-process correlation553
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(Compagnoni et al., 2016). In contrast, the results for both the simulation and the case study show554

that (i) different models for dependence between vital rates can yield similar (nearly identical) log λs555

but different elasticities and (ii) variability of the population statistics is moderately affected by the556

correlation between vital rates.557

Random effect models are commonly used to model dependence structures (Dingemanse and Dochter-558

mann, 2013; Vindenes et al., 2014). Based on the simulation study, it appears that temporal and559

persistent heterogeneity can lead to differences in the estimated target statistics and their associated560

variability. This variability increases as correlation increases. This aligns with the general under-561

standing that extreme values are more likely to be generated and hence the variability of the target562

statistics increases when correlation is large and positive (Doak et al., 2005; Fieberg and Ellner, 2001).563

Empirical results about the correlation in temporal variation have been discussed previously (Hindle564

et al., 2018; Metcalf et al., 2015). Additional random effects models can also be investigated, given565

available data. For example, allowing for nested spatial heterogeneity (Olsen et al., 2016), or in-566

dependent/crossed structure of spatial and temporal heterogeneity (Jacquemyn et al., 2010). Such567

heterogeneity structures can provide additional flexibility and more complicated correlations in vital568

rates and hence IPMs.569

Recommendation In practice, model selection procedures are often carried out to determine570

whether one model is preferable to all others. However, we note that some of the proposed methods571

(D1a,D1b) do not allow unbalanced data whereas other proposed methods (D2a,D2b,D3) are flexible572

for unbalanced/balanced data (Verbeke et al., 2014). Such differences complicate model selection,573

which usually assumes the competing models use the exact same data. This is an area for future574

research.575

In general, incorporating these five (biologically/statistically) distinct methods (in hybrid/separately)576

in IPMs may provide insights into the effects of possible dependencies between individual-level vital577

rates influences the target population statistics (e.g. log λs, elasticities). Therefore, we conclude that578

including such dependent structures is generally advisable when fitting IPMs to ascertain whether579

or not such between vital rate dependencies exist, which in turn can have subsequent impact on580

population management or life-history evolution.581
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M. Rees, R. Salguero-Gómez, and S.M. McMahon. Advancing population ecology with integral702

projection models: a practical guide. Methods in Ecology and Evolution, 5:99–110, 2014.703

C.J.E. Metcalf, S.P. Ellner, D.Z. Childs, R. Salguero-Gómez, C. Merow, S.M. McMahon, E. Jonge-704
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