Acknowledgment
We thank LetPub (www.letpub.com)
for its linguistic assistance and scientific consultation during the
preparation of this manuscript.
Fig. 1. Circular maps of the mitochondrial genomes of four cordyceps
species. Genes are represented by different colored blocks. Colored
blocks outside each ring indicate that the genes are on the direct
strand, while colored blocks within the ring indicate that the genes are
located on the reverse strand.
Fig. 2. The abundances of protein-coding, intronic, intergenic, and RNA
gene regions (rRNAs and tRNAs) of the entire mitochondrial genomes from
four cordyceps species.
Fig. 3. Codon usage in the mitochondrial genomes of the four cordyceps
species. Codon numbers are plotted on the y-axis for
A, Ophiocordyceps xuefengensis; B,
Ophiocordyceps sinensis; C, Cordyceps militaris; D, Cordyceps
brongniartii.
Fig. 4. RSCU values for 14 PCGs and rps3 in the mitochondrial
genomes of four cordyceps.
Fig. 5. Variation in the length and base composition of each of the 14
PCGs and rps3 among four cordyceps mitogenomes. A, PCG length variation;
B, GC content across PCGs; C, AT skew; D, GC skew.
Fig. 6. Genetic analysis of 14 PCGs and rps3 across four
cordyceps mitogenomes. K2P, the overall mean Kimura-2-Parameter
distance; Ka, the mean number of nonsynonymous substitutions per
nonsynonymous site; Ks, the mean number of synonymous substitutions per
synonymous site.
Fig. 7. Gene order comparison among four cordyceps mitogenomes.
Fig. 8. Colinearity analysis of four cordyceps mitogenomes, generated
with Mauve 2.4.0. Two homologous regions were detected across the four
mitochondrial genomes overall.
Fig. 9. Molecular phylogeny of 20 fungal species based on Bayesian
inference (BI) and Maximum likelihood (ML) analysis of 14 PCGs andrps3 genes. Support values are Bayesian posterior probabilities
(before slash) and bootstrap (BS) values (after slash). Species and NCBI
accession numbers for genomes used in the phylogenetic analyses are
provided in Supplementary Table S10.
1. Cameron SL, Lambkin CL, Barker SC, Whiting MF, Entomology JS:A mitochondrial genome phylogeny of Diptera: whole genome
sequence data accurately resolve relationships over broad timescales
with high precision . Systematic Entomology 2007,32 (1):40 - 59.
2. Song F, Li H, Liu G-H, Wang W, James P, Colwell DD, Tran A, Gong S,
Cai W, Biology RSJS: Mitochondrial genome fragmentation unites
the parasitic lice of eutherian mammals . Systematic Biology2019, 68 (3):430-440.
3. Saccone C, Gissi C, Lanave C, Larizza A, Reyes AJG: Evolution
of the mitochondrial genetic system: an overview . Genes 2000,261 (1):153-159.
4. Liu Y, Song F, Jiang P, Wilson JJ, Cai W, Li HJMP, Evolution:Compositional heterogeneity in true bug mitochondrial
phylogenomics . Molecular Phylogenetics Evolution 2018,118 :135-144.
5. Curole JP, Kocher TDJTiE, Evolution: Mitogenomics: digging
deeper with complete mitochondrial genomes . Trends in Ecology
Evolution 1999, 14 (10):394-398.
6. Pramateftaki PV, Kouvelis VN, Panagiotis L, Typas MAJFYR: The
mitochondrial genome of the wine yeast Hanseniaspora uvarum: a unique
genome organization among yeast/fungal counterparts . FEMS Yeast
Research 2006, 6 (1):77-90.
7. Sankoff D, Leduc G, Antoine N, Paquin B, Cedergren LR: Gene
order comparisons for phylogenetic inference: Evolution of the
mitochondrial genome . Proceedings of the National Academy of
Sciences of the United States of America 1992,89 (14):6575-6579.
8. Poliseno A, Feregrino C, Sartoretto S, Aurelle D, Wrheide G, Mcfadden
CS, Vargas SJMP, Evolution: Comparative mitogenomics, phylogeny
and evolutionary history of Leptogorgia (Gorgoniidae) . Molecular
Phylogenetics Evolution 2017, 115 :181-189.
9. Qiang L, Min L, Mei Y, Chuan X, Xin J, Zuqin C, Wenli HJIJoBM:Characterization of the mitochondrial genomes of three species
in the ectomycorrhizal genus Cantharellus and phylogeny of
Agaricomycetes . International Journal of Biological
Macromolecules 2018, 118 :756-769.
10. Zhong C, Jin J, Liu H, Cai Y, Qin Y, Xie J, Wang W, Qin Y, Huang H,
Zhang S: Research status quo, problems and prospects ofOphiocordyceps xuefengensis . Journal of Microbiology2019, 39 (4):107-114.
11. Yue K, Ye M, Lin X, Zhou ZJIJoMM: The artificial cultivation
of medicinal Caterpillar Fungus, Ophiocordyceps sinensis (Ascomycetes):
a review . International Journal of Medicinal Mushrooms 2013,15 (5):425-434.
12. Wen TC, Zhu RC, Kang JC, Huang MH, Tan DB, Ariyawansha H, Kevin D,
Liu H: Ophiocordyceps xuefengensis sp. nov. from larvae
of Phassus nodus (Hepialidae) in Hunan Province, southern China .Phytotaxa 2013, 123 (1):41-50.
13. Jin J, Qin Y, Zhong C, Zhou R, Xie J, Liu H, Xiao J, Cai P, Zhang S,
Qin Y: Differential gene expression and associated metabolite
accumulation in fungus Ophiocordyceps xuefengensis cultivated
under breathable and airtight conditions . Mycoscience 2019,60 (5):281-286.
14. Jin J, Zhong C, Qin Y, Cai Y, Zhen L, Shen B, Chen L, Wan D, Qin Y,
Zhang S: A new cordycepin-producing caterpillar fungusOphiocordyceps xuefengensis with artificial infection to the
host, cultivation of mycelia and stromata . FEMS Microbiology
Letters 2017, 364 (20):1-8.
15. Zhang J, Wang P, Wei X, Li L, Cheng H, Wu Y, Zeng W, Yu H, Chen
YJFRI: A metabolomics approach for authentication of
Ophiocordyceps sinensis by liquid chromatography coupled with quadrupole
time-of-flight mass spectrometry . Food Research International2015, 76 (OCT.PT.3):489-497.
16. Zhang Y, Zhang S, Zhang G, Liu X, Wang C, Xu J: Comparison
of mitochondrial genomes provides insights into intron dynamics and
evolution in the caterpillar fungus Cordyceps militaris %J Fungal
Genetics & Biology Fg & B . Fungal Genetics and Biology 2015,77 :95-107.
17. Ghikas DV, Kouvelis VN, Typas MAJBM: Phylogenetic and
biogeographic implications inferred by mitochondrial intergenic region
analyses and ITS1-5.8S-ITS2 of the entomopathogenic fungi Beauveria
bassiana and B. brongniartii . BMC Microbiology 2010,10 (1):174-188.
18. Li Y, Hu XD, Yang RH, Hsiang T, Wang K, Liang DQ, Liang F, Cao DM,
Zhou F, Wen GJeR: Complete mitochondrial genome of the medicinal
fungus Ophiocordyceps sinensis . J entific Reports 2015,5 :13892-13900.
19. Li Q, Wang Q, Jin X, Chen Z, Xiong C, Li P, Zhao J, Huang WJIJoBM:Characterization and comparison of the mitochondrial genomes
from two Lyophyllum fungal species and insights into phylogeny of
Agaricomycetes . International Journal of Biological
Macromolecules 2019, 121 :364-372.
20. Boore JLJNAR: Animal mitochondrial genomes . Nucleic
Acids Research 1999, 27 (8):1767-1780.
21. Pramateftaki PV, Kouvelis VN, Panagiotis L, Typas MA: The
mitochondrial genome of the wine yeast Hanseniaspora uvarum: a
unique genome organization among yeast/fungal counterparts . FEMS
Yeast Research 2006, 6 (1):77-90.
22. Liu W, Cai Y, Zhang Q, Chen L, Shu F, Ma X, Bian Y: The
mitochondrial genome of Morchella importuna (272.2kb) is the
largest among fungi and contains numerous introns, mitochondrial
non-conserved open reading frames and repetitive sequences .International Journal of Biological Macromolecules 2020,143 :373-381.
23. Lang BF, Laforest M-Je, Burger G: Mitochondrial introns: a
critical view . TRENDS in Genetics 2007, 23 (3):119-125.
24. Novikova O, Belfort M: Mobile Group II Introns as Ancestral
Eukaryotic Elements . Trends in genetics : TIG 2017,33 (11):773-783.
25. Korovesi AG, Ntertilis M, Kouvelis VNJMP, Evolution: Mt-rps3
is an ancient gene which provides insight into the evolution of fungal
mitochondrial genomes . Molecular Phylogenetics Evolution 2018,127 :74-86.
26. Genetics BSJC: Genetic conservation versus variability in
mitochondria: the architecture of the mitochondrial genome in the
petite-negative yeast Schizosaccharomyces pombe . Current
Genetics 2003, 43 (5):311-326.
27. Baojun, Wu, Adnan, Buljic, Weilong, biology HJM, evolution:Extensive Horizontal Transfer and Homologous Recombination
Generate Highly Chimeric Mitochondrial Genomes in Yeast .Molecular biology evolution 2015, 32 :2559–2570.
28. Mardanov AV, Beletsky AV, Kadnikov VV, Ignatov AN, Ravin NV, Palazzo
AFJPO: The 203 kbp Mitochondrial Genome of the Phytopathogenic
Fungus Sclerotinia borealis Reveals Multiple Invasions of Introns and
Genomic Duplications . Plos One 2014, 9 (9):e107536.
29. Robbins JB, Smith D, Belfort M: Redox-responsive zinc finger
fidelity switch in homing endonuclease and intron promiscuity in
oxidative stress . Curr Biol 2011, 21 :243-248.
30. Coros CJ, Piazza CL, Chalamcharla VR, Smith D, Belfort M:Global Regulators Orchestrate Group II Intron Retromobility .Molecular cell 2009, 34 (2):250-256.
31. Li Q, Ren Y, Shi X, Peng L, Zhao J, Song Y, Zhao GJIJoMS:Comparative Mitochondrial Genome Analysis of Two Ectomycorrhizal
Fungi (Rhizopogon) Reveals Dynamic Changes of Intron and Phylogenetic
Relationships of the Subphylum Agaricomycotina . International
Journal of Molecular Sciences 2019, 20 (20):5167.
32. Parenteau J, Maignon L, Berthoumieux M, Catala M, Gagnon V, Abou
Elela SJN: Introns are mediators of cell response to
starvation . Nature 2019, 565 (7741):612-617.
33. Aguileta G, de Vienne DM, Ross ON, Hood ME, Giraud T, Petit E,
Gabaldón T: High Variability of Mitochondrial Gene Order among
Fungi . Genome Biol Evol 2014, 6 (2):451-465.
34. Zou H, Jakovlić I, Chen R, Zhang D, Zhang J, Li W-X, Wang G-T:The complete mitochondrial genome of parasitic nematode
Camallanus cotti: extreme discontinuity in the rate of mitogenomic
architecture evolution within the Chromadorea class . BMC
Genomics 2017, 18 (1):840.
35. Xia Y, Zheng Y, Murphy RW, Zeng X: Intraspecific
rearrangement of mitochondrial genome suggests the prevalence of the
tandem duplication-random loss (TDLR) mechanism in Quasipaa boulengeri .BMC Genomics 2016, 17 (1):965.
36. Al-Reedy RM, Malireddy R, Dillman CB, Kennell JC:Comparative analysis of Fusarium mitochondrial genomes reveals a
highly variable region that encodes an exceptionally large open reading
frame . Fungal Genetics 2012, 49 (1):2-14.
37. Grosemans T, Morris K, Thomas WK, Rigaux A, Moens T, Derycke S:Mitogenomics reveals high synteny and long evolutionary
histories of sympatric cryptic nematode species . Ecology
Evolution 2016, 6 (6):1854-1870.
38. Buyck B, Kauff F, Eyssartier G, Couloux A, Hofstetter V: A
multilocus phylogeny for worldwide Cantharellus (Cantharellales,
Agaricomycetidae) . Fungal Diversity 2014,64 (1):101-121.
39. Jiang L, Zhao L, Cheng D, Zhu L, Zhang M, Ruan Q, Chen W:The complete mitochondrial genome sequence of the Sichuan
Digging Frog, Kaloula rugifera (Anura: Microhylidae) and its
phylogenetic implications . Gene 2017, 626 :367-375.
40. Chen J, Guan R, Chang S, Du T, Zhang H, Xing HJPO:Substoichiometrically Different Mitotypes Coexist in
Mitochondrial Genomes of Brassica napus L . PLoS ONE 2011,6 (3):e17662.
41. Conant GC, Wolfe KH: GenomeVx: simple web-based creation of
editable circular chromosome maps . Bioinformatics 2008,24 (6):861-862.
42. Perna NT, Kocher TD: Patterns of nucleotide composition at
fourfold degenerate sites of animal mitochondrial genomes .Journal of Molecular Evolution 1995, 41 (3):353-358.
43. Stothard: The sequence manipulation suite: JavaScript
programs for analyzing and formatting protein and DNA sequences .BioTechniques 2000, 28 (6):1102-1104.
44. Joseph C: MEGA evolutionary software Re-engineered to handle
today’s big data demands . Molecular Biology & Evolution 2016,33 (7):1887-1888.
45. Rozas J, Ferrer-Mata A, Carlos J, Sara S-D, Pablo G-R: DnaSP
6: DNA sequence polymorphism analysis of large datasets .Molecular Biology Evolution 2017(34):3299-3302.
46. Darling AC, Mau B, Blattner FR, Perna NT: Mauve: multiple
alignment of conserved genomic sequence with rearrangements .Genome research 2004, 14 (7):1394-1403.
47. Benson G: Tandem repeats finder: a program to analyze DNA
sequences . Nucleic Acids Res 1999, 27 (2):573-580.
48. Stefan K, Choudhuri JV, Enno O, Chris S, Jens S, Robert G:REPuter: the manifold applications of repeat analysis on a
genomic scale . Nucleic Acids Research 2001(22):4633-4642.
49. Katoh K, Rozewicki J, Yamada K: MAFFT online service:
Multiple sequence alignment, interactive sequence choice and
visualization . Briefings in Bioinformatics 2019,20 (4):1160-1166.
50. Vaidya G, Lohman DJ, Meier R: SequenceMatrix: concatenation
software for the fast assembly of multi-gene datasets with character set
and codon information . Cladistics-the International Journal of
the Willi Hennig Society 2011, 27 (2):171–180.
51. Stamatakis A: RAxML version 8: a tool for phylogenetic
analysis and post-analysis of large phylogenies . Bioinformatics2014, 30 (9):1312-1313.
52. Huelsenbeck JP: MrBayes 3.2: Efficient bayesian phylogenetic
inference and model choice across a large model space . Systematic
Biology 2012, 61 (3):539-542.