Bibliography
Aashaq, S, Batool, A, Andrabi, KI. 2019. TAK1 mediates convergence of
cellular signals for death and survival. Apoptosis 24: 3–20.
Baban, A, Magliozzi, M, Loeys, B, Adorisio, R, Alesi, V, Secinaro, A,
Corica, B, Vricella, L, Dietz, HC, Drago, F, Novelli, A, Amodeo, A.
2018. First evidence of maternally inherited mosaicism in TGFBR1 and
subtle primary myocardial changes in Loeys-Dietz syndrome: a case
report. BMC Med. Genet. 19: 170–7.
Basart, H, van de Kar, A, Adès, L, Cho, T-J, Carter, E, Maas, SM,
Wilson, LC, van der Horst, CMAM, Wade, EM, Robertson, SP, Hennekam, RC.
2015. Frontometaphyseal dysplasia and keloid formation without FLNA
mutations. Am. J. Med. Genet. 167: 1215–1222.
Costantini, A, Wallgren-Pettersson, C, Mäkitie, O. 2018. Expansion of
the clinical spectrum of frontometaphyseal dysplasia 2 caused by the
recurrent mutation p.Pro485Leu in MAP3K7. European Journal of Medical
Genetics 61: 612–615.
Dai, L, Aye Thu, C, Liu, X-Y, Xi, J, Cheung, PCF. 2012. TAK1, more than
just innate immunity. IUBMB Life 64: 825–834.
Forney, WR, Robinson, SJ, Pascoe, DJ. 1966. Congenital heart disease,
deafness, and skeletal malformations: a new syndrome? J Pediatr 68:
14–26.
Gelb, BD, Roberts, AE, Tartaglia, M. 2015. Cardiomyopathies in Noonan
syndrome and the other RASopathies. Prog Pediatr Cardiol 39: 13–19.
Giuliano, F, Collignon, P, Paquis-Flucklinger, V, Bardot, J, Philip, N.
2005. A new three-generational family with frontometaphyseal dysplasia,
male-to-female transmission, and a previously reported FLNA mutation.
Am. J. Med. Genet. 132A: 222–222.
Jorge, AAL, Malaquias, AC, Arnhold, IJP, Mendonca, BB. 2009. Noonan
syndrome and related disorders: a review of clinical features and
mutations in genes of the RAS/MAPK pathway. Horm Res 71: 185–193.
Le Goff, C, Rogers, C, Le Goff, W, Pinto, G, Bonnet, D, Chrabieh, M,
Alibeu, O, Nistchke, P, Munnich, A, Picard, C, Cormier-Daire, V. 2016.
Heterozygous Mutations in MAP3K7, Encoding TGF-β-Activated Kinase 1,
Cause Cardiospondylocarpofacial Syndrome. Am. J. Hum. Genet. 99:
407–413.
Micale, L, Morlino, S, Biagini, T, Carbone, A, Fusco, C, Ritelli, M,
Giambra, V, Zoppi, N, Nardella, G, Notarangelo, A, Schirizzi, A,
Mazzoccoli, G, Grammatico, P, Wade, EM, Mazza, T, Colombi, M, Castori,
M. 2020. Insights into the molecular pathogenesis of
cardiospondylocarpofacial syndrome: MAP3K7 c.737-7A > G
variant alters the TGFβ-mediated α-SMA cytoskeleton assembly and
autophagy. Biochim Biophys Acta Mol Basis Dis 1866: 165742.
Morlino, S, Castori, M, Dordoni, C, Cinquina, V, Santoro, G, Grammatico,
P, Venturini, M, Colombi, M, Ritelli, M. 2018. A novel MAP3K7 splice
mutation causes cardiospondylocarpofacial syndrome with features of
hereditary connective tissue disorder. Eur J Hum Genet: 1–5.
Pierpont, ME, Digilio, MC. 2018. Cardiovascular disease in Noonan
syndrome. Current Opinion in Pediatrics 30: 601–608.
Proietti Onori, M, Koopal, B, Everman, DB, Worthington, JD, Jones, JR,
Ploeg, MA, Mientjes, E, van Bon, BW, Kleefstra, T, Schulman, H, Kushner,
SA, Küry, S, Elgersma, Y, van Woerden, GM. 2018. The intellectual
disability-associated CAMK2G p.Arg292Pro mutation acts as a pathogenic
gain-of-function. Hum. Mutat. 39: 2008–2024.
Robertson, SP. 2004. Molecular pathology of filamin A: diverse
phenotypes, many functions. Clinical Dysmorphology 13: 123–131.
Sakurai, H, Miyoshi, H, Mizukami, J, Sugita, T. 2000.
Phosphorylation-dependent activation of TAK1 mitogen-activated protein
kinase kinase kinase by TAB1. FEBS Lett. 474: 141–145.
Sobreira, N, Schiettecatte, F, Valle, D, Hamosh, A. 2015. GeneMatcher: a
matching tool for connecting investigators with an interest in the same
gene. Hum. Mutat. 36: 928–930.
Sousa, SB, Baujat, G, Abadie, V, Bonnet, D, Sidi, D, Munnich, A, Krakow,
D, Cormier-Daire, V. 2010. Postnatal growth retardation, facial
dysmorphism, spondylocarpal synostosis, cardiac defect, and inner ear
malformation (cardiospondylocarpofacial syndrome?)–a distinct
syndrome? Am. J. Med. Genet. 152A: 539–546.
van der Burgt, I. 2007. Noonan syndrome. Orphanet Journal of Rare
Diseases 2: 4–6.
Wade, EM, Daniel, PB, Jenkins, ZA, McInerney-Leo, A, Leo, P, Morgan, T,
Addor, MC, Adès, LC, Bertola, D, Bohring, A, Carter, E, Cho, T-J, Duba,
H-C, Fletcher, E, Kim, CA, Krakow, D, Morava, E, Neuhann, T,
Superti-Furga, A, Veenstra-Knol, I, Wieczorek, D, Wilson, LC, Hennekam,
RCM, Sutherland-Smith, AJ, Strom, TM, Wilkie, AOM, Brown, MA, Duncan,
EL, Markie, DM, Robertson, SP. 2016. Mutations in MAP3K7 that Alter the
Activity of the TAK1 Signaling Complex Cause Frontometaphyseal
Dysplasia. Am. J. Hum. Genet. 99: 392–406.
Wade, EM, Jenkins, ZA, Daniel, PB, Morgan, T, Addor, MC, Adès, LC,
Bertola, D, Bohring, A, Carter, E, Cho, T-J, de Geus, CM, Duba, H-C,
Fletcher, E, Hadzsiev, K, Hennekam, RCM, Kim, CA, Krakow, D, Morava, E,
Neuhann, T, Sillence, D, Superti-Furga, A, Veenstra-Knol, HE, Wieczorek,
D, Wilson, LC, Markie, DM, Robertson, SP. 2017. Autosomal dominant
frontometaphyseal dysplasia: Delineation of the clinical phenotype. Am.
J. Med. Genet.
Xu, Y-R, Lei, C-Q. 2020. TAK1-TABs Complex: A Central Signalosome in
Inflammatory Responses. Front Immunol 11: 608976.
Yu, J, Zhang, F, Wang, S, Zhang, Y, Fan, M, Xu, Z. 2014. TAK1 is
activated by TGF-β signaling and controls axonal growth during brain
development. J Mol Cell Biol 6: 349–351.