\[\begin{equation} \begin{array}{cc} \alpha_1 = \pi - \theta_0 \end{array} \end{equation}\]
\(\begin{equation} \begin{array}{cc} \beta_1 = \frac{\pi}{2} \end{array} \end{equation}\)
By solving for (6-11), angles \(\alpha_n\) and \(\beta_n\)\(\) can be expressed as follows:
For \(n\ge2\)\(n\in N\)\(\)\(m_{1,}m_2\in Z\),