References:
Abdalkader M., Lampinen R., Kanninen K. M., Malm T. M. and Liddell J. R.
(2018). Targeting Nrf2 to Suppress Ferroptosis and Mitochondrial
Dysfunction in Neurodegeneration. Front Neurosci, 12,466. doi:
10.3389/fnins.2018.00466.
Baliga R., Zhang Z., Baliga M., Ueda N. and Shah S. V. (1998). In vitro
and in vivo evidence suggesting a role for iron in cisplatin-induced
nephrotoxicity. Kidney Int, 53,394-401. doi:
10.1046/j.1523-1755.1998.00767.x.
Chen P., Chen F. and Zhou B. H. (2019). Leonurine ameliorates
D-galactose-induced aging in mice through activation of the Nrf2
signalling pathway. Aging (Albany NY), 11,7339-7356. doi:
10.18632/aging.101733.
Cheng H., Bo Y., Shen W., Tan J., Jia Z., Xu C. and Li F. (2015).
Leonurine ameliorates kidney fibrosis via suppressing TGF-beta and
NF-kappaB signaling pathway in UUO mice. Int Immunopharmacol,25,406-415. doi: 10.1016/j.intimp.2015.02.023.
Deng F., Sharma I., Dai Y., Yang M. and Kanwar Y. S. (2019).
Myo-inositol oxygenase expression profile modulates pathogenic
ferroptosis in the renal proximal tubule. J Clin Invest,129,5033-5049. doi: 10.1172/JCI129903.
Deng F., Zheng X., Sharma I., Dai Y., Wang Y. and Kanwar Y. S. (2021).
Regulated cell death in cisplatin-induced AKI: relevance of myo-inositol
metabolism. Am J Physiol Renal Physiol, 320,F578-F595. doi:
10.1152/ajprenal.00016.2021.
Dixon S. J. and Stockwell B. R. (2014). The role of iron and reactive
oxygen species in cell death. Nat Chem Biol, 10,9-17. doi:
10.1038/nchembio.1416.
Dodson M., Castro-Portuguez R. and Zhang D. D. (2019). NRF2 plays a
critical role in mitigating lipid peroxidation and ferroptosis.Redox Biol, 23,101107. doi: 10.1016/j.redox.2019.101107.
Fan X., Wei W., Huang J., Peng L. and Ci X. (2020). Daphnetin Attenuated
Cisplatin-Induced Acute Nephrotoxicity With Enhancing Antitumor Activity
of Cisplatin by Upregulating SIRT1/SIRT6-Nrf2 Pathway. Front
Pharmacol, 11,579178. doi: 10.3389/fphar.2020.579178.
Friedmann Angeli J. P., Schneider M., Proneth B., Tyurina Y. Y., Tyurin
V. A., Hammond V. J., Herbach N., Aichler M., Walch A., Eggenhofer E.,
Basavarajappa D., Radmark O., Kobayashi S., Seibt T., Beck H., Neff F.,
Esposito I., Wanke R., Forster H., Yefremova O., Heinrichmeyer M.,
Bornkamm G. W., Geissler E. K., Thomas S. B., Stockwell B. R., O’Donnell
V. B., Kagan V. E., Schick J. A. and Conrad M. (2014). Inactivation of
the ferroptosis regulator Gpx4 triggers acute renal failure in mice.Nat Cell Biol, 16,1180-1191. doi: 10.1038/ncb3064.
Herzog C., Yang C., Holmes A. and Kaushal G. P. (2012). zVAD-fmk
prevents cisplatin-induced cleavage of autophagy proteins but impairs
autophagic flux and worsens renal function. Am J Physiol Renal
Physiol, 303,F1239-1250. doi: 10.1152/ajprenal.00659.2011.
Hoste E. A. J., Kellum J. A., Selby N. M., Zarbock A., Palevsky P. M.,
Bagshaw S. M., Goldstein S. L., Cerda J. and Chawla L. S. (2018). Global
epidemiology and outcomes of acute kidney injury. Nat Rev
Nephrol, 14,607-625. doi: 10.1038/s41581-018-0052-0.
Hu Z., Zhang H., Yi B., Yang S., Liu J., Hu J., Wang J., Cao K. and
Zhang W. (2020). VDR activation attenuate cisplatin induced AKI by
inhibiting ferroptosis. Cell Death Dis, 11,73. doi:
10.1038/s41419-020-2256-z.
Ikeda Y., Hamano H., Horinouchi Y., Miyamoto L., Hirayama T., Nagasawa
H., Tamaki T. and Tsuchiya K. (2021). Role of ferroptosis in
cisplatin-induced acute nephrotoxicity in mice. J Trace Elem Med
Biol, 67,126798. doi: 10.1016/j.jtemb.2021.126798.
La Rosa P., Petrillo S., Turchi R., Berardinelli F., Schirinzi T., Vasco
G., Lettieri-Barbato D., Fiorenza M. T., Bertini E. S., Aquilano K. and
Piemonte F. (2021). The Nrf2 induction prevents ferroptosis in
Friedreich’s Ataxia. Redox Biol, 38,101791. doi:
10.1016/j.redox.2020.101791.
Li Y. Y., Lin Y. K., Liu X. H., Wang L., Yu M., Li D. J., Zhu Y. Z. and
Du M. R. (2020). Leonurine: From Gynecologic Medicine to Pleiotropic
Agent. Chin J Integr Med, 26,152-160. doi:
10.1007/s11655-019-3453-0.
Linkermann A., Chen G., Dong G., Kunzendorf U., Krautwald S. and Dong Z.
(2014). Regulated cell death in AKI. J Am Soc Nephrol,25,2689-2701. doi: 10.1681/ASN.2014030262.
Maiorino M., Conrad M. and Ursini F. (2018). GPx4, Lipid Peroxidation,
and Cell Death: Discoveries, Rediscoveries, and Open Issues.Antioxid Redox Signal, 29,61-74. doi: 10.1089/ars.2017.7115.
Park E. and Chung S. W. (2019). ROS-mediated autophagy increases
intracellular iron levels and ferroptosis by ferritin and transferrin
receptor regulation. Cell Death Dis, 10,822. doi:
10.1038/s41419-019-2064-5.
Seibt T. M., Proneth B. and Conrad M. (2019). Role of GPX4 in
ferroptosis and its pharmacological implication. Free Radic Biol
Med, 133,144-152. doi: 10.1016/j.freeradbiomed.2018.09.014.
Shelton L. M., Park B. K. and Copple I. M. (2013). Role of Nrf2 in
protection against acute kidney injury. Kidney Int, 84,1090-1095.
doi: 10.1038/ki.2013.248.
Stockwell B. R., Friedmann Angeli J. P., Bayir H., Bush A. I., Conrad
M., Dixon S. J., Fulda S., Gascon S., Hatzios S. K., Kagan V. E., Noel
K., Jiang X., Linkermann A., Murphy M. E., Overholtzer M., Oyagi A.,
Pagnussat G. C., Park J., Ran Q., Rosenfeld C. S., Salnikow K., Tang D.,
Torti F. M., Torti S. V., Toyokuni S., Woerpel K. A. and Zhang D. D.
(2017). Ferroptosis: A Regulated Cell Death Nexus Linking Metabolism,
Redox Biology, and Disease. Cell, 171,273-285. doi:
10.1016/j.cell.2017.09.021.
Stoyanovsky D. A., Tyurina Y. Y., Shrivastava I., Bahar I., Tyurin V.
A., Protchenko O., Jadhav S., Bolevich S. B., Kozlov A. V., Vladimirov
Y. A., Shvedova A. A., Philpott C. C., Bayir H. and Kagan V. E. (2019).
Iron catalysis of lipid peroxidation in ferroptosis: Regulated enzymatic
or random free radical reaction? Free Radic Biol Med,133,153-161. doi: 10.1016/j.freeradbiomed.2018.09.008.
Torti S. V. and Torti F. M. (2013). Iron and cancer: more ore to be
mined. Nat Rev Cancer, 13,342-355. doi: 10.1038/nrc3495.
Tristao V. R., Goncalves P. F., Dalboni M. A., Batista M. C., Durao Mde
S., Jr. and Monte J. C. (2012). Nec-1 protects against nonapoptotic cell
death in cisplatin-induced kidney injury. Ren Fail, 34,373-377.
doi: 10.3109/0886022X.2011.647343.
Wang L., Liu Y., Du T., Yang H., Lei L., Guo M., Ding H. F., Zhang J.,
Wang H., Chen X. and Yan C. (2020). ATF3 promotes erastin-induced
ferroptosis by suppressing system Xc(.). Cell Death Differ,27,662-675. doi: 10.1038/s41418-019-0380-z.
Xie Y. Z., Zhang X. J., Zhang C., Yang Y., He J. N. and Chen Y. X.
(2019). Protective effects of leonurine against ischemic stroke in mice
by activating nuclear factor erythroid 2-related factor 2 pathway.CNS Neurosci Ther, 25,1006-1017. doi: 10.1111/cns.13146.
Xu D., Chen M., Ren X., Ren X. and Wu Y. (2014). Leonurine ameliorates
LPS-induced acute kidney injury via suppressing ROS-mediated NF-kappaB
signaling pathway. Fitoterapia, 97,148-155. doi:
10.1016/j.fitote.2014.06.005.
Yang Y., Adebali O., Wu G., Selby C. P., Chiou Y. Y., Rashid N., Hu J.,
Hogenesch J. B. and Sancar A. (2018). Cisplatin-DNA adduct repair of
transcribed genes is controlled by two circadian programs in mouse
tissues. Proc Natl Acad Sci U S A, 115,E4777-E4785. doi:
10.1073/pnas.1804493115.