References
Afonso, C., Alcaraz, C., Brun, A., Sussman, M., Onisk, D., Escribano,
J., & Rock, D. (1992). Characterization of p30, a highly antigenic
membrane and secreted protein of African swine fever virus.Virology, 189 (1), 368-373.doi:10.1016/0042-6822(92)90718-5
Agüero, M., Fernández, J., Romero, L., Sánchez Mascaraque, C., Arias,
M., & Sánchez-Vizcaíno, J. (2003). Highly sensitive PCR assay for
routine diagnosis of African swine fever virus in clinical samples.Journal of clinical microbiology, 41 (9), 4431-4434.doi:10.1128/jcm.41.9.4431-4434.2003
Alí, A., Tania, M., Milagros, G., & Germán, A. (2018).
A Proteomic Atlas of the African
Swine Fever Virus Particle. Journal of Virology, 92 (23). doi:10.1128/JVI.01293-18
Alonso, C., Miskin, J., Hernaez, B., Fernandez-Zapatero, P., Soto, L.,
Canto, C., . . . Escribano, J. M. (2001). African swine fever virus
protein p54 interacts with the microtubular motor complex through direct
binding to light-chain dynein. J Virol, 75 (20), 9819-9827.doi:10.1128/JVI.75.20.9819-9827.2001
Balchin, D., Hayer-Hartl, M., & Hartl, F. U. (2020). Recent advances in
understanding catalysis of protein folding by molecular chaperones.FEBS Lett, 594 (17), 2770-2781.doi:10.1002/1873-3468.13844
Barderas, M., Rodríguez, F., Gómez-Puertas, P., Avilés, M., Beitia, F.,
Alonso, C., & Escribano, J. (2001). Antigenic and immunogenic
properties of a chimera of two immunodominant African swine fever virus
proteins. Archives of Virology, 146 (9), 1681-1691.doi:10.1007/s007050170056
Barlow, D. J., Edwards, M. S., & Thornton, J. M. (1986). Continuous and
discontinuous protein antigenic determinants. Nature, 322 (6081),
747-748.doi:10.1038/322747a0
Chang, C., Cheng, I., Chang, Y., Tsai, P., Lai, S., Huang, Y., Chang, H.
(2019). Identification of Neutralizing Monoclonal Antibodies Targeting
Novel Conformational Epitopes of the Porcine Epidemic Diarrhoea Virus
Spike Protein. Scientific reports, 9 (1), 2529.doi:10.1038/s41598-019-39844-5
Chapman, D., Darby, A., Da Silva, M., Upton, C., Radford, A., & Dixon,
L. (2011). Genomic analysis of highly virulent Georgia 2007/1 isolate of
African swine fever virus. Emerging infectious diseases, 17 (4),
599-605.doi:10.3201/eid1704.101283
Chen, C., Wu, M., Huang, Y., Cheng, C., & Chang, C. (2015). Recognition
of Linear B-Cell Epitope of Betanodavirus Coat Protein by RG-M18
Neutralizing mAB Inhibits Giant Grouper Nervous Necrosis Virus (GGNNV)
Infection. PLoS One, 10 (5), e0126121.doi:10.1371/journal.pone.0126121
Davies, K., Goatley, L., Guinat, C., Netherton, C., Gubbins, S., Dixon,
L., & Reis, A. (2017). Survival of African Swine Fever Virus in
Excretions from Pigs Experimentally Infected with the Georgia 2007/1
Isolate. Transboundary and Emerging Diseases, 64 (2), 425-431.doi:10.1111/tbed.12381
Gershoni, J., Roitburd-Berman, A., Siman-Tov, D., Tarnovitski Freund,
N., & Weiss, Y. (2007). Epitope mapping: the first step in developing
epitope-based vaccines. BioDrugs : clinical immunotherapeutics,
biopharmaceuticals and gene therapy, 21 (3), 145-156.doi:10.2165/00063030-200721030-00002
Giménez-Lirola, L. G., Mur, L., Rivera, B., Mogler, M., Sun, Y., Lizano,
S., Zimmerman, J. (2016). Detection of African Swine Fever Virus
Antibodies in Serum and Oral Fluid Specimens Using a Recombinant Protein
30 (p30) Dual Matrix Indirect ELISA. PLoS One, 11 (9).doi:
10.1007/s00705-020-04915-w
Gómez-Puertas, P., Rodríguez, F., Oviedo, J. M., Brun, A., Alonso, C.,
& Escribano, J. M. (1998). The African Swine Fever Virus Proteins p54
and p30 Are Involved in Two Distinct Steps of Virus Attachment and Both
Contribute to the Antibody-Mediated Protective Immune Response.Virology, 243 (2).doi:
10.1006/viro.1998.9068
Heimerman, M. E., Murgia, M. V., Wu, P., Lowe, A. D., Jia, W., &
Rowland, R. R. (2018). Linear epitopes in African swine fever virus p72
recognized by monoclonal antibodies prepared against
baculovirus-expressed antigen. J Vet Diagn Invest, 30 (3),
406-412.doi:10.1177/1040638717753966
Huynen, C., Filée, P., Matagne, A., Galleni, M., & Dumoulin, M. (2013).
Class A β -Lactamases as Versatile Scaffolds to Create Hybrid Enzymes:
Applications from Basic Research to Medicine. BioMed Research
International, 2013 , 1-16.doi:
10.1155/2013/827621
Jia, N., Ou, Y., Pejsak, Z., Zhang, Y., & Zhang, J. (2017). Roles of
African Swine Fever Virus Structural Proteins in Viral Infection.J Vet Res, 61 (2), 135-143.doi:10.1515/jvetres-2017-0017
Kelley, L., Mezulis, S., Yates, C., Wass, M., & Sternberg, M. (2015).
The Phyre2 web portal for protein modeling, prediction and analysis.Nature protocols, 10 (6), 845-858.doi:10.1038/nprot.2015.053
Kolontsov, A., Ustin, A., Shubina, N., Piria, A., & Makarov, V. (1992).
[Polypeptides p14 and p31 of the African swine fever virus–early
proteins located on the membrane of the infected cell]. Voprosy
virusologii, 37 (3), 165-168.
Malakar, P., & Venkatesh, K. (2012). Effect of substrate and IPTG
concentrations on the burden to growth of Escherichia coli on glycerol
due to the expression of Lac proteins. Applied microbiology and
biotechnology, 93 (6), 2543-2549.doi:10.1007/s00253-011-3642-3
Mamipour, M., Yousefi, M., & Hasanzadeh, M. (2017). An overview on
molecular chaperones enhancing solubility of expressed recombinant
proteins with correct folding. Int J Biol Macromol, 102 , 367-375.doi:10.1016/j.ijbiomac.2017.04.025
Muñoz-Moreno, R., Galindo, I., Cuesta-Geijo, M., Barrado-Gil, L., &
Alonso, C. (2015). Host cell targets for African swine fever virus.Virus Research, 209 , 118-127.doi:10.1016/j.virusres.2015.05.026
Neilan, J. G., Zsak, L., Lu, Z., Burrage, T. G., Kutish, G. F., & Rock,
D. L. (2004). Neutralizing antibodies to African swine fever virus
proteins p30, p54, and p72 are not sufficient for antibody-mediated
protection. Virology, 319 (2), 337-342.doi:10.1016/j.virol.2003.11.011
Overton, T. (2014). Recombinant protein production in bacterial hosts.Drug discovery today, 19 (5), 590-601.doi:10.1016/j.drudis.2013.11.008
Petrovan, V., Yuan, F., Li, Y., Shang, P., Murgia, M. V., Misra, S., . .
. Fang, Y. (2019). Development and characterization of monoclonal
antibodies against p30 protein of African swine fever virus. Virus
Research, 269 .doi:10.1016/j.virusres.2019.05.010
Prados, F., Viñuela, E., & Alcamí, A. (1993). Sequence and
characterization of the major early phosphoprotein p32 of African swine
fever virus. Journal of Virology, 67 (5), 2475-2485.doi:10.1128/jvi.67.5.2475-2485.1993
Sanchez-Vizcaino, J. M., Mur, L., Gomez-Villamandos, J. C., & Carrasco,
L. (2015). An update on the epidemiology and pathology of African swine
fever. J Comp Pathol, 152 (1), 9-21.doi:10.1016/j.jcpa.2014.09.003
Scaglia, B., Cassani, E., Pilu, R., & Adani, F. (2014). Expression
ofArabidopsis thalianaS-ACP-DES3 inEscherichia colifor high-performance
biodiesel production. RSC Adv., 4 (108), 63387-63392.doi:10.1039/c4ra13001d
Van Regenmortel MHV. (1996). Mapping Epitope Structure and Activity:
From One-Dimensional Prediction to Four-Dimensional Description of
Antigenic Specificity. Methods (San Diego, Calif.), 9 (3),
465-472.doi:10.1006/meth.1996.0054
Wu, P., Lowe, A., Rodríguez, Y., Murgia, M., Dodd, K., Rowland, R., &
Jia, W. (2020). Antigenic regions of African swine fever virus
phosphoprotein P30. Transboundary and Emerging Diseases .doi:10.1111/tbed.13533
Zhang, X., Liu, X., Wu, X., Ren, W., Zou, Y., Xia, X., & Sun, H.
(2021). A colloidal gold test strip assay for the detection of African
swine fever virus based on two monoclonal antibodies against P30.Archives of Virology, 166 (3), 871-879.doi:10.1007/s00705-020-04915-w
Zhou, X., Li, N., Luo, Y., Liu, Y., Miao, F., Chen, T., .Hu, R. (2018).
Emergence of African Swine Fever in China, 2018. Transboundary and
Emerging Diseases, 65 (6), 1482-1484.doi:10.1111/tbed.12989