References

Afonso, C., Alcaraz, C., Brun, A., Sussman, M., Onisk, D., Escribano, J., & Rock, D. (1992). Characterization of p30, a highly antigenic membrane and secreted protein of African swine fever virus.Virology, 189 (1), 368-373.doi:10.1016/0042-6822(92)90718-5
Agüero, M., Fernández, J., Romero, L., Sánchez Mascaraque, C., Arias, M., & Sánchez-Vizcaíno, J. (2003). Highly sensitive PCR assay for routine diagnosis of African swine fever virus in clinical samples.Journal of clinical microbiology, 41 (9), 4431-4434.doi:10.1128/jcm.41.9.4431-4434.2003
Alí, A., Tania, M., Milagros, G., & Germán, A. (2018). A Proteomic Atlas of the African Swine Fever Virus Particle. Journal of Virology, 92 (23). doi:10.1128/JVI.01293-18
Alonso, C., Miskin, J., Hernaez, B., Fernandez-Zapatero, P., Soto, L., Canto, C., . . . Escribano, J. M. (2001). African swine fever virus protein p54 interacts with the microtubular motor complex through direct binding to light-chain dynein. J Virol, 75 (20), 9819-9827.doi:10.1128/JVI.75.20.9819-9827.2001
Balchin, D., Hayer-Hartl, M., & Hartl, F. U. (2020). Recent advances in understanding catalysis of protein folding by molecular chaperones.FEBS Lett, 594 (17), 2770-2781.doi:10.1002/1873-3468.13844
Barderas, M., Rodríguez, F., Gómez-Puertas, P., Avilés, M., Beitia, F., Alonso, C., & Escribano, J. (2001). Antigenic and immunogenic properties of a chimera of two immunodominant African swine fever virus proteins. Archives of Virology, 146 (9), 1681-1691.doi:10.1007/s007050170056
Barlow, D. J., Edwards, M. S., & Thornton, J. M. (1986). Continuous and discontinuous protein antigenic determinants. Nature, 322 (6081), 747-748.doi:10.1038/322747a0
Chang, C., Cheng, I., Chang, Y., Tsai, P., Lai, S., Huang, Y., Chang, H. (2019). Identification of Neutralizing Monoclonal Antibodies Targeting Novel Conformational Epitopes of the Porcine Epidemic Diarrhoea Virus Spike Protein. Scientific reports, 9 (1), 2529.doi:10.1038/s41598-019-39844-5
Chapman, D., Darby, A., Da Silva, M., Upton, C., Radford, A., & Dixon, L. (2011). Genomic analysis of highly virulent Georgia 2007/1 isolate of African swine fever virus. Emerging infectious diseases, 17 (4), 599-605.doi:10.3201/eid1704.101283
Chen, C., Wu, M., Huang, Y., Cheng, C., & Chang, C. (2015). Recognition of Linear B-Cell Epitope of Betanodavirus Coat Protein by RG-M18 Neutralizing mAB Inhibits Giant Grouper Nervous Necrosis Virus (GGNNV) Infection. PLoS One, 10 (5), e0126121.doi:10.1371/journal.pone.0126121
Davies, K., Goatley, L., Guinat, C., Netherton, C., Gubbins, S., Dixon, L., & Reis, A. (2017). Survival of African Swine Fever Virus in Excretions from Pigs Experimentally Infected with the Georgia 2007/1 Isolate. Transboundary and Emerging Diseases, 64 (2), 425-431.doi:10.1111/tbed.12381
Gershoni, J., Roitburd-Berman, A., Siman-Tov, D., Tarnovitski Freund, N., & Weiss, Y. (2007). Epitope mapping: the first step in developing epitope-based vaccines. BioDrugs : clinical immunotherapeutics, biopharmaceuticals and gene therapy, 21 (3), 145-156.doi:10.2165/00063030-200721030-00002
Giménez-Lirola, L. G., Mur, L., Rivera, B., Mogler, M., Sun, Y., Lizano, S., Zimmerman, J. (2016). Detection of African Swine Fever Virus Antibodies in Serum and Oral Fluid Specimens Using a Recombinant Protein 30 (p30) Dual Matrix Indirect ELISA. PLoS One, 11 (9).doi: 10.1007/s00705-020-04915-w
Gómez-Puertas, P., Rodríguez, F., Oviedo, J. M., Brun, A., Alonso, C., & Escribano, J. M. (1998). The African Swine Fever Virus Proteins p54 and p30 Are Involved in Two Distinct Steps of Virus Attachment and Both Contribute to the Antibody-Mediated Protective Immune Response.Virology, 243 (2).doi: 10.1006/viro.1998.9068
Heimerman, M. E., Murgia, M. V., Wu, P., Lowe, A. D., Jia, W., & Rowland, R. R. (2018). Linear epitopes in African swine fever virus p72 recognized by monoclonal antibodies prepared against baculovirus-expressed antigen. J Vet Diagn Invest, 30 (3), 406-412.doi:10.1177/1040638717753966
Huynen, C., Filée, P., Matagne, A., Galleni, M., & Dumoulin, M. (2013). Class A β -Lactamases as Versatile Scaffolds to Create Hybrid Enzymes: Applications from Basic Research to Medicine. BioMed Research International, 2013 , 1-16.doi: 10.1155/2013/827621
Jia, N., Ou, Y., Pejsak, Z., Zhang, Y., & Zhang, J. (2017). Roles of African Swine Fever Virus Structural Proteins in Viral Infection.J Vet Res, 61 (2), 135-143.doi:10.1515/jvetres-2017-0017
Kelley, L., Mezulis, S., Yates, C., Wass, M., & Sternberg, M. (2015). The Phyre2 web portal for protein modeling, prediction and analysis.Nature protocols, 10 (6), 845-858.doi:10.1038/nprot.2015.053
Kolontsov, A., Ustin, A., Shubina, N., Piria, A., & Makarov, V. (1992). [Polypeptides p14 and p31 of the African swine fever virus–early proteins located on the membrane of the infected cell]. Voprosy virusologii, 37 (3), 165-168.
Malakar, P., & Venkatesh, K. (2012). Effect of substrate and IPTG concentrations on the burden to growth of Escherichia coli on glycerol due to the expression of Lac proteins. Applied microbiology and biotechnology, 93 (6), 2543-2549.doi:10.1007/s00253-011-3642-3
Mamipour, M., Yousefi, M., & Hasanzadeh, M. (2017). An overview on molecular chaperones enhancing solubility of expressed recombinant proteins with correct folding. Int J Biol Macromol, 102 , 367-375.doi:10.1016/j.ijbiomac.2017.04.025
Muñoz-Moreno, R., Galindo, I., Cuesta-Geijo, M., Barrado-Gil, L., & Alonso, C. (2015). Host cell targets for African swine fever virus.Virus Research, 209 , 118-127.doi:10.1016/j.virusres.2015.05.026
Neilan, J. G., Zsak, L., Lu, Z., Burrage, T. G., Kutish, G. F., & Rock, D. L. (2004). Neutralizing antibodies to African swine fever virus proteins p30, p54, and p72 are not sufficient for antibody-mediated protection. Virology, 319 (2), 337-342.doi:10.1016/j.virol.2003.11.011
Overton, T. (2014). Recombinant protein production in bacterial hosts.Drug discovery today, 19 (5), 590-601.doi:10.1016/j.drudis.2013.11.008
Petrovan, V., Yuan, F., Li, Y., Shang, P., Murgia, M. V., Misra, S., . . . Fang, Y. (2019). Development and characterization of monoclonal antibodies against p30 protein of African swine fever virus. Virus Research, 269 .doi:10.1016/j.virusres.2019.05.010
Prados, F., Viñuela, E., & Alcamí, A. (1993). Sequence and characterization of the major early phosphoprotein p32 of African swine fever virus. Journal of Virology, 67 (5), 2475-2485.doi:10.1128/jvi.67.5.2475-2485.1993
Sanchez-Vizcaino, J. M., Mur, L., Gomez-Villamandos, J. C., & Carrasco, L. (2015). An update on the epidemiology and pathology of African swine fever. J Comp Pathol, 152 (1), 9-21.doi:10.1016/j.jcpa.2014.09.003
Scaglia, B., Cassani, E., Pilu, R., & Adani, F. (2014). Expression ofArabidopsis thalianaS-ACP-DES3 inEscherichia colifor high-performance biodiesel production. RSC Adv., 4 (108), 63387-63392.doi:10.1039/c4ra13001d
Van Regenmortel MHV. (1996). Mapping Epitope Structure and Activity: From One-Dimensional Prediction to Four-Dimensional Description of Antigenic Specificity. Methods (San Diego, Calif.), 9 (3), 465-472.doi:10.1006/meth.1996.0054
Wu, P., Lowe, A., Rodríguez, Y., Murgia, M., Dodd, K., Rowland, R., & Jia, W. (2020). Antigenic regions of African swine fever virus phosphoprotein P30. Transboundary and Emerging Diseases .doi:10.1111/tbed.13533
Zhang, X., Liu, X., Wu, X., Ren, W., Zou, Y., Xia, X., & Sun, H. (2021). A colloidal gold test strip assay for the detection of African swine fever virus based on two monoclonal antibodies against P30.Archives of Virology, 166 (3), 871-879.doi:10.1007/s00705-020-04915-w
Zhou, X., Li, N., Luo, Y., Liu, Y., Miao, F., Chen, T., .Hu, R. (2018). Emergence of African Swine Fever in China, 2018. Transboundary and Emerging Diseases, 65 (6), 1482-1484.doi:10.1111/tbed.12989