References
Al-Jbory, Z., El-Bouhssini, M., Chen, M.S. (2018) Conserved and unique putative effectors expressed in the salivary glands of three related gall midges species. Journal of Insect Science 18(5): 15. https://doi.org/10.1093/jisesa/iey094 Al Jibory, Z., Micheal, J. A., Park, Y., Reeck, G. R., & Chen M. S. (2020). Differential localization of Hessian fly candidate effectors in resistant and susceptible wheat plants. Plant direct, 00: 1-15. https://doi.org/10.1002/pld3.246 Biello, R., Singh, A., Godfrey, C. J., Fernández, F. F., Mugford, S. T., & Powell, & G., Hogenhout, S. A., | Mathers, T. C. (2021). A chromosome level genome assembly of the woolly apple aphid,Eriosoma lanigerum Hausmann (Hemiptera: Aphididae).Molecular Ecology Resources, 21(1), 316-326. https://doi.org/10.1111/1755-0998.13258 Birney, Ewan, Clamp, Michele, Durbin, & Richard. (2004). GeneWise and Genomewise. Genome Research, 14(5), 988-995. https://doi.org/10.1101/gr.1865504 Blackman, R. L., & Eastop, V. F. (2020). Aphids on the world’s plants: An online identification and information guide. John Wiley & Sons Ltd. http://www.aphidsonworldsplants.info/. Blanco, E., Parra, G., & Guigó, R. (2002). Using geneid to Identify Genes. John Wiley & Sons, Inc. Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 30(15), 2114-2120. doi:10.1093/bioinformatics/btu170 Carolan, J. C., D Caragea, Reardon, K. T., Mutti, N. S., & Edwards, O. R. (2011). Predicted effector molecules in the salivary secretome of the pea aphid (Acyrthosiphon pisum): a dual transcriptomic/proteomic approach. Journal of Proteome Research, 10(4), 1505-18. https://doi.org/ 10.1021/pr100881q Castresana, J. (2000). Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology Evolution, 17(4), 540-552.https://doi.org/10.1093/oxfordjournals.molbev.a026334Chan, P. P., & Lowe, T. M. (2019). tRNAscan-SE: Searching for tRNA genes in genomic sequences. Methods in Molecular Biology, 1962:1-14. In book: Gene Prediction.https://doi.org/10.1007/978-1-4939-9173-0_1Chen, C., Chen, H., Y Zhang, Thomas, H. R., & Xia, R. (2020). Tbtools: an integrative toolkit developed for interactive analyses of big biological data. Molecular Plant, 13(8).https://doi.org/10.1016/j.molp.2020.06.009Chen, W., Shakir, S., Bigham, M., Fei, Z., & Jander, G. (2019). Genome sequence of the corn leaf aphid (Rhopalosiphum maidis Fitch).GigaScience, 8(4). https://doi.org/ 10.1093/gigascience/giz033 Chen, X. M., Yang, Z. X., Chen, H., Qi, Q., Liu, J., & Wang, C., Shao, S. X., Lu, Q., Li, Y., Wu, H. X., King-Jones, K., Chen, M. S. (2020). A complex nutrient exchange between a gall-forming aphid and its plant host. Frontiers in Plant Science, 11, 811. https://doi.org/10.3389/fpls.2020.00811 Clore, A. (2014). gBlocks gene fragments for gene construction and more. Journal of Immunological Methods, 188(1), 165-167. https://doi.org/10.1016/0022-1759(95)00229-4 Dudchenko, O., Batra, S. S., Omer, A. D., Nyquist, S. K., Hoeger, M., Durand, N. C., Shamim, M. S., Machol, I., P., Lander, E. S., Aiden, A. P., & Aiden, E. L. (2017). De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds.Science, 356, 92-95.https://doi.org/10.1126/science.aal3327Dudchenko, O., Shamim, M. S., Batra, S. S., Durand, N. C. & Aiden, E. L. (2018). The Juicebox Assembly Tools module facilitates de novo assembly of mammalian genomes with chromosome-length scaffolds for under $1000. https://doi.org/ 10.1101/254797 Flynn, J. M., Hubley, R., Goubert, C., Rosen, J., Clark, A. G., Feschotte, C., & Smit, A. F. (2020). RepeatModeler2 for automated genomic discovery of transposable element families. PNAS, 117(17), 9451-9457.https://doi.org/10.1073/pnas.1921046117Ghosh, S., & Chan, C. K. (2016). Analysis of rna-seq data using tophat and cufflinks. Methods in Molecular Biology, 1374, 339-61. https://doi.org/ 10.1007/978-1-4939-3167-5_18 Haas, B. J., Salzberg, S. L., Zhu, W., Pertea, M., Allen, J. E., & Orvis, J., White, O., Buell, C. R., & Wortman J. R. (2008). Automated eukaryotic gene structure annotation using EVidenceModeler and the Program to Assemble Spliced Alignments. Genome biology, 9(1), R7. https://doi.org/10.1186/gb-2008-9-1-r7 Hahn, M. W., Demuth, J. P., & Han, S. G. (2007). Accelerated rate of gene gain and loss in primates. Genetics, 177(3). https://doi.org/10.1534/genetics.107.080077 Hirano, T., Kimura, S., Sakamoto, T., Okamoto, A., Nakayama, T., Matsuura, T., Ikeda, Y., Takeda, S., Suzuki, Y., OhshimaI., & Sato, M. H. Reprogramming of the developmental program of Rhus javanicaduring initial stage of gall induction by Schlechtendalia chinensis. Frontiers in Plant Science, 2020, 11, 471.https://doi.org/10.3389/fpls.2020.00471Hu, J., Fang, J. P., Su, Z. Y., & Liu, S. L. (2019). NextPolish: a fast and efficient genome polishing tool for long-read assembly.Bioinformatics, (7), 7. https://doi.org/10.1093/bioinformatics/btz891 Huang, S. F., Kang, M. J., & Xu, A. L. (2017). HaploMerger2: rebuilding both haploid sub-assemblies from high-heterozygosity diploid genome assembly. Bioinformatics 16, 2577.https://doi.org/10.1093/bioinformatics/btx220International Aphid Genomics Consortium. (2010). Genome sequence of the pea aphid Acyrthosiphon pisum. Plos Biology, 8(2), 1-25. https://doi.org/10.1371/journal.pbio.1000313 Julca, I., Marcet-Houben, M., Cruz, F., Vargas-Chavez, C., Johnston, J. S., Gómez-Garrido, J., Frias, L., Corvelo, A., Loska, D., Cámara, F., Gut, M., Alioto, T., Latorre, A., & Gabaldón, T. (2020). Phylogenomics identifies an ancestral burst of gene duplications predating the diversification of aphidomorpha. Molecular Biology and Evolution,37(3), 730-756. https://doi.org/10.1093/molbe v/msz261 Johnson, K. P., Dietrich, C. H., Friedrich, F., Beutel, R. G., Wipfler, B., & Peters, R. S., et al. (2018). Phylogenomics and the evolution of hemipteroid insects. Proceedings of the National Academy of Sciences of the United States of America, 115(50). https://doi.org/10.1073/pnas.1815820115 Katoh, K., Misawa, K., Kuma, K., & Miyata, T. (2002). MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research, 30(14), 3059-3066. https://doi.org/10.1093/nar/gkf436 Katoh, K., & Standley, D. (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability.Molecular Biology and Evolution, 30(4), 772-780. https://doi.org/10.1093/molbev/mst010 Kalvari, I., Argasinska, J., Quinones-Olvera, N., Nawrocki, E. P., Rivas, E., Eddy, S. R., Bateman, A., Finn, R. D., & Petrov, A. I. (2018). Rfam 13.0: shifting to a genome-centric resource for non-coding RNA families. Nucleic Acids Research 46 (Database issue), D335-D342. http://dx.doi.org/10.1093/nar/gkx1038 Karin, L., Peter, H., Rodland, E. A., Stærfeldt, H. H., Rognes, T., & Ussery, D. W. (2007). RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Research, 35(9), 3100-3108.https://doi.org/10.1093/nar/gkm160Korgaonkar, A., Han, C., Lemire, A. L., Siwanowicz, I., & Stern, D. L. (2021). A novel family of secreted insect proteins linked to plant gall development. Current Biology (D1). Kim, D., Landmead, B., & Salzberg, S. L. (2015). HISAT: a fast spliced aligner with low memory requirements. Nature Methods,12(4), 357-360. https://doi.org/ 10.1038/nmeth.3317 Kurosu, U., & Aoki, S. (1992). Gall cleaning by the aphid Hormaphis betulae. Journal of Ethology,9, 51-55. https://doi.org/10.1007/BF02350191.Li, F., Zhao, X., Li, M., He, K., Huang, C., Zhou, Y., Li, Z., & Walters, J. R. (2019). Insect genomes: progress and challenges. Insect Molecular Biology, 28(6), 739-758. https://doi.org/10.1111/imb.12599 Li, L., Stoeckert, C. J., & Roos, D. (2003). OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Research, 13(9), 2178-2189. https://doi.org/10.1101/gr.1224503 Liu, P., Yang, Z. X., Chen, X. M., Foottit, R. G. (2014). The Effect of the gall-forming aphid Schlechtendalia chinensis (Hemiptera: Aphididae) on leaf wing ontogenesis in Rhus chinensis(Sapindales: Anacardiaceae). Annals of the Entomological Society of America, 107(1), 242-250. http://www.bioone.org/doi/full/10.1603/AN13118 Li, Y., Park, H., Smith, T. E., & Moran, N. A. (2019). Gene family evolution in the pea aphid based on chromosome-level genome assembly.Molecular Biology and Evolution, 36(10), 2143-2156.https://doi.org/10.1093/molbev/msz138Li, Y., Zhang, B., & Moran, N. A. (2020). The aphid x chromosome is a dangerous place for functionally important genes: diverse evolution of hemipteran genomes based on chromosome-level assemblies. Molecular Biology and Evolution, 37(8), 2357-2368. https://doi.org/ 10.1093/molbev/msaa095 Mathers, T. C. (2020). Improved genome assembly and annotation of the soybean aphid (Aphis glycines Matsumura). G3: Genes, Genomes, Genetics, 10(3), g3.400954.2019. https://doi.org/10.1534/ g3.119.400954 Mathers, T. C., Chen, Y., Kaithakottil, G., Legeai, F., Mugford, S. T., Baa-Puyoulet, P., Bretaudeau, A., Clavijo, B., Colella, S., Collin, O., Dalmay, T., Derrien, T., Feng, H., Gabaldón, T., Jordan, A., Julca, I., Kettles, G. J., Kowitwanich, K., Lavenier, D., … Hogenhout, S. A. (2017). Rapid transcriptional plasticity of duplicated gene clusters enables a clonally reproducing aphid to colonise diverse plant species.Genome Biology, 18(1), 27. https://doi.org/10.1186/s1305 9-016-1145-3 Mathers, T. C., Mugford, S. T., Hogenhout, S. A. T., & Tripathi, L. (2020). Genome sequence of the banana aphid, Pentalonia nigronervosa Coquerel (Hemiptera: Aphididae) and its symbionts.G3: Genes, Genomes, Genetics, 10(12), 4315-4321. https://doi.org/10.1534/g3.120.401358 Mathers, T. C., Wouters, R. H. M., Mugford, S. T., Swarbreck, D., Van Oosterhout, C., & Hogenhout, S. A. (2020). Chromosome-scale genome assemblies of aphids reveal extensively rearranged autosomes and long-term conservation of the X chromosome. Molecular Biology and Evolution, 38(3):856-875.https://doi.org/10.1093/molbev/msaa246Marçais, Guillaume, Kingsford, & Carl. (2011). A fast, lock-free approach for efficient parallel counting of occurrences of k-mers.Bioinformatics, 27, 764-770. https://doi.org/10.1093/bioinformatics/btr011 Moran, N. A. (1989). A 48-million-year-old aphid-host plant association and complex life cycle: biogeographic evidence. Science, 245(4914), 173-175. https://doi.org/10.1126/science.245.4914.173 Nicholson, S. J., Nickerson, M. L., Dean, M., Song, Y., Hoyt, P. R., Rhee, H., Kim, C., & Puterka, G. J. (2015). The genome of Diuraphis noxia, a global aphid pest of small grains. BMC Genomics, 16(1), 1-16. https:// doi.org/10.1186/s1286 4-015-1525-1 Quan, Q. M., Hu, X., Pan, B. H., Zeng, B. S., Wu, N. N., Fang, G. Q., Cao, Y. H., Chen, X. Y., Li, X., Huang, Y. P., & Zhan, S. (2019). Draft genome of the cotton aphidAphis gossypii. Insect Biochemistry and Molecular Biology, 105, 25-32. https://doi.org/10.1016/j.ibmb.2018.12.007 Rao, S. S. P., Huntley, M. H., Durand, N. C., Stamenova, E. K., Bochkov, I. D., Robinson, J. T., Sanborn, A. L., Machol, I., Omer, A. D., & Lander, E. S. (2014). A 3D map of the human genome at Kilobase resolution reveals principles of chromatin looping. Cell, 158, 1-6. https://doi.org/10.1016/j.cell.2014.11.021 Ranallo-Benavidez, T. R., Jaron, K. S., & Schatz, M. C. (2020). GenomeScope 2.0 and Smudgeplot for reference-free profiling of polyploid genomes. Nature Communications, 11(1), 1432. https://doi.org/10.1038/s41467-020-14998-3 Ruan, J., & Li, H. (2020). Fast and accurate long-read assembly with wtdbg2. Nature Methods, 17(Supp l 6), 1-4.https://doi.org/10.1101/530972Roach, M. J., Schmidt, S. A., & Borneman, A. R. (2018). Purge haplotigs: allelic contig reassignment for third-gen diploid genome assemblies. BMC Bioinformatics, 19(1). https://doi.org/ 10.1186/s12859-018-2485-7 Stamatakis, A. (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30(9), 1312-1313. https://doi.org/10.1093/bioinformatics/btu033 Stanke, M., Keller, O., Gunduz, I., Hayes, A., Waack, S., & Morgenstern, B. (2006). AUGUSTUS: ab initio prediction of alternative transcripts. Nucleic Acids Research, 34 (Web Server issue), W435-439. https://doi.org/10.1093/nar/gkl200 Thorpe, P., Escudero-Martinez, C. M., Cock, P. J. A., Eves-van den Akker, S., & Bos, J. I. B. (2018). Shared transcriptional control and disparate gain and loss of aphid parasitism genes. Genome Biology and Evolution, 10(10), 2716-2733. https://doi.org/10.1093/gbe/evy183 Takeda, S., Yoza, M., Amano, T., Ohshima, I., Hirano, T., Sato, M. H., Sakamoto, T., & Seisuke Kimura, S. (2019) Comparative transcriptome analysis of galls from four different host plants suggests the molecular mechanism of gall development. PLoS One, 14(10), e0223686.https://doi.org/10.1371/journal.pone.0223686Tarailo-Graovac, M., & Chen, N. (2009). Using RepeatMasker to identify repetitive elements in genomic sequences. Current protocols in bioinformatics, Chapter 4, Unit 4.10.https://doi.org/10.1002/0471250953.bi0410s25Walker, B. J., Abeel, T., Shea, T., Priest, M., Abouelliel, A., Sakthikumar, S., Cuomo, C. A., Zeng, Q. D., Wortman, J., Young, S. K., & Earl, A. M. (2014). Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One, 9(11), e112963.https://doi.org/10.1371/journal.pone.0112963Waterhouse, R. M., Seppey, M., Simao, F. A., Manni, M., Ioannidis, P., Klioutchnikov, G., . . . Zdobnov, E. M. (2018). BUSCO applications from quality assessments to gene prediction and phylogenomics. Molecular Biology and Evolution, 35(3), 543-548. https://doi.org/10.1093/molbev/msx319 Wang, Z., Ge, J., Chen, H., Cheng, X., Yang, Y., Li, J., Whitworth, R. J., & Chen M. C. S. (2018). An insect nucleoside diphosphate kinase (NDK) functions as an effector protein in wheat - Hessian fly interactions. Insect Biochemistry and Molecular Biology, 100, 30-38. https://doi.org/10.1016/j.ibmb.2018.06.003 Wenger, J. A., Cassone, B. J., Legeai, F., Johnston, J. S., Bansal, R., Yates, A. D., Coates, B. S., Pavinato, V. A. C., & Michel, A. (2016). Whole genome sequence of the soybean aphid, Aphis glycines.Insect Biochemistry and Molecular Biology, 123, 102917. https://doi.org/10.1016/j.ibmb.2017.01.005 Wool, D. Galling aphids: specialization, biological complexity, and variation. (2004). Annual Review of Entomology, 49(1), 175. https://doi.org/10.1146/annurev.ento.49.061802.123236 Yang, Z. H. (2007). PAML 4: phylogenetic analysis by maximum likelihood.Molecular Biology and Evolution, 24(8), 1586-1591. https://doi.org/10.1093/molbev/msm088 Yang, Z. X., Ma, L., Francis, F., Yang, Y., Chen, H., Wu, H. X., & Chen, X. M. (2018). Proteins identified from saliva and salivary glands of the Chinese gall aphidSchlectendalia chinensis. Proteomics, 18, 1700378. https://doi.org/10.1002/pmic.201700378 Zhang, C. X., Tang, X. D., & Cheng, J. A. (2008). The utilization and industrialization of insect resources in China. Entomological research, 38, S38-S47. https://doi.org/10.1111/j.1748-5967.2008.00173.x Zhang, G. X., Qiao, G. X., Zhong, T. S., & Zhang, W. Y. (1999). Fauna Sinica, Insecta Vol. 14 Homoptera, Mindaridae and Pemphigidae. Science Press, Beijing.
Zhao, C. Y., Escalante, L.N., Chen, H., Benatti, T. R., Qu, J. X., Chellapilla, S., Waterhouse, R. M., Wheeler, D., Andersson, M. N., Bao, R., Batterton, M., Behura, S. K., Blankenburg, K. P., Caragea, D., Carolan, J. C., Coyle, M., El-Bouhssini M., Francisco L., … Richards S. (2015) A massive expansion of effector genes underlies gall-formation in the wheat pest Mayetiola destructor .Current Biology 25 (5): 613-620. https://doi.org/10.1016/j.cub.2014.12.057