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Abstract  15 

During the history of range expansion, the populations encounter with variety of 16 

environments. They respond to the local environments by modifying the mutually interacting 17 

traits. Therefore, to understand the whole life history of the populations, it is ideal to capture 18 

the history of their range expansion with reference to the series of surrounding environments 19 

and to infer the coadaptation of the multiple traits. Toward this end, we provide an 20 

exploratory analysis based on the features of populations: site frequency spectra of 21 

populations, population-specific FST, association between genes and environments, positive 22 

selections on traits mapped on the admixture graph, and GWAS results. Correspondence 23 

analysis of genes, environments, and traits provides a bird's-eye view of the history of 24 

population differentiation and range expansion and various types of environmental selections 25 

at the times. Principal component analysis of the estimated trait-specific polygenic 26 

adaptations mapped on the admixture graph enables to understand the coadaptation of 27 

multiple traits. The potential usefulness was confirmed by analyzing a public dataset of wild 28 

poplar in northwestern America. In response to the northern cold temperature and longer 29 

daylength, the populations increased the photosynthetic activity and nutrient use efficiency at 30 

the expense of the risk of pathogen invasion, and in response to warm temperature, they 31 

increased the growth. At higher altitude, they shifted the maximum activity to earlier period in 32 

spring to reduce the activity in dry summer. The R codes for our representation method and 33 

simulations of population colonization used in this study are available as supplementary 34 

script.  35 
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1 | INTRODUCTION 40 

Populations adapt to new environments through selection on pre-existing alleles and/or new 41 

mutations in adaptation-related loci in the genomes (Barrett & Schluter, 2008). Therefore, 42 

adaptation of populations of a species to novel environments changes allele frequencies of 43 

loci under selection. Environmental adaptation processes can also create significant 44 

differences in phenotypes and traits among populations of a species. When correlated with 45 

variation in environmental factors over local subpopulations (hereafter, populations), such 46 

variation in traits and phenotypes may reflect phenotypic plasticity or genetic adaptation of 47 

the populations. Coop, Witonsky, Di Rienzo, & Pritchard (2010) proposed to detect 48 

significant correlations between the SNP allele frequencies and the environmental variables, 49 

bypassing the trait variables. Through the annotation of the identified SNPs, it may be 50 

possible to characterize the type of adaptation. 51 

 52 

Adaptation to environmental factors can change traits and phenotypes of a species, thereby 53 

creating population structure underpinned by functional loci. Geographical isolation, which 54 

can lead to reproductive isolation and consequent differences in allele frequencies of neutral 55 

loci, also contributes to population structuring (Wright, 1965). Divergent selection in an 56 

environmental gradient may affect genome-wide population structure (Nosil, Funk, & Ortiz-57 

Barrientos, 2009; Orsini, Vanoverbeke, Swillen, Mergeay, & De Meester, 2013). Empirical 58 

studies showed that aridity gradients caused geographically structured populations of Poaceae 59 

characterized by cytotype segregation of diploids and allotetraploids (Manzaneda et al., 60 

2012). Geographic distance and habitat differences between populations impacted population 61 

structure of marine species (Bradbury & Bentzen, 2007; Jorde et al., 2015; Kitada, 62 

Nakamichi, & Kishino, 2017). Therefore, population structure needs to be considered when 63 

analyzing correlations among genes, traits, and environmental factors across population 64 
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samples taken from a wide range of geographical regions. 65 

 66 

Genome-wide association studies (GWASs) are widely used to identify associations between 67 

genes and traits/environments (Visscher et al., 2017). When data are obtained from a 68 

metapopulation exhibiting population structure, the effect of genotypes can be inferred by 69 

eliminating population structure effects (Devlin & Roeder, 1999) to avoid spurious 70 

associations (Pritchard & Rosenberg, 1999). One representative software program, TASSEL 71 

(Yu et al., 2006; Bradbury et al., 2007), performs this type of analysis using a unified mixed 72 

model. Alternatively, a structured population can be decomposed into Hardy–Weinberg 73 

populations, and the associations tested for each population (Pritchard, Stephens, Rosenberg, 74 

& Donnelly, 2000). Future challenges for large-scale GWASs from wild populations (wild 75 

GWASs) include development of methods that take population structure into account (Santure 76 

& Garant, 2018). Even greater challenge is phenotypic plasticity, which may be identified as a 77 

systematic error in the genetic models. 78 

 79 

So-called “genome scan methods” consider geographically structured populations and detect 80 

SNPs related to environmental variables, traits, and phenotypes (De Mita et al., 2013; De 81 

Villemereuil, Frichot, Bazin, François, & Gaggiotti, 2014). For example, BayeScan (Foll & 82 

Gaggiotti, 2008) measures the significance of SNP’s locus-specific global FST values, the 83 

amount of genetic variations among populations, in Bayesian framework. Genotype-84 

environment associations (GEAs) analyze the allele frequencies of SNPs in sampling 85 

locations and test their associations with the environmental variables (Capblancq et al., 2020). 86 

Bayenv (Coop, Witonsky, Di Rienzo, & Pritchard, 2010) and the latent factor mixed model 87 

(Frichot, Schoville, Bouchard, & François, 2013) can detect SNPs that are highly correlated 88 

with environmental factors and traits on the basis of allele frequencies. Notably these methods 89 
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essentially do not require phenotypic data. Hence, they are valid especially when the life 90 

history is complex and cannot be appropriately measured by a few trait variables or the 91 

environmental selection on the phenotypes are not characterized (Capblancq et al., 2020). 92 

During the evolutionary history of range expansion, the frequencies of existing and derived 93 

alleles in a population vary stochastically, and various pressures of environmental selection 94 

affect the allele frequencies of related genes and phenotypes. Systematic information on the 95 

associations between traits and SNPs in some species such as human (Watanabe et al., 2019) 96 

and Arabidopsis (Togninalli et al., 2019) enabled to map adaptive evolution of polygenic traits 97 

on the admixture graph (Racimo, Berg, & Pickrel, 2018). 98 

 99 

However, the wild populations change their distributions gradually or abruptly generation 100 

after generation and encounter with variety of environments. They adapt to the local 101 

environments by modifying in balance their multiple traits that are mutually inter-related. For 102 

example, populations of sockeye salmon exhibit diversity about life history traits such as 103 

spawning time and habitat, and adaptation to local spawning and rearing habitats within 104 

complex lake systems (Hilborn, Quinn, Schindler, & Rogers, 2003). Such reproductive traits 105 

adapted to specific environment might be controlled by related genes. Gonadotropin-releasing 106 

hormone (GnRH) increases in adult salmon brains during homing migration, and controls 107 

gonadal maturation during the final phases of upstream migration to spawn (Ueda, 2019). 108 

Populations of walking stick insects diverged in body size, shape, host preference, and 109 

behavior in parallel with the divergence of their host plant species (Nosil, Crespi, & Sandoval, 110 

2002).  111 

 112 

To understand the life history of the populations, it is necessary to overview the history of the 113 

range expansion with reference to the newly encountered environments and to capture the 114 
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coadaptation of the multiple traits under the selections. This paper provides an exploratory 115 

approach to characterize the range expansion and the environmental adaptations of the 116 

populations through the correspondence analysis of genes, traits, and environments, and the 117 

multivariate analysis of traits’ polygenic adaptations mapped on the admixture graph. The R 118 

codes for our representation method and simulations of population colonization used in this 119 

study are available in the Supporting Information. This approach also accepts SNP genotype 120 

data, and reads Genepop format (Raymond & Rousset, 1995; Rousset, 2008). 121 

 122 

2 | MATERIALS AND METHODS 123 

2.1 | Colored correspondence analysis: history of range expansion and environmental 124 

stress 125 

On the basis of the values of the environmental factors, the mean values of the traits, and the 126 

allele frequencies at SNPs in each population, correspondence analysis (Benzécri, 1973; 127 

Hayashi, 1953) generates a biplot that visualizes the correspondence between the populations 128 

and the variables of traits, environments, and genes (SNPs). We had hoped to map the 129 

populations with reference to the types of the environment to which they adapt and SNPs with 130 

which they adapt. Therefore, as for the allele frequencies at SNPs, we used the frequencies of 131 

derived alleles to infer signatures of environmental adaptation. However, it is difficult to 132 

know which allele is derived in the actual data without the information on the states in the 133 

closely related species. In this paper, we adopted an ad hoc approach of using the frequencies 134 

of minor alleles as a substitute, expecting that the frequencies of most of derived alleles tend 135 

to be still low. This simple assignment for derived alleles may have errors, but we hoped that 136 

it would capture the SNPs that enhanced the allele frequencies to adapt to the local 137 

environments. To distinguish the association by positive and negative correlations, we 138 

introduced two types of environmental variables: the original environmental value itself, and 139 
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the sign-reversed value of the original value. Genes and traits that had a positive/negative 140 

correlation with the original environmental factors were connected to the original/sign-141 

reversed environmental variables. 142 

 143 

To understand the populations in the context of the evolutionary change in the distributional 144 

range, we assigned a gradient of colors to the populations. The colors represent population-145 

specific FST (Weir & Goudet, 2017). Population-specific FST estimates the genetic deviation 146 

from the ancestral population on the basis of the difference between the heterozygosity of the 147 

entire population-pairs and the heterozygosity of each population. The Weir & Goudet’ 148 

population-specific FST moment estimator can identify the source population and trace the 149 

history of range expansion based on heterozygosity under the assumption that populations 150 

closest to the ancestral population have the highest heterozygosity (Kitada, Nakamichi, & 151 

Kishino, 2021). We extended the population-specific FST estimator to overall loci as 152 

ps𝐹෠ୗ୘
௜ =

∑ (𝑀෩ௐ,௟
௜ − 𝑀෩௟

஻)௅
௟ୀଵ

∑ ൫1 − 𝑀෩௟
஻൯௅

௟ୀଵ

 , 153 

where 𝑀෩ௐ,௟
௜  is the unbiased within-population matching of two distinct alleles of locus 𝑙 (𝑙 =154 

1 ~ 𝐿) in population 𝑖 (𝑖 = 1 ~ 𝐾), and 𝑀෩௟
஻ is the between-population-pair matching average 155 

over pairs of populations (Buckleton et al., 2016).  To interpret the adaptation of the 156 

populations, we identified the significant correlations between the genes and the 157 

environmental variables (Appendix 1). 158 

 159 

2.2 | PCA of multiple traits polygenic adaptations mapped on the admixture graph 160 

To understand the coadaptation of multiple traits in the life history of the populations, we 161 

conducted principal component analysis (PCA) on the outputs of PolyGraph (Racimo, Berg, 162 

& Pickrel, 2018). The dynamics of geographical distribution of the populations is first 163 
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approximated by a set of population differentiation and admixture. Given the allele 164 

frequencies of the neutral SNP loci, the pairwise genetic distance among populations can be 165 

decomposed into the genetic drifts if we know the history of differentiation and admixture of 166 

their ancestral populations. TreeMix (Pickrell & Pritchard, 2012) estimates the structure of 167 

this admixture graph by fitting the genetic distances predicted from the scenario of the genetic 168 

drifts to the observed genetic distances in the Bayesian framework. Using allele frequencies 169 

of SNPs associated with a trait as predictors, PolyGraph estimates the positive selection on 170 

the trait occurring along the edges of the admixture graph. The directional changes of their 171 

allele frequencies toward the increase/decrease of the trait values are called as positive 172 

selection parameters. To obtain the input data required for PolyGraph, we conducted GWAS 173 

for each of the traits considered (see Appendix 2). To understand the coadaptation of multiple 174 

traits, we made a matrix, by binding the vectors listing the positive selection parameter values 175 

for the traits. To see the multiple-traits coadaptation with reference to the environmental 176 

variables, we added the among-populations correlations with the environmental variables for 177 

each column representing the trait profile. Then, we performed PCA of the estimated positive 178 

selection parameters and the environmental factors. Using the factor loading, the positive 179 

selection values on the first and the second principal components were calculated as the linear 180 

combinations of the trait-specific parameter values and were mapped to the admixture graph. 181 

 182 

2.3 | Simulation of range expansion and adaptation 183 

To illustrate how the overview generated by the exploratory analysis can be interpreted, we 184 

conducted a simulation of the colonization and strong environmental selection (Austerlitz, 185 

Jung-Muller, Godelle, & Gouyon, 1997) and included K (= 25) linearly arrayed populations. 186 

Starting from population 1 located at the edge, populations were successively colonized in 187 

every 10 generations and exposed to the local environments (Supplementary Figure S1). The 188 
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allele frequencies of the SNPs in each population varied stochastically by genetic drift, 189 

colonization of its ancestral population, and selection pressure of the environments. The 190 

environmental factor had two states, severe and normal, and the values 1 and 0 were assigned 191 

to the states. The environmental factor had the value of 0 in most populations. Only 192 

populations 9 and 15 were exposed to severe environments. The environmental factor does 193 

not affect the allele frequencies at the neutral SNPs but affects the allele frequencies of the 194 

SNPs that contribute the traits. Adaptation to an environmental stress is often accompanied by 195 

the cost of reduced activity in the normal environment (e.g., Baucom & Mauricio, 2004); 196 

therefore, the derived alleles can adapt to the severe environment at the expense of cost in the 197 

normal environment (see Appendix 3 for details). The sample size was set to 50 for each of 198 

the 25 populations. We simulated the case of strong selection and cost of adaptation. 199 

 200 

In this study, we needed to simulate the dynamics of phenotypic traits and the allele 201 

frequencies at the loci that contribute to the traits. It was not computationally practical to 202 

specify the selection coefficients on the loci directly and to carry out individual-based 203 

simulation. As a result, we simulated the dynamics of the population allele frequencies and 204 

mean traits, assuming that the traits are polygenic and in the form of sum of monogenic latent 205 

traits. While the pre-existing alleles as well as the de novo mutations contribute to 206 

environmental adaptations, in this simulation, we assumed, for simplicity, that the relevant 207 

pre-existing loci were already monomorphic in the ancestral population. Two traits under the 208 

selection of environments were polygenic but generated by summing up five latent traits that 209 

are monogenic and affected by the environments. The derived allele at the genetic locus 210 

contributing to each latent trait had the selection coefficient of 𝑠 = 0.1 in the severe 211 

environment and −0.1 in the normal environment (see equations A4 and A5 in Appendix 3).  212 

 213 
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2.4 | Application to wild poplar data in North America 214 

As an empirical example, we analyzed publicly available data that included genetic and trait 215 

information of 441 individuals of wild poplar (Populus trichocarpa), which were collected 216 

from various regions over a range of 2,500 km near the Canadian–US border at a latitude of 217 

44 to 59 N, a longitude of 121 to 138 W, and an altitude of 0–800 m (McKown et al., 218 

2014a; McKown et al., 2014b; Geraldes et al., 2013). The data included geographical 219 

information of sampling locations, genotypes of 34,131 SNPs (3,516 genes), and values of 220 

stomatal anatomy, leaf tannin, ecophysiology, morphology, and disease. These individuals 221 

consists of 25 drainages (populations) (Geraldes et al. 2014): 9 in northern British Colombia 222 

(NBC), 12 in southern British Colombia (SBC), 2 in inland British Colombia (IBC), and 2 in 223 

Oregon (ORE). We calculated the averages of the environmental values at the sampling 224 

locations and phenotypic values of the individuals, and we considered them representative 225 

values of the trait and environment for each population. We plotted the longitudes and 226 

latitudes for the individuals on the map (Figure 1). Because our major concern was 227 

identifying correlations between among-population differentiations of genes, traits, and 228 

environmental factors, we selected the SNP with the highest global FST value over 25 229 

populations from each of the 3,516 gene regions. Here, we focused on the 45 trait variables 230 

(Supplementary Table S1; McKown et al., 2014a; McKown et al., 2014b), namely, adaxial 231 

stomata density (ADd), abaxial stomata density (ABd), average of two measurements of leaf 232 

rust disease morbidity (DP), 14 phenology traits, 12 biomass traits and 16 ecophysiology 233 

traits (see Supplementary Table S1). Each sampling location of a population was described by 234 

nine environmental/geographical variables: altitude (ALT), longest yearly daylength 235 

(photoperiod) (DAY), frost-free days (FFD), mean annual temperature (MAT), mean warmest 236 

month temperature (MWMT), mean annual precipitation (MAP), mean summer precipitation 237 

(MSP), annual heat–moisture index (AHM, ~MAT/MAP, an indicator of drought), and 238 
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summer heat–moisture index (SHM, ~MWMT/MSP). The day length and temperature have a 239 

north-south cline, while temperature, rainfall, and drought have an east-west (coastal to 240 

inland) cline (Geraldes et al. 2014). In addition, 18 soil conditions, namely, the ratio of clay, 241 

silt, sand, and gravel, soil depth, bulk density, cation exchange capacity, organic carbon, pH, 242 

each which were observed in topsoil and subsoil, were obtained from The Unified North 243 

American Soil Map (Liu et al., 2013) and used as environmental values of the sampling 244 

locations (see Supplementary Table S2). 245 

 246 
Figure1 Wild poplar populations in North America. The sampled individuals were 247 

classified into 25 populations. Populations were grouped into the regions: North British 248 

Columbia (NBC), South British Columbia (SBC), Inland British Columbia (IBC) and Oregon 249 

(ORE). The populations were labeled by the first characters of the region names and the id 250 

numbers. Data are from Geraldes et al. (2013) and McKown et al. (2014a, 2014b). 251 

 252 

3 | RESULTS 253 

3.1 | Analysis of simulated data and performance of our method 254 
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Figure 2 shows the results of our gene-trait-environment association analysis using simulated 255 

data, consisted of the correspondence analysis, population-specific FST values, admixture 256 

graph estimated by TreeMix, polygenic trait adaptation estimated by PolyGraph and PCA of 257 

estimated positive selection parameters and environmental value.  Figure 2a shows the biplot 258 

of the correspondence analysis for the genetic–environmental parameter 𝑠 = 0.1; that is, the 259 

homozygote of the derived allele is 1.1 times more advantageous than the homozygote of the 260 

ancestral allele under the severe environmental condition (𝐸 = 1) and 1.1 times less 261 

advantageous under the normal environmental condition (𝐸 = 0) (see Appendix 3 for 262 

details). Even adaptive mutations, with fixation probability ~1 − 𝑒ିଶ௦, have little chance to 263 

become dominant. Because of the cost of adaptation, the adaptive mutations were most likely 264 

to be deleted immediately, unless they occurred in pop9, pop15, or their immediate colonizers 265 

(data not shown). 266 

 267 

The gradient of the colors assigned to the populations in the biplot indicates the history of 268 

range expansion on the basis of population-specific FST values and the environmental stresses 269 

that the population experienced during the course of range expansion. The environmental 270 

factor and environmentally adaptive genes showed positive correlations (connection between 271 

green node +E and purple nodes). However, the environmental factor and trait showed 272 

negative correlation (connection between green node -E and the orange node). Most of the 273 

populations were characterized by neutral loci; however, pop9 and pop15 were located near 274 

the environmental factor. If the populations can be distinguished through neutral loci, this is a 275 

sign of isolation-by-adaptation, which requires strong fitness costs to immigration within the 276 

population, and thus signs very strong selection. Population-specific FST values and admixture 277 

graph (Figure 2b and 2c) reveal that the history that population expansion started around pop1 278 

and extended through pop25. 279 
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 280 

The estimated positive selection parameters plotted on admixture graph (Figure 2c) shows 281 

that the population pop9 decreased the trait T1 when they diverged from pop8 and was 282 

exposed to the severe environment. Pop15 decreased the trait T2 when they diverged from 283 

pop14 and was exposed to the sever environment. PCA of positive selection parameters and 284 

environment (Figure 2d) represents the pattern of coadaptation of the two traits in response to 285 

the environmental selection pressure. The 1st principal component is the opposing axis 286 

between the traits and the environment, which explained 65.3% of the variance of the 287 

selection parameters and environmental variables. Pop9 and Pop15 decreased the traits under 288 

the sever state of the environment. The 2nd principal component explain the difference 289 

between the two traits, 𝑇ଵ − 𝑇ଶ, and explained 34.7% variance. The difference was large in 290 

pop15 and small in pop9. 291 

  292 
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 293 

Figure 2 Performance of the exploratory data analysis; simulated data. (a) 294 

Correspondence analysis of simulated colonization and adaptation. Green nodes represent 295 

environmental factor 𝐸. The plus sign (+E) indicates the original environmental value, 296 

whereas the minus sign (-E) represents the sign-reversed environmental value. Gray nodes are 297 

neutral and environmentally adaptive loci. The orange node is the observed traits 𝑇1 and 𝑇2. 298 

Each population label is colored by its population-specific FST value. Numbers from 1 to 25 299 

represent populations, and the color gradients on population labels represent the standardized 300 

magnitude of a population-specific FST value at the sampling point, with colors between blue 301 

(for the largest FST, which represents the youngest population) and red (smallest FST, which 302 

represents the oldest population). (b) Estimated population-specific FST values. The order of 303 



15 

 

the population-specific FST estimates was stable in 100 simulations, and the point estimates 304 

from the first run were plotted with their asymptotic standard errors.  (c) Estimated admixture 305 

graph and adaptation of traits T1 and T2. Blue color indicates the decrease of trait values. (d) 306 

Principal component analysis (PCA) of estimated positive selection parameters and 307 

environments. 308 

 309 

3.2 | Analysis of wild poplar data 310 

3.2.1| Correspondence Analysis  311 

Our generated 2D plot of correspondence and correlation analysis identified the global 312 

structure of genetic differentiation and adaptation (Figure 3a). The placement of populations 313 

and coloration by population-specific FST provide an interpretation of habitat expansion of 314 

three directions, from the inland to the coast and to northern and southern areas (Figure 3b, 315 

population s27, which has the lowest value of population-specific FST, may be better labeled 316 

as “si27” because it is located inland).  317 

 318 

 319 
Figure 3 Perspective of the genes, environments, and traits and the life history of the 320 

western North American wild poplar populations. (a) Correspondence analysis. 321 

Populations are indicated in the cloud of genes (SNPs, marked as dots), environments 322 
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(colored green), and traits (colored yellow). Environment labels with plus signs represent the 323 

original environmental values, whereas environment labels with minus signs (in italic) 324 

represent the sign-reversed environmental values. The colors of the populations represent low 325 

(red) and high (blue) population-specific FST values. (b) Population-specific FST values of the 326 

25 populations. The heading population labels, “n”, “s”, “i”, and “o” represent populations in 327 

the regions of Northern British Columbia, Southern British Columbia, Inland British 328 

Columbia, and Oregon respectively. Supplementary Table S1 and S2 list the 45 trait variables 329 

and 29 environmental variables shown in the figure. 330 

 331 

The color gradient of population-specific FST values on the population labels indicated that 332 

the ancestral population might inhabit the inland area (SBC s27 and IBC, i15, i16), which is 333 

characterized by high altitude (+ALT) and dry conditions year-round (+AHM, -MAP), as 334 

shown in the center of Figure 3a. Dry conditions (+AHM) were correlated with genes 335 

associated with drought and osmotic regulation (see Appendix 1, Supplementary Table S3) : 336 

CBF4 (response to drought and cold stress; Haake et al., 2002, Hussain et al., 2018), XERICO 337 

(response to osmotic stress, response to salt stress; Ko, Yang, & Han, 2006), SAL1 (response 338 

to water deprivation and salt stress; Wilson et al., 2009), MYB85 (cell wall biogenesis 339 

responding water deprivation and salinity; Winter et al., 2007), and APX1 (water deficit; 340 

Zandalinas et al. 2016). This indicates that poplar was initially adapted to the dry and cold 341 

uplands.  342 

 343 

Slightly larger population-specific FST values than those of IBC (Figure 3a,b) indicated that 344 

the population expansion might have then occurred to the coastal area (SBC), which was 345 

characterized by relatively short day length in summer (-DAY); this means that the seasonal 346 

variation of day length is small in the southern area, with mild temperatures (+MAT, +FFD) 347 

and wet conditions year-round (-AHM, +MAP), as plotted in lower left of Figure 3a. The 348 

small seasonal variation of day length (-DAY) was correlated with abaxial stomata density, 349 
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which indicated that strong southern sunlight stimulates photosynthesis and requires many 350 

stomata. Mild temperatures (+MAT, +FFD) were correlated with genes associated with body 351 

growth: GH3.9 (root growth; Khan & Stone, 2007), GSL12 (signaling during growth and 352 

development; Yadav et al., 2014), and iqd2 (leaf growth regulator; Nikonorova et al., 2018). 353 

The year-round wet environment (-AHM) was correlated with a gene related to water 354 

conditions, HRA1 (response to hypoxia, Giuntoli et al., 2014). The results indicated that 355 

populations in SBC were adapted to warmth and oxygen deprivation due to excessive water. 356 

After adaptation in SBC, wild poplar might have expanded to the southern area (ORE), which 357 

is characterized by warm and dry conditions, particularly in the summer (+SHM). Dry 358 

summer (+SHM) was correlated with stress response in the gene NAC090 (salt and drought 359 

tolerance; Zang et al., 2019), which revealed that the population adapted to hot and dry 360 

summer conditions. In such dry environment particularly in ORE, the soil consisted of sub 361 

soil clay and top soil gravel with little sand to maintain water retention and root growth. 362 

Contrarily, the top soil consisted of soil sand and clay with little sub soil silt in SBC to control 363 

excessive water to maintain good drainage to prevent root rot with cation absorption (tCation 364 

and sCation).  365 

 366 

Populations in NBC had large population-specific FST values and small genetic diversity, 367 

suggesting that they are young, and that wild poplar expanded to the northern area. This area 368 

is characterized by long day length in summer (+DAY), which means that day length varies 369 

greatly from season to season, and low temperatures (-MAT, -MWMT, -FFD), as described in 370 

Figure 3a. These variables were correlated with adaxial stomata density and leaf rust disease 371 

(DP). This finding supports the preceding knowledge that the adaxial stomata compensates for 372 

reduced photosynthetic efficiency in the northern area; however, there is a risk of pathogen 373 

invasion (Melotto et al., 2006). DAY was correlated with genes associated with light 374 
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conditions: ACT7 (response to light stimulus; McDowell et al., 1996), PRR7 (circadian 375 

rhythm; Alabadí et al., 2001), PRR5 (response to long day condition; Nakamichi et al., 2005) 376 

and GA3OX1 (response to red light and gibberellin; Nelson et al., 2010). These results 377 

indicated that the population adapted to the light conditions, which vary greatly among 378 

seasons. 379 

 380 

3.2.2| PCA and the multiple-traits coadaptation mapped on the admixture graph 381 

To interpret the correlations suggested from the correspondence analysis in the context of the 382 

life history of the populations, we first estimated the history of population differentiation and 383 

admixture by applying TreeMix to the population-specific genotype frequencies of the 34,131 384 

SNPs. Out of the 45 traits, significant associations with genes were detected for 25 traits. For 385 

each of the 25 traits, we mapped the positive selection parameters on the admixture graph by 386 

utilizing the associated-SNPs allele frequencies (see Appendix 2, Supplementary Table S4) in 387 

the populations using PolyGraph (Supplementary Figure S2). Then, we performed PCA of 388 

positive selection parameters obtained from PolyGraph and environmental variables (see 389 

Methods, Supplementary Table S5).  390 

 391 

The 1st principal component explains the coadaptation of the populations during the north-392 

south extension of their distribution. They encountered with change in day length, 393 

temperature and chemical content of soil (Figure 4a). Northward extension (higher latitude 394 

(LAT)) was accompanied by longer day length (DAY). To adapt to such an environmental 395 

change, the populations increased photosynthetic activity (Amax), the rate of gas change (gs), 396 

and the efficiency of the nutrient use efficiency (NUE). The increased photosynthetic activity 397 

with increased stomatal numbers increased the risk of invasion of pathogen (DP). The 398 

southward expansion with higher temperature (mean annual temperature (MAT) and mean 399 
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warmest month temperature (MWMT)) with more frost-free days (FFD), they had a higher 400 

growth (GrRate, HGain), in height (Height) and got more branches (nBranch). 401 

Correspondingly, they had longer period of growth (GrthPrd), longer time to bud set 402 

(BudSet), and longer lifespan of leaves (LeafLife, Yel) and canopy (CanoDr). Figure 4b 403 

summarizes such the predicted increase/decrease of these traits on the admixture graph.  404 

 405 

The 2nd principal component shows the adaptation to the difference of water availability. The 406 

environment of larger mean annual precipitation (MAP) and mean summer precipitation 407 

(MSP) generated the top and sub soil sandy (tSand and sSand) and of cation (tCation and 408 

sCation). Shortage of water with large heat-moisture ratio in summer (SHM) and annually 409 

(AHM) at high altitude (ALT) generated fine-grained soil: the top and sub soil of silt (tSilt and 410 

sSilt) and clayish top soil (tClay). The populations with less water availability shifted the 411 

timing of the growth to earlier period with shortened time to bud break (BudBrk) and leaf 412 

flush (LeafFl) by increased activity with large leaf mass per area in spring  (LMAspr) and 413 

reduced the activity in summer: smaller leaf mass per area in summer (LMAsum). As a result, 414 

height/diameter ratio (HD) increased.  415 

 416 
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 417 

Figure 4 Multiple traits coadaptation in the western North American wild poplar 418 

population. (a) Principal component analysis. For each trait, the vector of positive selection 419 

parameters that characterize the predicted increase/decrease of the trait value on the admixture 420 

graph was estimated using PolyGraph. To understand the coadaptation with reference to the 421 

local environments, the among-populations correlation with the environmental variables were 422 

added to the vector. The expanded vectors were combined, generating a multivariate data of 423 

traits with profiles of positive selection and the correlation with environments (see Materials 424 

and Methods). The labels colored blue (populations) and green (environments) represent 425 

edges of the admixture graph and the environments. The labels colored red represent traits. 426 

Only the terminal edges leading to the current populations are shown and the other internal 427 

edges are shown as points. (b) Positive selections of the “principal component traits”. For 428 

each principal component, the vector of the positive selection parameter values was obtained 429 

as linear combination of the trait-specific selection parameter values with the weight of the 430 

factor loadings and mapped on the admixture graph. Red/blue colors represent the selection 431 

toward the increase/decrease of the “principal component trait” values. 432 

 433 

4 | DISCUSSION 434 

A population evolves in space and time and responds to variable environments. From its birth, 435 

a population may continuously change its distribution range, and the initial localities may 436 

have occasionally been exposed to unprecedented environmental stress. In these localities, 437 
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individuals and populations can acclimate to such environmental stresses by phenotypic 438 

plasticity in a short term, and in a long term, the populations can adapt by changing its 439 

geographical distribution or genomes. We focused on the latter and attempted to understand 440 

the whole life history of the populations. Toward this end, we conducted an exploratory 441 

analysis of multiple-traits coadaptation. The whole scheme of the analysis is multiple layered. 442 

In the first layer, we generated the features that are used as inputs for the second layer 443 

analysis. They are population-wise SNPs site frequency spectra, genome-wide association 444 

with traits and environments, polygenic adaptations mapped on the admixture graph, and 445 

obtained by the ever-evolving population genetic and quantitative genetic procedures. The 446 

exploratory analysis is the second layer analysis of the features generated in the first layer 447 

analysis. 448 

 449 

To overview the whole scenario of the historical change of geographical distribution and the 450 

adaptation to the new environments at the times, we conducted correspondence analysis that 451 

locates populations in relation with the SNPs, environmental variables, and trait variables. 452 

From the biplot, the history of range expansion and differentiation were inferred by the values 453 

of the population-specific FST. To interpret the adaptations, we referred the first layer analysis 454 

of association study searching for the genes that are associated with the environmental 455 

variables surrounding the characteristic groups of populations. 456 

 457 

To understand the coadaptation of multiple traits, we analyzed the correlations among the 458 

estimated history of positive selections increasing/decreasing the traits values. They were 459 

obtained by the first layer analysis of constructing the admixture graph representing the 460 

history of population differentiation and admixture and of mapping the positive selection 461 

parameters on the admixture graph based on the spatial allele frequencies of the SNPs 462 
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associated with the traits. 463 

 464 

We attempted to show, through the numerical simulation and an analysis of an empirical data, 465 

that the complexity of populations’ life history can be interpreted well solely by integrating 466 

the information of among-populations genetic difference, genome-wide association with 467 

multiple environments and multiple traits. Multiple layered approach may be a practical 468 

choice. Our approach is still in its infancy. One direction of future study is to include latent 469 

variables that are interpreted as key elements of environmental selection and adaptation. 470 

Another direction is an attempt to quantify the pattern of adaptation. A natural framework is a 471 

Bayesian approach that use the features provided by the first layer analysis as the prior 472 

information. 473 

 474 

As a final remark, we note that our analysis uses populations as units of the analysis. 475 

However, populations are often defined by post-stratification of the sample. In the case of 476 

wild poplar data, we adopted the population assignment provided by the original dataset. The 477 

power of our exploratory approach depends on the accuracy of the assignment of the 478 

individuals to local populations. Individual-level analysis deserves consideration. 479 

 480 
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 709 

Appendix 1| Gene–environment correlation 710 

To interpret the adaptation to each type of the local environments, we identified the significant 711 

correlations between the environment and genes (SNPs). We accounted for the correlation 712 

structure of the residuals. At each locus, the variance matrix of the observed allele frequencies 713 

reflects the genetic drift and gene flow and the sampling variance (Nicholson, Smith, Jónsson, 714 

Gústafsson, & Stefánsson, 2002; Coop, Witonsky, Di Rienzo, & Pritchard, 2010). Here, we 715 

adopted the frequentist approach to choose significant pairs given a value of false discovery 716 

rate (FDR) (1% for the simulation and 5% for the poplar data). 717 

 718 

We consider 𝐾 populations derived from a common ancestral population and 𝐿 loci of 719 

biallelic neutral markers. Let 𝑝௜
௟ and 𝑝஺

௟  be the derived allele frequency of marker 𝑙 (𝑙 =720 

1 –  𝐿) in population 𝑖 (𝑖 = 1 –  𝐾) and the (unobserved) ancestral population. Given the 721 

samples from the populations, the allele frequencies are estimated by the observed counts as 722 

𝑝̂௜
௟ = 𝑛௜

௟ 𝑛௜⁄ , where 𝑛௜ is the number of the samples (twice of the number of individuals) in 723 

population 𝑖, and 𝑛௜
௟ is the count of derived allele at marker 𝑙 in population 𝑖. 724 

 725 

The among-population mean allele frequencies vary largely among neutral loci. Therefore, we 726 

incorporate the contribution of variable allele frequencies in the ancestral population to 727 
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estimate the among-population correlation that is shared among loci. Given the allele 728 

frequency in the ancestral population, the variance–covariance matrix of the allele frequencies 729 

𝒑௟ = ൫𝑝ଵ
௟ , … , 𝑝௄

௟ ൯
′

 at locus 𝑙 is formulated as 730 

𝐄(𝒑௟) = 𝑝஺
௟ 𝟏 731 

𝐕(𝒑௟) = 𝑝஺
௟ ൫1 − 𝑝஺

௟ ൯𝛀 . 732 

𝜈௜௝ = 𝛀௜௝ (𝑖, 𝑗 = 1, … , 𝐾) represents the among-population covariance (Weir & Hill, 2002; 733 

Coop, Witonsky, Di Rienzo, & Pritchard, 2010). The variance and covariance of the observed 734 

allele frequencies are 735 

V൫𝑝̂௜
௟൯ = V൫𝑝௜

௟൯ + 𝐸ൣ𝑝௜
௟(1 − 𝑝௜

௟)/𝑛௜൧  736 

   = 𝑝஺
௟ ൫1 − 𝑝஺

௟ ൯𝜈௜௜ +
1

𝑛௜
൬𝑝஺

௟ − ቀ𝑝஺
௟ ൫1 − 𝑝஺

௟ ൯𝜈௜௜ + 𝑝஺
௟ ଶ

ቁ൰ 737 

                   = 𝑝஺
௟ ൫1 − 𝑝஺

௟ ൯ ൭൬1 −
1

𝑛௜
൰ 𝜈௜௜ +

1

𝑛௜
൱ 738 

COV൫𝑝̂௜
௟, 𝑝̂௝

௟൯ = COV൫𝑝௜
௟, 𝑝௜

௟൯ = 𝑝஺
௟ ൫1 − 𝑝஺

௟ ൯𝜈௜௝ (𝑖 ≠ 𝑗). 739 

From this, we obtained the moment estimator 𝛀 as 740 

𝜈̂௜௜ =
1

𝐿
෍

⎝

⎜
⎛

𝑝̂௜
௟ଶ

𝑝̅መ.
௟(1 − 𝑝̅መ.

௟)
−

1
𝑛௜

1 −
1
𝑛௜

⎠

⎟
⎞

 

௅

௟ୀଵ

 741 

𝜈̂௜௝ =
1

𝐿
෍ ቆ

 𝑝̂௜
௟𝑝̂௝

௟

𝑝̅መ.
௟(1 − 𝑝̅መ.

௟)
ቇ

௅

௟ୀଵ

           (𝑖 ≠ 𝑗), 742 

where 𝑝̅መ.
௟ = 𝑛௟ 𝑛⁄ . Because most SNPs rarely have alleles in equilibrium (Wright, 1931), these 743 

estimates are accurate when many neutral loci are available. With this estimated variance–744 

covariance matrix of the allele frequencies, we obtained the variance–covariance matrix of the 745 
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observed counts, 𝒑ෝ௟ , as 746 

V෡൫𝑝̂௜
௟൯ = 𝑝̅መ.

௟(1 − 𝑝̅መ.
௟)𝜈̂௜௜ + 𝑝̅መ.

௟(1 − 𝑝̅መ.
௟) 𝑛௜⁄   747 

COV෢ ൫𝑝̂௜
௟, 𝑝̂௝

௟൯ = 𝑝̅መ.
௟(1 − 𝑝̅መ.

௟)𝜈̂௜௝. 748 

Assuming the normality of the estimated regression coefficient, the p-value was calculated by 749 

contrasting the coefficient with the standard error based on the standard generalized least 750 

squares (GLS) method. Out of environment–gene (SNP) pairs and environment–trait pairs, we 751 

selected the significant pairs with an FDR of 0.05 using the Benjamini–Hochberg procedure 752 

(Benjamini & Hochberg, 1995). 753 

 754 

To improve the power of detecting associations between genes and environments, we focused 755 

on the SNPs that were over-differentiated among populations compared with the level of 756 

differentiation of neutral loci. First, we obtained the maximum likelihood estimates of the 757 

locus-specific global FST values (Beaumont & Bolding, 2004) using R package FinePop2 in 758 

CRAN. We fitted a gamma distribution to the distribution of these locus-specific global FST 759 

values by maximum likelihood procedure by using the function. The FST values were far 760 

below 1, at least in the simulation and in the real data analysis (see Supplementary Figure S3). 761 

We assumed that most of the SNPs were neutral, and that the fitted distribution approximates 762 

the distribution of locus-specific global FST values of neutral sites. As a set of over-763 

differentiated SNPs, we collected the SNPs with FST values with upper p-value < 0.1 in this 764 

gamma distribution.  765 

 766 

Appendix 2| Kernel-based GWAS and estimation of the effects 767 

In order to make the dataset for PolyGraph analysis, we conducted GWAS for each of the 768 

traits using genome-wide gene-based analysis by considering genes as testing units (Deng et 769 



35 

 

al. 2020). For a given gene, joint effect of multiple SNPs within the gene is obtained by 770 

Gaussian kernel function. Association between a trait and the candidate kernel function of a 771 

gene is evaluated by the generalized association test based on U-statistics which uses 772 

environmental factors as the fixed effects to control the correlation structure of the 773 

populations. Genes which have significant association with the trait were selected by 5% of 774 

false discovery rate. We adopted these genes as the explanatory variables which explain the 775 

population adaptation in the PolyGraph model. Finally, for each trait, we performed simple 776 

linear regression on each of the SNPs on the significant genes on the trait, and estimated 777 

regression coefficient of the gene. Then, we adopted the sign (+1 or -1) of the coefficient as 778 

the selective pressure in the PolyGraph analysis. For the analysis of poplar, we performed this 779 

association test between 45 traits and 3,516 genes and obtained 22 traits which had significant 780 

genes (see Supplementary Table S3). 781 

 782 

Appendix 3| Simulation scenario 783 

A3.1| Populations, SNPs and traits 784 

In this study, we needed to simulate the dynamics of phenotypic traits and the allele 785 

frequencies at the loci that contribute to the traits. As a result, it was not practical to specify 786 

the selection coefficients on the loci directly. Because of the computational burden, we 787 

simulated the dynamics of the population allele frequencies and mean traits based on the 788 

expected randomness and survival probability of the alleles in 1-d stepping-stone system of 789 

𝐾 = 25 linearly arrayed populations (see Supplementary Figure S1). We assumed that the 790 

traits are polygenic and in the form of sum of monogenic latent traits. While the pre-existing 791 

alleles as well as the de novo mutations contribute to environmental adaptations, we assumed, 792 

for simplicity, that the relevant pre-existing loci were already monomorphic in the ancestral 793 

population. We simulated the case of strong selection and cost of adaptation. 794 
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 795 

Population 1 accommodated an ancestral population of 𝑁௘ = 10ହ. In every generation, the 796 

populations exchanged 1% of 𝑁௘ individuals with adjacent populations. Once in 10 797 

generations, habitat expansion occurred, and 1% of 𝑁௘ immigrated to the adjacent vacant 798 

population and increased the population size to the capacity 𝑁௘ in one generation. We 799 

introduced an environmental factor that had a severe (1) state in populations 9 and 15, and 800 

normal (0) state in the other populations: 801 

𝐸௜ = ൜ 
0  (𝑖 ≠ 9, 15)

1  (𝑖 = 9, 15)
. 802 

This did not affect the allele frequencies of neutral alleles but affected the survival of non-803 

neutral alleles. 804 

 805 

For the initial population, we generated 10,000 polymorphic loci whose alleles were neutral 806 

against the environment. Their allele frequencies were set to the theoretical equilibrium 807 

distribution, 𝑓(𝑞) ∝ 𝑞ିଵ(1 − 𝑞)ିଵ (Wright, 1931). Then, additional polymorphisms of 50 808 

neutral loci and 10 environmentally adaptive loci were introduced to the existing populations 809 

in each generation. The current genetic diversity reflects the genetic drift of polymorphic loci 810 

in the ancestral populations and that of de novo mutations that occurred in the history of 811 

populations. To include the latter effect, we generated neutral mutations as well. For 812 

computational reason, the initial frequency of the derived alleles at the newly generated loci 813 

was set to 0.01 in the populations where mutations occur and 0 in the other populations; they 814 

mimicked new mutations that survived the initial phase after their birth. Population allele 815 

frequencies varied with random drift under a binomial distribution. Each of the ten 816 

environmentally adaptive loci contributed to a latent monogenic trait whose survival was 817 

affected by the state of the environment (see Appendix A3.2). Two polygenic traits 𝑇1 and 𝑇2 818 
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were formed as a sum of five of the ten latent traits respectively. 819 

 820 

After 260 generations, we obtained loci that retained their polymorphism. As a simplified 821 

procedure that mimic SNP discovery process, we randomly selected a prespecified number of 822 

SNPs. In this simulation, we selected 5,000 initial neutral loci, 50 newly derived neutral loci, 823 

and two sets of five (totally 10) newly derived environmentally adaptive loci. Then, we 824 

generated the allele frequencies of the sample consisting of 50 individuals for each 825 

population. 826 

 827 

A3.2| Environmental selection and fitness of derived alleles contributing to the latent 828 

traits 829 

In a neutral gene, the allele frequencies are changed by random drift. However, in an 830 

environmentally adaptive gene, derived alleles have advantages/disadvantages in 831 

severe/normal conditions compared with the ancestral allele. Therefore, derived allele 832 

frequency increases/decreases in severe/normal conditions by natural selection. We inferred 833 

the environmental adaptation and the cost on the basis of the survival probability of the 834 

relevant trait. 835 

 836 

The genotype 𝐺 = 0, 1, 2 of the environmental adaptation locus contributes to a latent trait 837 

𝑇(𝐺, 𝐸) with the interaction of genotype 𝐺 and environmental factor 𝐸: 838 

𝑇(𝐺, 𝐸) = 𝛾ீ𝐺 + 𝛾ா𝐸 + 𝛾ீா𝐺 × 𝐸 + 𝜀்    𝜀்~𝑁(0,1).   (A1) 839 

The survival probability 𝑆(𝑇) of the trait value 𝑇 is described as the probability that 𝑇 is 840 

positive: 841 

𝑆(𝑇) = Prob(𝑇 > 0).     (A2) 842 
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The larger the trait, the greater chance of survival. The survival probability of a genotype 𝐺 843 

under environmental condition 𝐸, 𝑆(𝐺|𝐸), is given as 𝑆(𝐺|𝐸) = 𝑆(𝑇(𝐺, 𝐸)). In population 𝑖, 844 

given the frequency 𝑃(௧) of genotype 𝐺 at generation 𝑡, the allele frequency at the next 845 

generation is obtained as 𝑃
(௧ାଵ)

= 𝑃
(௧)

𝑆(𝐺|𝐸௜) ∑ ቄ𝑃
(௧)

𝑆(𝐺|𝐸௜)ቅீൗ . We note that only the 846 

relative values of survival probabilities are relevant for the population genetic dynamics. 847 

 848 

The derived allele is assumed to be advantageous over the ancestral allele under the severe 849 

environmental condition 𝐸 = 1, whereas it is disadvantageous under the normal 850 

environmental condition 𝐸 = 0. Therefore, we consider the case where 𝛾ீ ≤ 0, 𝛾ா ≤ 0, and 851 

𝛾ீா ≥ 0. We set a simulation parameter 𝑟 and 𝑠 to control environmental effect 𝛾ா, genetic 852 

effect 𝛾ீ, and gene-environment interaction 𝛾ீா. The parameter 𝑟 (0 < 𝑟 < 1) was 853 

introduced to represent the stress of severe environmental condition 𝐸 = 1 and was defined 854 

by the ratio of the survival probabilities between the two conditions: 855 

𝑟 = 𝑆(𝐺 = 0|𝐸 = 1) 𝑆(𝐺 = 0|𝐸 = 0)⁄ .    (A3) 856 

The parameter 𝑠 (≥ 0) represents the fitness of the derived allele in the severe environmental 857 

condition 𝐸 = 1: 858 

1 + 𝑠 = 𝑆(𝐺 = 2|𝐸 = 1) 𝑆(𝐺 = 0|𝐸 = 1)⁄ .   (A4) 859 

We assumed the cost of adaptation by reversing the fitness in the normal environmental 860 

condition 𝐸 = 0: 861 

𝑆(𝐺 = 2|𝐸 = 0) 𝑆(𝐺 = 0|𝐸 = 0)⁄ =
ଵ

ଵା௦
    (A5) 862 

The coefficients 𝛾ா, 𝛾ீ, and 𝛾ீா were obtained from 𝑟 and 𝑠. First, we noted that, from 863 

equations (A1) and (A2), 𝑆(𝐺 = 0|𝐸 = 0) =
ଵ

ଶ
 and 𝑆(𝐺 = 0|𝐸 = 1) = Φ(𝛾ா). Φ is the 864 
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cumulative distribution of the standard normal distribution. Hence, from equation (A3), we 865 

obtained 𝛾ா = Φିଵ ቀ
௥

ଶ
ቁ. Similarly, we obtained 𝛾ீ =

ଵ

ଶ
Φିଵ ቀ

ଵ

ଶ(ଵା௦)
ቁ from equation (A5). 866 

Finally, we obtained 𝛾ீா =
ଵ

ଶ
ቀΦିଵ ቀ

௥௦

ଶ
ቁ − 2𝛾ீ − 𝛾ாቁ from equation (A4). 867 


