References
Adler, P.B., Fajardo, A., Kleinhesselink, A.R., Kraft, N.J.B., 2013. Trait-based tests of coexistence mechanisms. Ecol. Lett. 16, 1294–1306. https://doi.org/10.1111/ele.12157
Anonymous, 1998. Karnataka Soils. National Bureau of Soil Survey and Land Use Planning, Nagpur, India.
Arroyo-Rodríguez, V., Saldaña-Vázquez, R.A., Fahrig, L., Santos, B.A., 2017. Does forest fragmentation cause an increase in forest temperature? Ecol. Res. 32, 81–88. https://doi.org/10.1007/s11284-016-1411-6
Asbjornsen, H., Ashton, M.S., Vogt, D.J., Palacios, S., 2004. Effects of habitat fragmentation on the buffering capacity of edge environments in a seasonally dry tropical oak forest ecosystem in Oaxaca, Mexico. Agric. Ecosyst. Environ. 103, 481–495. https://doi.org/10.1016/j.agee.2003.11.008
Barlow, J., Gardner, T.A., Araujo, I.S., Avila-Pires, T.C., Bonaldo, A.B., Costa, J.E., Esposito, M.C., Ferreira, L. V., Hawes, J., Hernandez, M.I.M., Hoogmoed, M.S., Leite, R.N., Lo-Man-Hung, N.F., Malcolm, J.R., Martins, M.B., Mestre, L. a. M., Miranda-Santos, R., Nunes-Gutjahr, A.L., Overal, W.L., Parry, L., Peters, S.L., Ribeiro-Junior, M.A., da Silva, M.N.F., da Silva Motta, C., Peres, C.A., Ávila-Pires, T.C., Bonaldo, A.B., Costa, J.E., Esposito, M.C., Ferreira, L. V., Hawes, J., Hernandez, M.I.M., Hoogmoed, M.S., Leite, R.N., Lo-Man-Hung, N.F., Malcolm, J.R., Martins, M.B., Mestre, L. a. M., Miranda-Santos, R., Nunes-Gutjahr, A.L., Overal, W.L., Parry, L., Peters, S.L., Ribeiro-Junior, M.A., Silva, M.N.F. da, Motta, C. da S., Peres, C.A., 2007. Quantifying the biodiversity value of tropical primary, secondary, and plantation forests. Proc. Natl. Acad. Sci. 104, 18555–18560. https://doi.org/10.1073/pnas.0703333104
Bernard-Verdier, M., Navas, M.L., Vellend, M., Violle, C., Fayolle, A., Garnier, E., 2012. Community assembly along a soil depth gradient: Contrasting patterns of plant trait convergence and divergence in a Mediterranean rangeland. J. Ecol. 100, 1422–1433. https://doi.org/10.1111/1365-2745.12003
Brown, A.M., Warton, D.I., Andrew, N.R., Binns, M., Cassis, G., Gibb, H., 2014. The fourth-corner solution - using predictive models to understand how species traits interact with the environment. Methods Ecol. Evol. 5, 344–352. https://doi.org/10.1111/2041-210X.12163
Butterfield, B.J., Suding, K.N., 2013. Single-trait functional indices outperform multi-trait indices in linking environmental gradients and ecosystem services in a complex landscape. J. Ecol. 101, 9–17. https://doi.org/10.1111/1365-2745.12013
Chave, J., Coomes, D., Jansen, S., Lewis, S.L., Swenson, N.G., Zanne, A.E., 2009. Towards a worldwide wood economics spectrum. Ecol. Lett. 12, 351–366. https://doi.org/10.1111/j.1461-0248.2009.01285.x
Chave, J., Réjou-Méchain, M., Búrquez, A., Chidumayo, E., Colgan, M.S., Delitti, W.B.C., Duque, A., Eid, T., Fearnside, P.M., Goodman, R.C., Henry, M., Martínez-Yrízar, A., Mugasha, W.A., Muller-Landau, H.C., Mencuccini, M., Nelson, B.W., Ngomanda, A., Nogueira, E.M., Ortiz-Malavassi, E., Pélissier, R., Ploton, P., Ryan, C.M., Saldarriaga, J.G., Vieilledent, G., 2014. Improved allometric models to estimate the aboveground biomass of tropical trees. Glob. Chang. Biol. 20, 3177–3190. https://doi.org/10.1111/gcb.12629
Collins, C.D., Banks-Leite, C., Brudvig, L.A., Foster, B.L., Cook, W.M., Damschen, E.I., Andrade, A., Austin, M., Camargo, J.L., Driscoll, D.A., Holt, R.D., Laurance, W.F., Nicholls, A.O., Orrock, J.L., 2017. Fragmentation affects plant community composition over time. Ecography (Cop.). 40, 119–130. https://doi.org/10.1111/ecog.02607
Condit, R., Engelbrecht, B.M.J., Pino, D., Perez, R., Turner, B.L., 2013. Species distributions in response to individual soil nutrients and seasonal drought across a community of tropical trees. Proc. Natl. Acad. Sci. 110, 5064–5068. https://doi.org/10.1073/pnas.1218042110
Cornwell, W.K., Ackerly, D.D., 2009. Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California. Ecol. Monogr. 79, 109–126. https://doi.org/10.1890/07-1134.1
Craine, J.M., Engelbrecht, B.M.J., Lusk, C.H., McDowell, N.G., Poorter, H., 2012. Resource limitation, tolerance, and the future of ecological plant classification. Front. Plant Sci. 3, 1–10. https://doi.org/10.3389/fpls.2012.00246
Davis, K.T., Dobrowski, S.Z., Holden, Z.A., Higuera, P.E., Abatzoglou, J.T., 2019. Microclimatic buffering in forests of the future: the role of local water balance. Ecography (Cop.). 42, 1–11. https://doi.org/10.1111/ecog.03836
De Frenne, P., Rodríguez-Sánchez, F., De Schrijver, A., Coomes, D.A., Hermy, M., Vangansbeke, P., Verheyen, K., 2015. Light accelerates plant responses to warming. Nat. Plants 1, 7–9. https://doi.org/10.1038/nplants.2015.110
De Frenne, P., Zellweger, F., Rodríguez-Sánchez, F., Scheffers, B.R., Hylander, K., Luoto, M., Vellend, M., Verheyen, K., Lenoir, J., 2019. Global buffering of temperatures under forest canopies. Nat. Ecol. Evol. 3, 744–749. https://doi.org/10.1038/s41559-019-0842-1
Díaz, S., Kattge, J., Cornelissen, J.H.C., Wright, I.J., Lavorel, S., Dray, S., Reu, B., Kleyer, M., Wirth, C., Colin Prentice, I., Garnier, E., Bönisch, G., Westoby, M., Poorter, H., Reich, P.B., Moles, A.T., Dickie, J., Gillison, A.N., Zanne, A.E., Chave, J., Joseph Wright, S., Sheremet’ev, S.N., Jactel, H., Baraloto, C., Cerabolini, B., Pierce, S., Shipley, B., Kirkup, D., Casanoves, F., Joswig, J.S., Günther, A., Falczuk, V., Rüger, N., Mahecha, M.D., Gorné, L.D., 2015. The global spectrum of plant form and function. Nature 529, 167–171. https://doi.org/10.1038/nature16489
Dwyer, J.M., Laughlin, D.C., 2017. Constraints on trait combinations explain climatic drivers of biodiversity: the importance of trait covariance in community assembly. Ecol. Lett. 20, 872–882. https://doi.org/10.1111/ele.12781
Ewers, R.M., Banks-Leite, C., 2013. Fragmentation Impairs the Microclimate Buffering Effect of Tropical Forests. PLoS One 8, e58093. https://doi.org/10.1371/journal.pone.0058093
Fernandes Neto, J.G., Costa, F.R.C., Williamson, G.B., Mesquita, R.C.G., 2019. Alternative functional trajectories along succession after different land uses in central Amazonia, Journal of Applied Ecology. https://doi.org/10.1111/1365-2664.13484
Fox, J., Weisberg, S., 2019. An R Companion to Applied Regression Third Edition, SAGE Publications, Inc.
Harrison, S., LaForgia, M., 2019. Seedling traits predict drought-induced mortality linked to diversity loss. Proc. Natl. Acad. Sci. U. S. A. 116, 5576–5581. https://doi.org/10.1073/pnas.1818543116
Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G., Jarvis, A., 2005. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978. https://doi.org/10.1002/joc.1276
Jamil, T., Ozinga, W.A., Kleyer, M., Ter Braak, C.J.F., 2013. Selecting traits that explain species-environment relationships: A generalized linear mixed model approach. J. Veg. Sci. 24, 988–1000. https://doi.org/10.1111/j.1654-1103.2012.12036.x
Kraft, N.J.B., Adler, P.B., Godoy, O., James, E.C., Fuller, S., Levine, J.M., 2015. Community assembly, coexistence and the environmental filtering metaphor. Funct. Ecol. 29, 592–599. https://doi.org/10.1111/1365-2435.12345
Krishnadas, M., Bagchi, R., Sridhara, S., Comita, L.S., 2018a. Weaker plant-enemy interactions decrease tree seedling diversity with edge-effects in a fragmented tropical forest. Nat. Commun. 9, 4523. https://doi.org/10.1038/s41467-018-06997-2
Krishnadas, M., Beckman, N.G., Zuluaga, J.C.P., Zhu, Y., Whitacre, J., Wenzel, J.W., Queenborough, S.A., Comita, L.S., 2018b. Environment and past land use together predict functional diversity in a temperate forest. Ecol. Appl. 28, 2142–2152. https://doi.org/10.1002/eap.1802
Krishnadas, M., Osuri, A.M., 2020. Environment shapes the spatial organization of tree diversity in fragmented forests across a human‐modified landscape. Ecol. Appl. https://doi.org/10.1002/eap.2244
Krishnadas, M., Sankaran, M., Page, N., Joshi, J., Machado, S., Nataraj, N., Chengappa, S.K., Kumar, V., Kumar, A., Krishnamani, R., 2021. Seasonal drought regulates species distributions and assembly of tree communities across a tropical wet forest region. Glob. Ecol. Biogeogr. geb.13350. https://doi.org/10.1111/geb.13350
Lasky, J.R., Uriarte, M., Boukili, V.K., Chazdon, R.L., 2014. Trait-mediated assembly processes predict successional changes in community diversity of tropical forests. Proc. Natl. Acad. Sci. U. S. A. 111, 5616–21. https://doi.org/10.1073/pnas.1319342111
Laughlin, D.C., 2014. Applying trait-based models to achieve functional targets for theory-driven ecological restoration. Ecol. Lett. 17, 771–784. https://doi.org/10.1111/ele.12288
Laughlin, D.C., Strahan, R.T., Moore, M.M., Fulé, P.Z., Huffman, D.W., Covington, W.W., 2017. The hierarchy of predictability in ecological restoration: are vegetation structure and functional diversity more predictable than community composition? J. Appl. Ecol. 54, 1058–1069. https://doi.org/10.1111/1365-2664.12935
Laurance, W., 2002. Hyperdynamism in fragmented habitats. J. Veg. Sci. 13, 595. https://doi.org/10.1658/1100-9233(2002)013[0595:HIFH]2.0.CO;2
Laurance, W.F., 2004. Forest-climate interactions in fragmented tropical landscapes. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 359, 345–52. https://doi.org/10.1098/rstb.2003.1430
Lebrija-Trejos, E., Pérez-garcía, E.A., Meave, J.A., Bongers, F., Poorter, L., 2010. Functional traits and environmental filtering drive community assembly in a species-rich tropical system. Ecology 91, 386–398. https://doi.org/10.1890/08-1449.1
Li, R., Zhu, S., Chen, H.Y.H., John, R., Zhou, G., Zhang, D., Zhang, Q., Ye, Q., 2015. Are functional traits a good predictor of global change impacts on tree species abundance dynamics in a subtropical forest? Ecol. Lett. 18, 1181–1189. https://doi.org/10.1111/ele.12497
Loranger, J., Munoz, F., Shipley, B., Violle, C., 2018. What makes trait–abundance relationships when both environmental filtering and stochastic neutral dynamics are at play? Oikos 127, 1735–1745. https://doi.org/10.1111/oik.05398
Maréchaux, I., Saint-André, L., Bartlett, M.K., Sack, L., Chave, J., 2019. Leaf drought tolerance cannot be inferred from classic leaf traits in a tropical rainforest. J. Ecol. 1–16. https://doi.org/10.1111/1365-2745.13321
Mason, N.W.H.H., De Bello, F., Mouillot, D., Pavoine, S., Dray, S., 2013. A guide for using functional diversity indices to reveal changes in assembly processes along ecological gradients. J. Veg. Sci. 24, 794–806. https://doi.org/10.1111/jvs.12013
Medeiros, C.D., Scoffoni, C., John, G.P., Bartlett, M.K., Inman-Narahari, F., Ostertag, R., Cordell, S., Giardina, C., Sack, L., 2019. An extensive suite of functional traits distinguishes Hawaiian wet and dry forests and enables prediction of species vital rates. Funct. Ecol. 33, 712–734. https://doi.org/10.1111/1365-2435.13229
Melo, F.P.L., Arroyo-Rodríguez, V., Fahrig, L., Martínez-Ramos, M., Tabarelli, M., 2013. On the hope for biodiversity-friendly tropical landscapes. Trends Ecol. Evol. 28, 461–468. https://doi.org/10.1016/j.tree.2013.01.001
Méndez-Toribio, M., Ibarra-Manríquez, G., Paz, H., Lebrija-Trejos, E., 2020. Atmospheric and soil drought risks combined shape community assembly of trees in a Tropical Dry Forest, Journal of Ecology. https://doi.org/10.1111/1365-2745.13355
Mouchet, M.A., Villéger, S., Mason, N.W.H., Mouillot, D., 2010. Functional diversity measures: an overview of their redundancy and their ability to discriminate community assembly rules. Funct. Ecol. 24, 867–876. https://doi.org/10.1111/j.1365-2435.2010.01695.x
Muscarella, R., Messier, J., Condit, R., Hubbell, S.P., Svenning, J.C., 2018. Effects of biotic interactions on tropical tree performance depend on abiotic conditions. Ecology 99, 2740–2750. https://doi.org/10.1002/ecy.2537
Muscarella, R., Uriarte, M., Erickson, D.L., Swenson, N.G., Kress, W.J., Zimmerman, J.K., 2016. Variation of tropical forest assembly processes across regional environmental gradients. Perspect. Plant Ecol. Evol. Syst. 23, 52–62. https://doi.org/10.1016/j.ppees.2016.09.007
O’Brien, M.J., Engelbrecht, B.M.J., Joswig, J., Pereyra, G., Schuldt, B., Jansen, S., Kattge, J., Landhäusser, S.M., Levick, S.R., Preisler, Y., Väänänen, P., Macinnis-Ng, C., 2017. A synthesis of tree functional traits related to drought-induced mortality in forests across climatic zones. J. Appl. Ecol. 54, 1669–1686. https://doi.org/10.1111/1365-2664.12874
Osuri, A.M., Sankaran, M., 2016a. Data from: Seed size predicts community composition and carbon storage potential of tree communities in rainforest fragments in India’s Western Ghats., Dryad Digital Repository. https://doi.org/10.5061/dryad.7s7r1
Osuri, A.M., Sankaran, M., 2016b. Seed size predicts community composition and carbon storage potential of tree communities in rain forest fragments in India’s Western Ghats. J. Appl. Ecol. 837–845. https://doi.org/10.1111/1365-2664.12626
Paine, C.E.T., Baraloto, C., Chave, J., Hérault, B., 2011. Functional traits of individual trees reveal ecological constraints on community assembly in tropical rain forests. Oikos 120, 720–727. https://doi.org/10.1111/j.1600-0706.2010.19110.x
Pascal, J.P., 1986. Explanatory Booklet on the Forest Map of South India. Sheets: Belgaum-Dharwar-Panaji, Shimoga, Mercara-Mysore.. Inst. Français Pondichery.
Poorter, L., Rozendaal, D.M.A., Bongers, F., de Almeida-Cortez, J.S., Almeyda Zambrano, A.M., Álvarez, F.S., Andrade, J.L., Villa, L.F.A., Balvanera, P., Becknell, J.M., Bentos, T. V., Bhaskar, R., Boukili, V., Brancalion, P.H.S., Broadbent, E.N., César, R.G., Chave, J., Chazdon, R.L., Colletta, G.D., Craven, D., de Jong, B.H.J., Denslow, J.S., Dent, D.H., DeWalt, S.J., García, E.D., Dupuy, J.M., Durán, S.M., Espírito Santo, M.M., Fandiño, M.C., Fernandes, G.W., Finegan, B., Moser, V.G., Hall, J.S., Hernández-Stefanoni, J.L., Jakovac, C.C., Junqueira, A.B., Kennard, D., Lebrija-Trejos, E., Letcher, S.G., Lohbeck, M., Lopez, O.R., Marín-Spiotta, E., Martínez-Ramos, M., Martins, S. V., Massoca, P.E.S., Meave, J.A., Mesquita, R., Mora, F., de Souza Moreno, V., Müller, S.C., Muñoz, R., Muscarella, R., de Oliveira Neto, S.N., Nunes, Y.R.F., Ochoa-Gaona, S., Paz, H., Peña-Claros, M., Piotto, D., Ruíz, J., Sanaphre-Villanueva, L., Sanchez-Azofeifa, A., Schwartz, N.B., Steininger, M.K., Thomas, W.W., Toledo, M., Uriarte, M., Utrera, L.P., van Breugel, M., van der Sande, M.T., van der Wal, H., Veloso, M.D.M., Vester, H.F.M., Vieira, I.C.G., Villa, P.M., Williamson, G.B., Wright, S.J., Zanini, K.J., Zimmerman, J.K., Westoby, M., 2019. Wet and dry tropical forests show opposite successional pathways in wood density but converge over time. Nat. Ecol. Evol. 3, 928–934. https://doi.org/10.1038/s41559-019-0882-6
Poorter, L., Wright, S.J., Paz, H., Ackerly, D.D., Condit, R., Ibarra-Manríquez, G., Harms, K.E., Licona, J.C., Martínez-Ramos, M., Mazer, S.J., Muller-Landau, H.C., Peña-Claros, M., Webb, C.O., Wright, I.J., Peña-Claros, M., Webb, C.O., Wright, I.J., Peña-Claros, M., Webb, C.O., Wright, I.J., 2008. Are functional traits good predictors of demographic rates? Evidence from five neotropical forests. Ecology 89, 1908–1920. https://doi.org/10.1890/07-0207.1
Reich, P.B., 2014. The world-wide ‘fast-slow’ plant economics spectrum: a traits manifesto. J. Ecol. 102, 275–301. https://doi.org/10.1111/1365-2745.12211
Rüger, N., Comita, L.S., Condit, R., Purves, D., Rosenbaum, B., Visser, M.D., Wright, S.., Wirth, C., 2018. Beyond the fast-slow continuum: demographic dimensions structuring a tropical tree community. Ecol. Lett. 21, 1075–1084. https://doi.org/10.1111/ele.12974
Shen, Y., Umaña, M.N., Li, W., Fang, M., Chen, Y., Lu, H., Yu, S., 2019. Coordination of leaf, stem and root traits in determining seedling mortality in a subtropical forest. For. Ecol. Manage. 446, 285–292. https://doi.org/10.1016/j.foreco.2019.05.032
Shipley, B., De Bello, F., Cornelissen, J.H.C., Lalibert??, E., Laughlin, D.C., Reich, P.B., 2016. Reinforcing loose foundation stones in trait-based plant ecology. Oecologia 180, 923–931. https://doi.org/10.1007/s00442-016-3549-x
Sonnier, G., Shipley, B., Navas, M.-L., 2010. Quantifying relationships between traits and explicitly measured gradients of stress and disturbance in early successional plant communities. J. Veg. Sci. 21, 1014–1024. https://doi.org/10.1111/j.1654-1103.2010.01210.x
Sterck, F.J., Poorter, L., Schieving, F., 2006. Leaf traits determine the growth-survival trade-off across rain forest tree species. Am. Nat. 167, 758–65. https://doi.org/10.1086/503056
Tyree, M.T., 2003. Plant hydraulics: The ascent of water. Nature 423, 923–923. https://doi.org/10.1038/423923a
Umaña, M.N., Swenson, N.G., 2018. Does trait variation within broadly distributed species mirror patterns across species? A case study in Puerto Rico. Ecology 0, 1–11. https://doi.org/10.1002/ecy.2745
Varma, V., Osuri, A.M., 2013. Black Spot: A platform for automated and rapid estimation of leaf area from scanned images. Plant Ecol. 214, 1529–1534. https://doi.org/10.1007/s11258-013-0273-z
Venail, P., Gross, K., Oakley, T.H., Narwani, A., Allan, E., Flombaum, P., Isbell, F., Joshi, J., Reich, P.B., Tilman, D., van Ruijven, J., Cardinale, B.J., 2015. Species richness, but not phylogenetic diversity, influences community biomass production and temporal stability in a re-examination of 16 grassland biodiversity studies. Funct. Ecol. 29, 615–626. https://doi.org/10.1111/1365-2435.12432
Vicente-Serrano, S.M., Gouveia, C., Camarero, J.J., Beguería, S., Trigo, R., López-Moreno, J.I., Azorín-Molina, C., Pasho, E., Lorenzo-Lacruz, J., Revuelto, J., Morán-Tejeda, E., Sanchez-Lorenzo, A., 2013. Response of vegetation to drought time-scales across global land biomes. Proc. Natl. Acad. Sci. U. S. A. 110, 52–57. https://doi.org/10.1073/pnas.1207068110
Wright, S.J., Kitajima, K., Kraft, N.J.B., Reich, P.B., Wright, I.J., Bunker, D.E., Condit, R., Dalling, J.W., Davies, S.J., Díaz, S., Engelbrecht, B.M.J., Harms, K.E., Hubbell, S.P., Marks, C.O., Ruiz-Jaen, M.C., Salvador, C.M., Zanne, A.E., 2010. Functional traits and the growth-mortality trade-off in tropical trees. Ecology 91, 3664–74. https://doi.org/10.1890/09-2335.1
Zellweger, F., De Frenne, P., Lenoir, J., Vangansbeke, P., Verheyen, K., Bernhardt-Römermann, M., Baeten, L., Hédl, R., Berki, I., Brunet, J., Van Calster, H., Chudomelová, M., Decocq, G., Dirnböck, T., Durak, T., Heinken, T., Jaroszewicz, B., Kopecký, M., Máliš, F., Macek, M., Malicki, M., Naaf, T., Nagel, T.A., Ortmann-Ajkai, A., Petřík, P., Pielech, R., Reczyńska, K., Schmidt, W., Standovár, T., Świerkosz, K., Teleki, B., Vild, O., Wulf, M., Coomes, D., 2020. Forest microclimate dynamics drive plant responses to warming. Science (80-. ). 368, 772–775. https://doi.org/10.1126/science.aba6880
Zirbel, C.R., Brudvig, L.A., 2020. Trait–environment interactions affect plant establishment success during restoration. Ecology 101, 1–7. https://doi.org/10.1002/ecy.2971