References
Adler, P.B., Fajardo, A., Kleinhesselink, A.R., Kraft, N.J.B., 2013.
Trait-based tests of coexistence mechanisms. Ecol. Lett. 16, 1294–1306.
https://doi.org/10.1111/ele.12157
Anonymous, 1998. Karnataka Soils. National Bureau of Soil Survey and
Land Use Planning, Nagpur, India.
Arroyo-Rodríguez, V., Saldaña-Vázquez, R.A., Fahrig, L., Santos, B.A.,
2017. Does forest fragmentation cause an increase in forest temperature?
Ecol. Res. 32, 81–88. https://doi.org/10.1007/s11284-016-1411-6
Asbjornsen, H., Ashton, M.S., Vogt, D.J., Palacios, S., 2004. Effects of
habitat fragmentation on the buffering capacity of edge environments in
a seasonally dry tropical oak forest ecosystem in Oaxaca, Mexico. Agric.
Ecosyst. Environ. 103, 481–495.
https://doi.org/10.1016/j.agee.2003.11.008
Barlow, J., Gardner, T.A., Araujo, I.S., Avila-Pires, T.C., Bonaldo,
A.B., Costa, J.E., Esposito, M.C., Ferreira, L. V., Hawes, J.,
Hernandez, M.I.M., Hoogmoed, M.S., Leite, R.N., Lo-Man-Hung, N.F.,
Malcolm, J.R., Martins, M.B., Mestre, L. a. M., Miranda-Santos, R.,
Nunes-Gutjahr, A.L., Overal, W.L., Parry, L., Peters, S.L.,
Ribeiro-Junior, M.A., da Silva, M.N.F., da Silva Motta, C., Peres, C.A.,
Ávila-Pires, T.C., Bonaldo, A.B., Costa, J.E., Esposito, M.C., Ferreira,
L. V., Hawes, J., Hernandez, M.I.M., Hoogmoed, M.S., Leite, R.N.,
Lo-Man-Hung, N.F., Malcolm, J.R., Martins, M.B., Mestre, L. a. M.,
Miranda-Santos, R., Nunes-Gutjahr, A.L., Overal, W.L., Parry, L.,
Peters, S.L., Ribeiro-Junior, M.A., Silva, M.N.F. da, Motta, C. da S.,
Peres, C.A., 2007. Quantifying the biodiversity value of tropical
primary, secondary, and plantation forests. Proc. Natl. Acad. Sci. 104,
18555–18560. https://doi.org/10.1073/pnas.0703333104
Bernard-Verdier, M., Navas, M.L., Vellend, M., Violle, C., Fayolle, A.,
Garnier, E., 2012. Community assembly along a soil depth gradient:
Contrasting patterns of plant trait convergence and divergence in a
Mediterranean rangeland. J. Ecol. 100, 1422–1433.
https://doi.org/10.1111/1365-2745.12003
Brown, A.M., Warton, D.I., Andrew, N.R., Binns, M., Cassis, G., Gibb,
H., 2014. The fourth-corner solution - using predictive models to
understand how species traits interact with the environment. Methods
Ecol. Evol. 5, 344–352. https://doi.org/10.1111/2041-210X.12163
Butterfield, B.J., Suding, K.N., 2013. Single-trait functional indices
outperform multi-trait indices in linking environmental gradients and
ecosystem services in a complex landscape. J. Ecol. 101, 9–17.
https://doi.org/10.1111/1365-2745.12013
Chave, J., Coomes, D., Jansen, S., Lewis, S.L., Swenson, N.G., Zanne,
A.E., 2009. Towards a worldwide wood economics spectrum. Ecol. Lett. 12,
351–366. https://doi.org/10.1111/j.1461-0248.2009.01285.x
Chave, J., Réjou-Méchain, M., Búrquez, A., Chidumayo, E., Colgan, M.S.,
Delitti, W.B.C., Duque, A., Eid, T., Fearnside, P.M., Goodman, R.C.,
Henry, M., Martínez-Yrízar, A., Mugasha, W.A., Muller-Landau, H.C.,
Mencuccini, M., Nelson, B.W., Ngomanda, A., Nogueira, E.M.,
Ortiz-Malavassi, E., Pélissier, R., Ploton, P., Ryan, C.M., Saldarriaga,
J.G., Vieilledent, G., 2014. Improved allometric models to estimate the
aboveground biomass of tropical trees. Glob. Chang. Biol. 20,
3177–3190. https://doi.org/10.1111/gcb.12629
Collins, C.D., Banks-Leite, C., Brudvig, L.A., Foster, B.L., Cook, W.M.,
Damschen, E.I., Andrade, A., Austin, M., Camargo, J.L., Driscoll, D.A.,
Holt, R.D., Laurance, W.F., Nicholls, A.O., Orrock, J.L., 2017.
Fragmentation affects plant community composition over time. Ecography
(Cop.). 40, 119–130. https://doi.org/10.1111/ecog.02607
Condit, R., Engelbrecht, B.M.J., Pino, D., Perez, R., Turner, B.L.,
2013. Species distributions in response to individual soil nutrients and
seasonal drought across a community of tropical trees. Proc. Natl. Acad.
Sci. 110, 5064–5068. https://doi.org/10.1073/pnas.1218042110
Cornwell, W.K., Ackerly, D.D., 2009. Community assembly and shifts in
plant trait distributions across an environmental gradient in coastal
California. Ecol. Monogr. 79, 109–126.
https://doi.org/10.1890/07-1134.1
Craine, J.M., Engelbrecht, B.M.J., Lusk, C.H., McDowell, N.G., Poorter,
H., 2012. Resource limitation, tolerance, and the future of ecological
plant classification. Front. Plant Sci. 3, 1–10.
https://doi.org/10.3389/fpls.2012.00246
Davis, K.T., Dobrowski, S.Z., Holden, Z.A., Higuera, P.E., Abatzoglou,
J.T., 2019. Microclimatic buffering in forests of the future: the role
of local water balance. Ecography (Cop.). 42, 1–11.
https://doi.org/10.1111/ecog.03836
De Frenne, P., Rodríguez-Sánchez, F., De Schrijver, A., Coomes, D.A.,
Hermy, M., Vangansbeke, P., Verheyen, K., 2015. Light accelerates plant
responses to warming. Nat. Plants 1, 7–9.
https://doi.org/10.1038/nplants.2015.110
De Frenne, P., Zellweger, F., Rodríguez-Sánchez, F., Scheffers, B.R.,
Hylander, K., Luoto, M., Vellend, M., Verheyen, K., Lenoir, J., 2019.
Global buffering of temperatures under forest canopies. Nat. Ecol. Evol.
3, 744–749. https://doi.org/10.1038/s41559-019-0842-1
Díaz, S., Kattge, J., Cornelissen, J.H.C., Wright, I.J., Lavorel, S.,
Dray, S., Reu, B., Kleyer, M., Wirth, C., Colin Prentice, I., Garnier,
E., Bönisch, G., Westoby, M., Poorter, H., Reich, P.B., Moles, A.T.,
Dickie, J., Gillison, A.N., Zanne, A.E., Chave, J., Joseph Wright, S.,
Sheremet’ev, S.N., Jactel, H., Baraloto, C., Cerabolini, B., Pierce, S.,
Shipley, B., Kirkup, D., Casanoves, F., Joswig, J.S., Günther, A.,
Falczuk, V., Rüger, N., Mahecha, M.D., Gorné, L.D., 2015. The global
spectrum of plant form and function. Nature 529, 167–171.
https://doi.org/10.1038/nature16489
Dwyer, J.M., Laughlin, D.C., 2017. Constraints on trait combinations
explain climatic drivers of biodiversity: the importance of trait
covariance in community assembly. Ecol. Lett. 20, 872–882.
https://doi.org/10.1111/ele.12781
Ewers, R.M., Banks-Leite, C., 2013. Fragmentation Impairs the
Microclimate Buffering Effect of Tropical Forests. PLoS One 8, e58093.
https://doi.org/10.1371/journal.pone.0058093
Fernandes Neto, J.G., Costa, F.R.C., Williamson, G.B., Mesquita, R.C.G.,
2019. Alternative functional trajectories along succession after
different land uses in central Amazonia, Journal of Applied Ecology.
https://doi.org/10.1111/1365-2664.13484
Fox, J., Weisberg, S., 2019. An R Companion to Applied Regression Third
Edition, SAGE Publications, Inc.
Harrison, S., LaForgia, M., 2019. Seedling traits predict
drought-induced mortality linked to diversity loss. Proc. Natl. Acad.
Sci. U. S. A. 116, 5576–5581. https://doi.org/10.1073/pnas.1818543116
Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G., Jarvis, A.,
2005. Very high resolution interpolated climate surfaces for global land
areas. Int. J. Climatol. 25, 1965–1978.
https://doi.org/10.1002/joc.1276
Jamil, T., Ozinga, W.A., Kleyer, M., Ter Braak, C.J.F., 2013. Selecting
traits that explain species-environment relationships: A generalized
linear mixed model approach. J. Veg. Sci. 24, 988–1000.
https://doi.org/10.1111/j.1654-1103.2012.12036.x
Kraft, N.J.B., Adler, P.B., Godoy, O., James, E.C., Fuller, S., Levine,
J.M., 2015. Community assembly, coexistence and the environmental
filtering metaphor. Funct. Ecol. 29, 592–599.
https://doi.org/10.1111/1365-2435.12345
Krishnadas, M., Bagchi, R., Sridhara, S., Comita, L.S., 2018a. Weaker
plant-enemy interactions decrease tree seedling diversity with
edge-effects in a fragmented tropical forest. Nat. Commun. 9, 4523.
https://doi.org/10.1038/s41467-018-06997-2
Krishnadas, M., Beckman, N.G., Zuluaga, J.C.P., Zhu, Y., Whitacre, J.,
Wenzel, J.W., Queenborough, S.A., Comita, L.S., 2018b. Environment and
past land use together predict functional diversity in a temperate
forest. Ecol. Appl. 28, 2142–2152. https://doi.org/10.1002/eap.1802
Krishnadas, M., Osuri, A.M., 2020. Environment shapes the spatial
organization of tree diversity in fragmented forests across a
human‐modified landscape. Ecol. Appl. https://doi.org/10.1002/eap.2244
Krishnadas, M., Sankaran, M., Page, N., Joshi, J., Machado, S., Nataraj,
N., Chengappa, S.K., Kumar, V., Kumar, A., Krishnamani, R., 2021.
Seasonal drought regulates species distributions and assembly of tree
communities across a tropical wet forest region. Glob. Ecol. Biogeogr.
geb.13350. https://doi.org/10.1111/geb.13350
Lasky, J.R., Uriarte, M., Boukili, V.K., Chazdon, R.L., 2014.
Trait-mediated assembly processes predict successional changes in
community diversity of tropical forests. Proc. Natl. Acad. Sci. U. S. A.
111, 5616–21. https://doi.org/10.1073/pnas.1319342111
Laughlin, D.C., 2014. Applying trait-based models to achieve functional
targets for theory-driven ecological restoration. Ecol. Lett. 17,
771–784. https://doi.org/10.1111/ele.12288
Laughlin, D.C., Strahan, R.T., Moore, M.M., Fulé, P.Z., Huffman, D.W.,
Covington, W.W., 2017. The hierarchy of predictability in ecological
restoration: are vegetation structure and functional diversity more
predictable than community composition? J. Appl. Ecol. 54, 1058–1069.
https://doi.org/10.1111/1365-2664.12935
Laurance, W., 2002. Hyperdynamism in fragmented habitats. J. Veg. Sci.
13, 595.
https://doi.org/10.1658/1100-9233(2002)013[0595:HIFH]2.0.CO;2
Laurance, W.F., 2004. Forest-climate interactions in fragmented tropical
landscapes. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 359, 345–52.
https://doi.org/10.1098/rstb.2003.1430
Lebrija-Trejos, E., Pérez-garcía, E.A., Meave, J.A., Bongers, F.,
Poorter, L., 2010. Functional traits and environmental filtering drive
community assembly in a species-rich tropical system. Ecology 91,
386–398. https://doi.org/10.1890/08-1449.1
Li, R., Zhu, S., Chen, H.Y.H., John, R., Zhou, G., Zhang, D., Zhang, Q.,
Ye, Q., 2015. Are functional traits a good predictor of global change
impacts on tree species abundance dynamics in a subtropical forest?
Ecol. Lett. 18, 1181–1189. https://doi.org/10.1111/ele.12497
Loranger, J., Munoz, F., Shipley, B., Violle, C., 2018. What makes
trait–abundance relationships when both environmental filtering and
stochastic neutral dynamics are at play? Oikos 127, 1735–1745.
https://doi.org/10.1111/oik.05398
Maréchaux, I., Saint-André, L., Bartlett, M.K., Sack, L., Chave, J.,
2019. Leaf drought tolerance cannot be inferred from classic leaf traits
in a tropical rainforest. J. Ecol. 1–16.
https://doi.org/10.1111/1365-2745.13321
Mason, N.W.H.H., De Bello, F., Mouillot, D., Pavoine, S., Dray, S.,
2013. A guide for using functional diversity indices to reveal changes
in assembly processes along ecological gradients. J. Veg. Sci. 24,
794–806. https://doi.org/10.1111/jvs.12013
Medeiros, C.D., Scoffoni, C., John, G.P., Bartlett, M.K.,
Inman-Narahari, F., Ostertag, R., Cordell, S., Giardina, C., Sack, L.,
2019. An extensive suite of functional traits distinguishes Hawaiian wet
and dry forests and enables prediction of species vital rates. Funct.
Ecol. 33, 712–734. https://doi.org/10.1111/1365-2435.13229
Melo, F.P.L., Arroyo-Rodríguez, V., Fahrig, L., Martínez-Ramos, M.,
Tabarelli, M., 2013. On the hope for biodiversity-friendly tropical
landscapes. Trends Ecol. Evol. 28, 461–468.
https://doi.org/10.1016/j.tree.2013.01.001
Méndez-Toribio, M., Ibarra-Manríquez, G., Paz, H., Lebrija-Trejos, E.,
2020. Atmospheric and soil drought risks combined shape community
assembly of trees in a Tropical Dry Forest, Journal of Ecology.
https://doi.org/10.1111/1365-2745.13355
Mouchet, M.A., Villéger, S., Mason, N.W.H., Mouillot, D., 2010.
Functional diversity measures: an overview of their redundancy and their
ability to discriminate community assembly rules. Funct. Ecol. 24,
867–876. https://doi.org/10.1111/j.1365-2435.2010.01695.x
Muscarella, R., Messier, J., Condit, R., Hubbell, S.P., Svenning, J.C.,
2018. Effects of biotic interactions on tropical tree performance depend
on abiotic conditions. Ecology 99, 2740–2750.
https://doi.org/10.1002/ecy.2537
Muscarella, R., Uriarte, M., Erickson, D.L., Swenson, N.G., Kress, W.J.,
Zimmerman, J.K., 2016. Variation of tropical forest assembly processes
across regional environmental gradients. Perspect. Plant Ecol. Evol.
Syst. 23, 52–62. https://doi.org/10.1016/j.ppees.2016.09.007
O’Brien, M.J., Engelbrecht, B.M.J., Joswig, J., Pereyra, G., Schuldt,
B., Jansen, S., Kattge, J., Landhäusser, S.M., Levick, S.R., Preisler,
Y., Väänänen, P., Macinnis-Ng, C., 2017. A synthesis of tree functional
traits related to drought-induced mortality in forests across climatic
zones. J. Appl. Ecol. 54, 1669–1686.
https://doi.org/10.1111/1365-2664.12874
Osuri, A.M., Sankaran, M., 2016a. Data from: Seed size predicts
community composition and carbon storage potential of tree communities
in rainforest fragments in India’s Western Ghats., Dryad Digital
Repository. https://doi.org/10.5061/dryad.7s7r1
Osuri, A.M., Sankaran, M., 2016b. Seed size predicts community
composition and carbon storage potential of tree communities in rain
forest fragments in India’s Western Ghats. J. Appl. Ecol. 837–845.
https://doi.org/10.1111/1365-2664.12626
Paine, C.E.T., Baraloto, C., Chave, J., Hérault, B., 2011. Functional
traits of individual trees reveal ecological constraints on community
assembly in tropical rain forests. Oikos 120, 720–727.
https://doi.org/10.1111/j.1600-0706.2010.19110.x
Pascal, J.P., 1986. Explanatory Booklet on the Forest Map of South
India. Sheets: Belgaum-Dharwar-Panaji, Shimoga, Mercara-Mysore.. Inst.
Français Pondichery.
Poorter, L., Rozendaal, D.M.A., Bongers, F., de Almeida-Cortez, J.S.,
Almeyda Zambrano, A.M., Álvarez, F.S., Andrade, J.L., Villa, L.F.A.,
Balvanera, P., Becknell, J.M., Bentos, T. V., Bhaskar, R., Boukili, V.,
Brancalion, P.H.S., Broadbent, E.N., César, R.G., Chave, J., Chazdon,
R.L., Colletta, G.D., Craven, D., de Jong, B.H.J., Denslow, J.S., Dent,
D.H., DeWalt, S.J., García, E.D., Dupuy, J.M., Durán, S.M., Espírito
Santo, M.M., Fandiño, M.C., Fernandes, G.W., Finegan, B., Moser, V.G.,
Hall, J.S., Hernández-Stefanoni, J.L., Jakovac, C.C., Junqueira, A.B.,
Kennard, D., Lebrija-Trejos, E., Letcher, S.G., Lohbeck, M., Lopez,
O.R., Marín-Spiotta, E., Martínez-Ramos, M., Martins, S. V., Massoca,
P.E.S., Meave, J.A., Mesquita, R., Mora, F., de Souza Moreno, V.,
Müller, S.C., Muñoz, R., Muscarella, R., de Oliveira Neto, S.N., Nunes,
Y.R.F., Ochoa-Gaona, S., Paz, H., Peña-Claros, M., Piotto, D., Ruíz, J.,
Sanaphre-Villanueva, L., Sanchez-Azofeifa, A., Schwartz, N.B.,
Steininger, M.K., Thomas, W.W., Toledo, M., Uriarte, M., Utrera, L.P.,
van Breugel, M., van der Sande, M.T., van der Wal, H., Veloso, M.D.M.,
Vester, H.F.M., Vieira, I.C.G., Villa, P.M., Williamson, G.B., Wright,
S.J., Zanini, K.J., Zimmerman, J.K., Westoby, M., 2019. Wet and dry
tropical forests show opposite successional pathways in wood density but
converge over time. Nat. Ecol. Evol. 3, 928–934.
https://doi.org/10.1038/s41559-019-0882-6
Poorter, L., Wright, S.J., Paz, H., Ackerly, D.D., Condit, R.,
Ibarra-Manríquez, G., Harms, K.E., Licona, J.C., Martínez-Ramos, M.,
Mazer, S.J., Muller-Landau, H.C., Peña-Claros, M., Webb, C.O., Wright,
I.J., Peña-Claros, M., Webb, C.O., Wright, I.J., Peña-Claros, M., Webb,
C.O., Wright, I.J., 2008. Are functional traits good predictors of
demographic rates? Evidence from five neotropical forests. Ecology 89,
1908–1920. https://doi.org/10.1890/07-0207.1
Reich, P.B., 2014. The world-wide ‘fast-slow’ plant economics spectrum:
a traits manifesto. J. Ecol. 102, 275–301.
https://doi.org/10.1111/1365-2745.12211
Rüger, N., Comita, L.S., Condit, R., Purves, D., Rosenbaum, B., Visser,
M.D., Wright, S.., Wirth, C., 2018. Beyond the fast-slow continuum:
demographic dimensions structuring a tropical tree community. Ecol.
Lett. 21, 1075–1084. https://doi.org/10.1111/ele.12974
Shen, Y., Umaña, M.N., Li, W., Fang, M., Chen, Y., Lu, H., Yu, S., 2019.
Coordination of leaf, stem and root traits in determining seedling
mortality in a subtropical forest. For. Ecol. Manage. 446, 285–292.
https://doi.org/10.1016/j.foreco.2019.05.032
Shipley, B., De Bello, F., Cornelissen, J.H.C., Lalibert??, E.,
Laughlin, D.C., Reich, P.B., 2016. Reinforcing loose foundation stones
in trait-based plant ecology. Oecologia 180, 923–931.
https://doi.org/10.1007/s00442-016-3549-x
Sonnier, G., Shipley, B., Navas, M.-L., 2010. Quantifying relationships
between traits and explicitly measured gradients of stress and
disturbance in early successional plant communities. J. Veg. Sci. 21,
1014–1024. https://doi.org/10.1111/j.1654-1103.2010.01210.x
Sterck, F.J., Poorter, L., Schieving, F., 2006. Leaf traits determine
the growth-survival trade-off across rain forest tree species. Am. Nat.
167, 758–65. https://doi.org/10.1086/503056
Tyree, M.T., 2003. Plant hydraulics: The ascent of water. Nature 423,
923–923. https://doi.org/10.1038/423923a
Umaña, M.N., Swenson, N.G., 2018. Does trait variation within broadly
distributed species mirror patterns across species? A case study in
Puerto Rico. Ecology 0, 1–11. https://doi.org/10.1002/ecy.2745
Varma, V., Osuri, A.M., 2013. Black Spot: A platform for automated and
rapid estimation of leaf area from scanned images. Plant Ecol. 214,
1529–1534. https://doi.org/10.1007/s11258-013-0273-z
Venail, P., Gross, K., Oakley, T.H., Narwani, A., Allan, E., Flombaum,
P., Isbell, F., Joshi, J., Reich, P.B., Tilman, D., van Ruijven, J.,
Cardinale, B.J., 2015. Species richness, but not phylogenetic diversity,
influences community biomass production and temporal stability in a
re-examination of 16 grassland biodiversity studies. Funct. Ecol. 29,
615–626. https://doi.org/10.1111/1365-2435.12432
Vicente-Serrano, S.M., Gouveia, C., Camarero, J.J., Beguería, S., Trigo,
R., López-Moreno, J.I., Azorín-Molina, C., Pasho, E., Lorenzo-Lacruz,
J., Revuelto, J., Morán-Tejeda, E., Sanchez-Lorenzo, A., 2013. Response
of vegetation to drought time-scales across global land biomes. Proc.
Natl. Acad. Sci. U. S. A. 110, 52–57.
https://doi.org/10.1073/pnas.1207068110
Wright, S.J., Kitajima, K., Kraft, N.J.B., Reich, P.B., Wright, I.J.,
Bunker, D.E., Condit, R., Dalling, J.W., Davies, S.J., Díaz, S.,
Engelbrecht, B.M.J., Harms, K.E., Hubbell, S.P., Marks, C.O., Ruiz-Jaen,
M.C., Salvador, C.M., Zanne, A.E., 2010. Functional traits and the
growth-mortality trade-off in tropical trees. Ecology 91, 3664–74.
https://doi.org/10.1890/09-2335.1
Zellweger, F., De Frenne, P., Lenoir, J., Vangansbeke, P., Verheyen, K.,
Bernhardt-Römermann, M., Baeten, L., Hédl, R., Berki, I., Brunet, J.,
Van Calster, H., Chudomelová, M., Decocq, G., Dirnböck, T., Durak, T.,
Heinken, T., Jaroszewicz, B., Kopecký, M., Máliš, F., Macek, M.,
Malicki, M., Naaf, T., Nagel, T.A., Ortmann-Ajkai, A., Petřík, P.,
Pielech, R., Reczyńska, K., Schmidt, W., Standovár, T., Świerkosz, K.,
Teleki, B., Vild, O., Wulf, M., Coomes, D., 2020. Forest microclimate
dynamics drive plant responses to warming. Science (80-. ). 368,
772–775. https://doi.org/10.1126/science.aba6880
Zirbel, C.R., Brudvig, L.A., 2020. Trait–environment interactions
affect plant establishment success during restoration. Ecology 101,
1–7. https://doi.org/10.1002/ecy.2971