Statements

The data (figures, tables, and conclusions) used to support the findings of this study are included within the article.
The authors declare that there are no conflicts of interest regarding the publication of this paper.
The study did not utilize animal subjects or tissues. The research in this paper was approved by the Zhengzhou University Life Science Ethic Committee (FWA number: FWA00014064, IRB number: IRB00006861).
Reference
1 D. G. Seifu, A. Purnama, K. Mequanint and D. J. N. R. C. Mantovani, Small-diameter vascular tissue engineering, Nature Reviews Cardiology , 2013, 10 , 410-421, DOI: 10.1038/nrcardio.2013.77.
2. Y. Wan, S. Yang, M. Peng, M. Gama and H. J. J. o. M. C. B. Luo, Controllable synthesis of biomimetic nano/submicro-fibrous tubes for potential small-diameter vascular grafts, Journal of Materials Chemistry B , 2020, 8 , DOI: 10.1039/D0TB01002B.
3. T. Jungst, I. Pennings, M. Schmitz, A. Rosenberg and D. J. A. F. M. Gawlitta, Heterotypic Scaffold Design Orchestrates Primary Cell Organization and Phenotypes in Cocultured Small Diameter Vascular Grafts, Advanced Functional Materials , 2019, DOI: 10.1002/adfm.201905987.
4. G. L. Zhang, D. X. Ke, W. X. Zhao, R. X. Hou, A. Atala, Bioprinting small diameter blood vessel constructs with an endothelial and smooth muscle cell bilayer in a single step, Biofabrication , 2020,12 , 045012 (045014pp), DOI: 10.1088/1758-5090/aba2b6.
5. S. Ravi, Z. Qu and E. L. J. V. Chaikof, Polymeric materials for tissue engineering of arterial substitutes, Vascular , 2009,17 Suppl 1 , S45, DOI: 10.2310/6670.2008.00084.
6. H. Kuang, Y. Wang, Y. Shi, W. Yao and P. J. B. Zhang, Construction and performance evaluation of Hep/silk-PLCL composite nanofiber small-caliber artificial blood vessel graft, Biomaterials , 2020,259 , 120288, DOI: 10.1016/j.biomaterials.2020.120288.
7. S. A. Sell, M. J. Mcclure, K. Garg, P. S. Wolfe and G. L. J. A. D. D. R. Bowlin, Electrospinning of collagen/biopolymers for regenerative medicine and cardiovascular tissue engineering, Adv Drug Deliv Rev , 2009, 61 , 1007-1019, DOI: 10.1016/j.addr.2009.07.012.
8. B. D. Plouffe, T. Kniazeva, J. E. Mayer, S. K. Murthy and V. L. J. F. J. Sales, Development of microfluidics as endothelial progenitor cell capture technology for cardiovascular tissue engineering and diagnostic medicine, The FASEB Journal , 2009, 23 , 3309-3314, DOI: 10.1096/fj.09-130260.
9. R. Madonna, L. V. Laake, T. Eschenhagen, D. J. Hausenloy and J. S. J. C. R. Hulot, ESC Working Group on Cellular Biology of the Heart: Tissue Engineering and Cell-Based Therapies for Cardiac Repair in Ischemic Heart Disease and Heart Failure, Cardiovascular Research , 2019, DOI: 10.1093/cvr/cvz010.
10. H. J. Jeong, H. Nam, J. Jang and S. J. J. B. Lee, 3D Bioprinting Strategies for the Regeneration of Functional Tubular Tissues and Organs, Bioengineering , 2020, 7 , DOI:10.3390/bioengineering7020032.
11. H. W. Kang, J. L. Sang, I. K. Ko, C. Kengla and A. J. N. B. Atala, A 3D bioprinting system to produce human-scale tissue constructs with structural integrity, Nature Biotechnology , 2016, 34 , 312-319, DOI: 10.1038/nbt.3413.
12. R. Dong, Y. Liu, L. Mou, J. Deng and X. J. J. A. Microfluidics-Based Biomaterials and Biodevices, Advanced Materials , 2018, DOI: 10.1002/adma.201805033.
13. Q. Pi, S. Maharjan, R. Parra-Saldivar, N. Hu and W. J. A. M. Jia, Microfluidic Bioprinting: Digitally Tunable Microfluidic Bioprinting of Multilayered Cannular Tissues, Adv. Mater., 2018, 30 , DOI: 10.1002/adma.201870322
14. D. Loessner, C. Meinert, E. Kaemmerer, T. J. Klein, F. Melchels, A. Khademhosseini and D. W. J. N. P. Hutmacher, Functionalization, preparation and use of cell-laden gelatin methacryloyl–based hydrogels as modular tissue culture platforms, Nature Protocols , 2016, 11, 727–746, DOI: 10.1038/nprot.2016.037.
15. J. Lou, R. Stowers, S. Nam, Y. Xia and O. J. B. Chaudhuri, Stress relaxing hyaluronic acid-collagen hydrogels promote cell spreading, fiber remodeling, and focal adhesion formation in 3D cell culture,Biomaterials , 2017, 11, 213-222.
16. Y. Zhang, J. K. Yu, K. Ren, J. Zuo, J. Ding and X. J. B. Chen, Thermosensitive Hydrogels as Scaffolds for Cartilage Tissue Engineering,Biomacromolecules , 2019, DOI: 10.1021/acs.biomac.9b00043.
17. J. Chung, S. Naficy, Z. Yue, R. Kapsa, A. Quigley, S. E. Moulton and G. G. J. B. S. Wallace, Bio-ink properties and printability for extrusion printing living cells, Biomaterials Science , 2013,1 , DOI: 10.1039/C3BM00012E
18. Bin, Duan, Laura, A., Hockaday, Kevin, H., Kang, Jonathan and T. J. J. o. B. M. R. P. A, 3D Bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels, Journal of Biomedical Materials Research Part A , 2012, 101A , 1255-1264, DOI: 10.1002/jbm.a.34420.
19. C. Ferris, Bio-inks for drop-on-demand cell printing,Biomaterials Science , 2013, 1 , 224-230.
20. O. Sipahigil, B. Dortunç and O. K. J. I. J. o. Pharmaceutics, Preparation and in vitro evaluation of verapamil HCl and ibuprofen containing carrageenan beads, International Journal of Pharmaceutics , 2001, 228 , 119-128, DOI: 10.1016/S0378-5173(01)00814-6.
21. S. M. Mihaila, A. K. Gaharwar, R. L. Reis, A. P. Marques, M. E. Gomes and A. J. A. H. M. Khademhosseini, Photocrosslinkable Kappa-Carrageenan Hydrogels for Tissue Engineering Applications,Advanced Healthcare Materials , 2013, 2 , 895-907, DOI: 10.1002/adhm.201200317.
22. E. G. Popa, M. E. Gomes and L. R. J. B. Rui, Cell delivery systems using alginate–carrageenan hydrogel beads and fibers for regenerative medicine applications, Biomacromolecules , 2011, 12 , 3952, DOI: 10.1021/bm200965x.
23. T. Coviello, P. Matricardi, C. Marianecci and F. J. J. o. C. R. O. J. o. t. C. R. S. Alhaique, Polysaccharide hydrogels for modified release formulations, Journal of Controlled Release , 2007,119 , 5-24, DOI: 10.1016/j.jconrel.2007.01.004.
24. P. Cáceres, M. J. Carlucci, E. B. Damonte, B. Matsuhiro and E. A. J. P. Zuniga, Carrageenans from chilean samples of Stenogramme interrupta (Phyllophoraceae): structural analysis and biological activity,Critical Reviews in Biotechnology , 2000, 53 , 81-86, DOI: 10.1016/S0031-9422(99)00461-6.
25. M. Rai, A. Yadav and A. Gade, Erratum: Current trends in phytosynthesis of metal nanoparticles (Critical Reviews in Biotechnology 28:4 (277-284)), 2009, DOI: 10.1080/07388550902809566.
26. L. Gasperini, J. F. Mano and R. L. J. J. o. t. R. S. I. Reis, Natural polymers for the microencapsulation of cells, Journal of The Royal Society Interface , 2014, 11 , 20140817, DOI: 10.1098/rsif.2014.0817.
27. S. J. N. Iijima, Helical microtubles of graphitic carbon,Nature , 1991, 354 , 56-58.
28. Z. Du, X. Feng, G. Cao, Z. She, R. Tan, K. E. Aifantis, R. Zhang and X. J. Li, The effect of carbon nanotubes on osteogenic functions of adipose-derived mesenchymal stem cells in vitro and bone formation in vivo compared with that of nano-hydroxyapatite and the possible mechanism, Bioactive Materials , 2021, 6 , 333–345.
29. P. Newman, A. Minett, R. Ellis-Behnke, H. J. N. N. B. Zreiqat and Medicine, Carbon nanotubes: Their potential and pitfalls for bone tissue regeneration and engineering, Biology and Medicine , 2013,9 , 1139-1158, DOI: 10.1016/j.nano.2013.06.001.
30. C. Abdullah, C. L. Azad, R. Ovalle-Robles, A. B. Dalton and N. J. J. A. A. M. I. Plant, Primary Liver Cells Cultured on Carbon Nanotube Substrates for Liver Tissue Engineering and Drug Discovery Applications,Acs Appl Mater Interfaces , 2014, 6 , 10373-10380, DOI: 10.1021/am5018489
31. E. R. Aurand, S. Usmani, S. Donato, G. Tromba, M. Prato and L. J. A. F. M. Ballerini, Nanostructures to Engineer 3D Neural-Interfaces: Directing Axonal Navigation toward Successful Bridging of Spinal Segments, Advanced Functional Materials , 2018, 28 , 1700550.1700551-1700550.1700512.
32. M. V. Pryzhkova, I. Aria, Q. Cheng, G. M. Harris, X. Zan, M. Gharib and E. J. B. Jabbarzadeh, Carbon nanotube-based substrates for modulation of human pluripotent stem cell fate, Biomaterials , 2014, 35 , 5098-5109, DOI: 10.1016/j.biomaterials.2014.03.011.
33. W. Weng, S. He, H. Song, X. Li, L. Cao, Y. Hu, C. Jin, Q. Zhou, H. Peng and J. J. A. N. Su, Aligned Carbon Nanotubes Reduce Hypertrophic Scar via Regulating Cell Behaviour, Acs Nano , 2018, DOI: 10.1021/acsnano.7b07439.
34. X. Li, H. Gao, M. Uo, Y. Sato, T. Akasaka, Q. Feng, F. Cui, X. Liu and F. J. J. o. B. M. R. P. A. Watari, Effect of carbon nanotubes on cellular functions in vitro, Journal of Biomedical Materials Research Part A , 2009, 91 , 132-139, DOI:10.1002/jbm.a.32203.
35. M. Terada, S. Abe, T. Akasaka, M. Uo and F. W. J. D. M. Journal, Development of a multiwalled carbon nanotube coated collagen dish,Dental Materials Journal , 2009, 28 , 82-88, DOI: 10.4012/dmj.28.82.
36. M. H. Kim, W. L. Yong, W. K. Jung, J. Oh and S. Y. J. J. o. t. M. B. o. B. M. Nam, Enhanced rheological behaviors of alginate hydrogels with carrageenan for extrusion-based bioprinting, Journal of the Mechanical Behavior of Biomedical Materials , 2019, 98 , 187-194, DOI: 10.1016/j.jmbbm.2019.06.014.
37. X. Y. Tian, M. G. Li, N. Cao, J. W. Li and X. B. J. B. Chen, Characterization of the flow behavior of alginate/hydroxyapatite mixtures for tissue scaffold fabrication, Biofabrication , 2009,1 , 045005, DOI: 10.1088/1758-5082/1/4/045005.
38. M. G. Li, X. Y. Tian and X. B. J. B. Chen, A brief review of dispensing-based rapid prototyping techniques in tissue scaffold fabrication: role of modeling on scaffold properties prediction,Biofabrication , 2009, 1 , 032001, DOI:10.1088/1758-5082/1/3/032001.
39. H. Li, S. Liu and L. Li, Rheological study on 3D printability of alginate hydrogel and effect of graphene oxide, International of journal of bioprinting , 2016, DOI: 10.18063/IJB.2016.02.007.
40. L. K. Taek, H. Jin, K. Jangho, S. Hoon, C. Pill-Hoon and C. J. J. B. R. I. Hoon, Synergistic effects of orbital shear stress on in vitro growth and osteogenic differentiation of human alveolar bone-derived mesenchymal stem cells, BioMed Research International , 2014,2014 , 316803, DOI:10.1155/2014/316803.
41. T. Distler, A. Sulistio, D. Schneidereit, O. Friedrich and A. R. J. B. Boccaccini, 3D printed oxidized alginate-gelatin bioink provides guidance for C2C12 muscle precursor cell orientation and differentiation via shear stress during bioprinting, Biofabrication , 2020, DOI: 10.1088/1758-5090/ab98e4.
42. A. Blaeser, D. D. Campos, U. Puster, W. Richtering, M. M. Stevens and H. J. A. H. M. Fischer, Controlling Shear Stress in 3D Bioprinting is a Key Factor to Balance Printing Resolution and Stem Cell Integrity,Advanced Healthcare Materials , 2016, 5 , 326-333, DOI: 10.1002/adhm.201500677.
43. R. Chang, J. Nam and W. J. T. E. P. A. Sun, Effects of dispensing pressure and nozzle diameter on cell survival from solid freeform fabrication-based direct cell writing, Tissue Engineering Part A , 2008, 14 , 41-48, DOI: 10.1089/ten.a.2007.0004.
44. J. Ando, H. Nomura and A. J. M. R. Kamiya, The effect of fluid shear stress on the migration and proliferation of cultured endothelial cells,Microvascular Research , 1987, 33 , 62-70, DOI: 10.1016/0026-2862(87)90007-01987.
45. K. Nair, M. Gandhi, S. Khalil, K. C. Yan, M. Marcolongo, K. Barbee and W. S. J. B. J. Dr, Characterization of cell viability during bioprinting processes, Biotechnology Journal , 2010, 4 , 1168-1177, DOI: 10.1002/biot.200900004.