Statements
The data (figures, tables, and conclusions) used to support the findings
of this study are included within the article.
The authors declare that there are no conflicts of interest regarding
the publication of this paper.
The study did not utilize animal subjects or tissues. The research in
this paper was approved by the Zhengzhou University Life Science Ethic
Committee (FWA number: FWA00014064, IRB number: IRB00006861).
Reference
1 D. G. Seifu, A. Purnama, K. Mequanint and D. J. N. R. C. Mantovani,
Small-diameter vascular tissue engineering, Nature Reviews
Cardiology , 2013, 10 , 410-421, DOI: 10.1038/nrcardio.2013.77.
2. Y. Wan, S. Yang, M. Peng, M. Gama and H. J. J. o. M. C. B. Luo,
Controllable synthesis of biomimetic nano/submicro-fibrous tubes for
potential small-diameter vascular grafts, Journal of Materials
Chemistry B , 2020, 8 , DOI: 10.1039/D0TB01002B.
3. T. Jungst, I. Pennings, M. Schmitz, A. Rosenberg and D. J. A. F. M.
Gawlitta, Heterotypic Scaffold Design Orchestrates Primary Cell
Organization and Phenotypes in Cocultured Small Diameter Vascular
Grafts, Advanced Functional Materials , 2019, DOI:
10.1002/adfm.201905987.
4. G. L. Zhang, D. X. Ke, W. X. Zhao, R. X. Hou, A. Atala, Bioprinting
small diameter blood vessel constructs with an endothelial and smooth
muscle cell bilayer in a single step, Biofabrication , 2020,12 , 045012 (045014pp), DOI: 10.1088/1758-5090/aba2b6.
5. S. Ravi, Z. Qu and E. L. J. V. Chaikof, Polymeric materials for
tissue engineering of arterial substitutes, Vascular , 2009,17 Suppl 1 , S45, DOI: 10.2310/6670.2008.00084.
6. H. Kuang, Y. Wang, Y. Shi, W. Yao and P. J. B. Zhang, Construction
and performance evaluation of Hep/silk-PLCL composite nanofiber
small-caliber artificial blood vessel graft, Biomaterials , 2020,259 , 120288, DOI: 10.1016/j.biomaterials.2020.120288.
7. S. A. Sell, M. J. Mcclure, K. Garg, P. S. Wolfe and G. L. J. A. D. D.
R. Bowlin, Electrospinning of collagen/biopolymers for regenerative
medicine and cardiovascular tissue engineering, Adv Drug Deliv
Rev , 2009, 61 , 1007-1019, DOI: 10.1016/j.addr.2009.07.012.
8. B. D. Plouffe, T. Kniazeva, J. E. Mayer, S. K. Murthy and V. L. J. F.
J. Sales, Development of microfluidics as endothelial progenitor cell
capture technology for cardiovascular tissue engineering and diagnostic
medicine, The FASEB Journal , 2009, 23 , 3309-3314, DOI:
10.1096/fj.09-130260.
9. R. Madonna, L. V. Laake, T. Eschenhagen, D. J. Hausenloy and J. S. J.
C. R. Hulot, ESC Working Group on Cellular Biology of the Heart: Tissue
Engineering and Cell-Based Therapies for Cardiac Repair in Ischemic
Heart Disease and Heart Failure, Cardiovascular Research , 2019,
DOI: 10.1093/cvr/cvz010.
10. H. J. Jeong, H. Nam, J. Jang and S. J. J. B. Lee, 3D Bioprinting
Strategies for the Regeneration of Functional Tubular Tissues and
Organs, Bioengineering , 2020, 7 ,
DOI:10.3390/bioengineering7020032.
11. H. W. Kang, J. L. Sang, I. K. Ko, C. Kengla and A. J. N. B. Atala, A
3D bioprinting system to produce human-scale tissue constructs with
structural integrity, Nature Biotechnology , 2016, 34 ,
312-319, DOI: 10.1038/nbt.3413.
12. R. Dong, Y. Liu, L. Mou, J. Deng and X. J. J. A. Microfluidics-Based
Biomaterials and Biodevices, Advanced Materials , 2018, DOI:
10.1002/adma.201805033.
13. Q. Pi, S. Maharjan, R. Parra-Saldivar, N. Hu and W. J. A. M. Jia,
Microfluidic Bioprinting: Digitally Tunable Microfluidic Bioprinting of
Multilayered Cannular Tissues, Adv. Mater., 2018, 30 ,
DOI: 10.1002/adma.201870322
14. D. Loessner, C. Meinert, E. Kaemmerer, T. J. Klein, F. Melchels, A.
Khademhosseini and D. W. J. N. P. Hutmacher, Functionalization,
preparation and use of cell-laden gelatin methacryloyl–based hydrogels
as modular tissue culture platforms, Nature Protocols , 2016, 11,
727–746, DOI: 10.1038/nprot.2016.037.
15. J. Lou, R. Stowers, S. Nam, Y. Xia and O. J. B. Chaudhuri, Stress
relaxing hyaluronic acid-collagen hydrogels promote cell spreading,
fiber remodeling, and focal adhesion formation in 3D cell culture,Biomaterials , 2017, 11, 213-222.
16. Y. Zhang, J. K. Yu, K. Ren, J. Zuo, J. Ding and X. J. B. Chen,
Thermosensitive Hydrogels as Scaffolds for Cartilage Tissue Engineering,Biomacromolecules , 2019, DOI: 10.1021/acs.biomac.9b00043.
17. J. Chung, S. Naficy, Z. Yue, R. Kapsa, A. Quigley, S. E. Moulton and
G. G. J. B. S. Wallace, Bio-ink properties and printability for
extrusion printing living cells, Biomaterials Science , 2013,1 , DOI: 10.1039/C3BM00012E
18. Bin, Duan, Laura, A., Hockaday, Kevin, H., Kang, Jonathan and T. J.
J. o. B. M. R. P. A, 3D Bioprinting of heterogeneous aortic valve
conduits with alginate/gelatin hydrogels, Journal of Biomedical
Materials Research Part A , 2012, 101A , 1255-1264, DOI:
10.1002/jbm.a.34420.
19. C. Ferris, Bio-inks for drop-on-demand cell printing,Biomaterials Science , 2013, 1 , 224-230.
20. O. Sipahigil, B. Dortunç and O. K. J. I. J. o. Pharmaceutics,
Preparation and in vitro evaluation of verapamil HCl and ibuprofen
containing carrageenan beads, International Journal of
Pharmaceutics , 2001, 228 , 119-128, DOI:
10.1016/S0378-5173(01)00814-6.
21. S. M. Mihaila, A. K. Gaharwar, R. L. Reis, A. P. Marques, M. E.
Gomes and A. J. A. H. M. Khademhosseini, Photocrosslinkable
Kappa-Carrageenan Hydrogels for Tissue Engineering Applications,Advanced Healthcare Materials , 2013, 2 , 895-907, DOI:
10.1002/adhm.201200317.
22. E. G. Popa, M. E. Gomes and L. R. J. B. Rui, Cell delivery systems
using alginate–carrageenan hydrogel beads and fibers for regenerative
medicine applications, Biomacromolecules , 2011, 12 ,
3952, DOI: 10.1021/bm200965x.
23. T. Coviello, P. Matricardi, C. Marianecci and F. J. J. o. C. R. O.
J. o. t. C. R. S. Alhaique, Polysaccharide hydrogels for modified
release formulations, Journal of Controlled Release , 2007,119 , 5-24, DOI: 10.1016/j.jconrel.2007.01.004.
24. P. Cáceres, M. J. Carlucci, E. B. Damonte, B. Matsuhiro and E. A. J.
P. Zuniga, Carrageenans from chilean samples of Stenogramme interrupta
(Phyllophoraceae): structural analysis and biological activity,Critical Reviews in Biotechnology , 2000, 53 , 81-86, DOI:
10.1016/S0031-9422(99)00461-6.
25. M. Rai, A. Yadav and A. Gade, Erratum: Current trends in
phytosynthesis of metal nanoparticles (Critical Reviews in Biotechnology
28:4 (277-284)), 2009, DOI: 10.1080/07388550902809566.
26. L. Gasperini, J. F. Mano and R. L. J. J. o. t. R. S. I. Reis,
Natural polymers for the microencapsulation of cells, Journal of
The Royal Society Interface , 2014, 11 , 20140817, DOI:
10.1098/rsif.2014.0817.
27. S. J. N. Iijima, Helical microtubles of graphitic carbon,Nature , 1991, 354 , 56-58.
28. Z. Du, X. Feng, G. Cao, Z. She, R. Tan, K. E. Aifantis, R. Zhang and
X. J. Li, The effect of carbon nanotubes on osteogenic functions of
adipose-derived mesenchymal stem cells in vitro and bone formation in
vivo compared with that of nano-hydroxyapatite and the possible
mechanism, Bioactive Materials , 2021, 6 , 333–345.
29. P. Newman, A. Minett, R. Ellis-Behnke, H. J. N. N. B. Zreiqat and
Medicine, Carbon nanotubes: Their potential and pitfalls for bone tissue
regeneration and engineering, Biology and Medicine , 2013,9 , 1139-1158, DOI: 10.1016/j.nano.2013.06.001.
30. C. Abdullah, C. L. Azad, R. Ovalle-Robles, A. B. Dalton and N. J. J.
A. A. M. I. Plant, Primary Liver Cells Cultured on Carbon Nanotube
Substrates for Liver Tissue Engineering and Drug Discovery Applications,Acs Appl Mater Interfaces , 2014, 6 , 10373-10380, DOI:
10.1021/am5018489
31. E. R. Aurand, S. Usmani, S. Donato, G. Tromba, M. Prato and L. J. A.
F. M. Ballerini, Nanostructures to Engineer 3D Neural-Interfaces:
Directing Axonal Navigation toward Successful Bridging of Spinal
Segments, Advanced Functional Materials , 2018, 28 ,
1700550.1700551-1700550.1700512.
32. M. V. Pryzhkova, I. Aria, Q. Cheng, G. M. Harris, X. Zan, M. Gharib
and E. J. B. Jabbarzadeh, Carbon nanotube-based substrates for
modulation of human pluripotent stem cell fate, Biomaterials ,
2014, 35 , 5098-5109, DOI: 10.1016/j.biomaterials.2014.03.011.
33. W. Weng, S. He, H. Song, X. Li, L. Cao, Y. Hu, C. Jin, Q. Zhou, H.
Peng and J. J. A. N. Su, Aligned Carbon Nanotubes Reduce Hypertrophic
Scar via Regulating Cell Behaviour, Acs Nano , 2018, DOI:
10.1021/acsnano.7b07439.
34. X. Li, H. Gao, M. Uo, Y. Sato, T. Akasaka, Q. Feng, F. Cui, X. Liu
and F. J. J. o. B. M. R. P. A. Watari, Effect of carbon nanotubes on
cellular functions in vitro, Journal of Biomedical Materials
Research Part A , 2009, 91 , 132-139, DOI:10.1002/jbm.a.32203.
35. M. Terada, S. Abe, T. Akasaka, M. Uo and F. W. J. D. M. Journal,
Development of a multiwalled carbon nanotube coated collagen dish,Dental Materials Journal , 2009, 28 , 82-88, DOI:
10.4012/dmj.28.82.
36. M. H. Kim, W. L. Yong, W. K. Jung, J. Oh and S. Y. J. J. o. t. M. B.
o. B. M. Nam, Enhanced rheological behaviors of alginate hydrogels with
carrageenan for extrusion-based bioprinting, Journal of the
Mechanical Behavior of Biomedical Materials , 2019, 98 ,
187-194, DOI: 10.1016/j.jmbbm.2019.06.014.
37. X. Y. Tian, M. G. Li, N. Cao, J. W. Li and X. B. J. B. Chen,
Characterization of the flow behavior of alginate/hydroxyapatite
mixtures for tissue scaffold fabrication, Biofabrication , 2009,1 , 045005, DOI: 10.1088/1758-5082/1/4/045005.
38. M. G. Li, X. Y. Tian and X. B. J. B. Chen, A brief review of
dispensing-based rapid prototyping techniques in tissue scaffold
fabrication: role of modeling on scaffold properties prediction,Biofabrication , 2009, 1 , 032001,
DOI:10.1088/1758-5082/1/3/032001.
39. H. Li, S. Liu and L. Li, Rheological study on 3D printability of
alginate hydrogel and effect of graphene oxide, International of
journal of bioprinting , 2016, DOI: 10.18063/IJB.2016.02.007.
40. L. K. Taek, H. Jin, K. Jangho, S. Hoon, C. Pill-Hoon and C. J. J. B.
R. I. Hoon, Synergistic effects of orbital shear stress on in vitro
growth and osteogenic differentiation of human alveolar bone-derived
mesenchymal stem cells, BioMed Research International , 2014,2014 , 316803, DOI:10.1155/2014/316803.
41. T. Distler, A. Sulistio, D. Schneidereit, O. Friedrich and A. R. J.
B. Boccaccini, 3D printed oxidized alginate-gelatin bioink provides
guidance for C2C12 muscle precursor cell orientation and differentiation
via shear stress during bioprinting, Biofabrication , 2020, DOI:
10.1088/1758-5090/ab98e4.
42. A. Blaeser, D. D. Campos, U. Puster, W. Richtering, M. M. Stevens
and H. J. A. H. M. Fischer, Controlling Shear Stress in 3D Bioprinting
is a Key Factor to Balance Printing Resolution and Stem Cell Integrity,Advanced Healthcare Materials , 2016, 5 , 326-333, DOI:
10.1002/adhm.201500677.
43. R. Chang, J. Nam and W. J. T. E. P. A. Sun, Effects of dispensing
pressure and nozzle diameter on cell survival from solid freeform
fabrication-based direct cell writing, Tissue Engineering Part A ,
2008, 14 , 41-48, DOI: 10.1089/ten.a.2007.0004.
44. J. Ando, H. Nomura and A. J. M. R. Kamiya, The effect of fluid shear
stress on the migration and proliferation of cultured endothelial cells,Microvascular Research , 1987, 33 , 62-70, DOI:
10.1016/0026-2862(87)90007-01987.
45. K. Nair, M. Gandhi, S. Khalil, K. C. Yan, M. Marcolongo, K. Barbee
and W. S. J. B. J. Dr, Characterization of cell viability during
bioprinting processes, Biotechnology Journal , 2010, 4 ,
1168-1177, DOI: 10.1002/biot.200900004.