REFERENCES
Ai, C., Liang, G., Sun, J., Wang, X., He, P., Zhou, W., & He, X. (2015). Reduced dependence of rhizosphere microbiome on plant-derived carbon in 32-year long-term inorganic and organic fertilized soils. Soil Biology and Biochemistry80 , 70-78.
Allison, S. D., Wallenstein, M. D., & Bradford, M. A. (2010). Soil-carbon response to warming dependent on microbial physiology. Nature Geoscience3 (5), 336-340.
Baldrian, P., Kolařík, M., Štursová, M., Kopecký, J., Valášková, V., Větrovský, T., … & Voříšková, J. (2012). Active and total microbial communities in forest soil are largely different and highly stratified during decomposition. The ISME Journal6 (2), 248-258.
Baldrian, P., Voříšková, J., Dobiášová, P., Merhautová, V., Lisá, L., & Valášková, V. (2011). Production of extracellular enzymes and degradation of biopolymers by saprotrophic microfungi from the upper layers of forest soil. Plant and Soil338 (1), 111-125.
BÁRcenas-Moreno, G., GÓMez-BrandÓN, M., Rousk, J., & BÅÅTh, E. (2009). Adaptation of soil microbial communities to temperature: comparison of fungi and bacteria in a laboratory experiment. Global Change Biology15 (12), 2950-2957.
Bokulich, N.A., Kaehler, B.D., Rideout, J.R., Dillon, M., Bolyen, E., Knight, R., Huttley, G.A., & Caporaso, J.G. (2018). Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome6 (1), 1-17.
Bolyen, E., Rideout, J. R., Dillon, M. R., Bokulich, N. A., Abnet, C. C., Al-Ghalith, G. A., … & Caporaso, J. G. (2019). Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnology37 (8), 852-857.
Briedis, C., de Moraes Sá, J. C., Caires, E. F., de Fátima Navarro, J., Inagaki, T. M., Boer, A., … & Dos Santos, J. B. (2012). Soil organic matter pools and carbon-protection mechanisms in aggregate classes influenced by surface liming in a no-till system. Geoderma170 , 80-88.
Cai, Z. Q., Zhang, Y. H., Yang, C., & Wang, S. (2018). Land-use type strongly shapes community composition, but not always diversity of soil microbes in tropical China. Catena165 , 369-380.
Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A., & Holmes, S. P. (2016). DADA2: high-resolution sample inference from Illumina amplicon data. Nature Methods13 (7), 581-583.
Chen, H., Zhang, W., Wang, K., & Hou, Y. (2012). Soil organic carbon and total nitrogen as affected by land use types in karst and non‐karst areas of northwest Guangxi, China. Journal of the Science of Food and Agriculture92 (5), 1086-1093.
Chen, L., Xiang, W., Ouyang, S., Wu, H., Xia, Q., Ma, J., … & Kuzyakov, Y. (2021). Tight coupling of fungal community composition with soil quality in a Chinese fir plantation chronosequence. Land Degradation & Development32 (3), 1164-1178.
Chen, Y. L., Xu, T. L., Veresoglou, S. D., Hu, H. W., Hao, Z. P., Hu, Y. J., … & Chen, B. D. (2017). Plant diversity represents the prevalent determinant of soil fungal community structure across temperate grasslands in northern China. Soil Biology and Biochemistry110 , 12-21.
Crowther, T. W., Van den Hoogen, J., Wan, J., Mayes, M. A., Keiser, A. D., Mo, L., … & Maynard, D. S. (2019). The global soil community and its influence on biogeochemistry. Science365 (6455).
Csardi, G., & Nepusz, T. (2006). The igraph software package for complex network research. InterJournal, Complex Systems1695 (5), 1-9.
Dai, Z., Su, W., Chen, H., Barberán, A., Zhao, H., Yu, M., … & Xu, J. (2018). Long‐term nitrogen fertilization decreases bacterial diversity and favors the growth of Actinobacteria and Proteobacteria in agro‐ecosystems across the globe. Global Change Biology24 (8), 3452-3461.
Dang, P., Yu, X., Le, H., Liu, J., Shen, Z., & Zhao, Z. (2017). Effects of stand age and soil properties on soil bacterial and fungal community composition in Chinese pine plantations on the Loess Plateau. PLoS One12 (10), e0186501.
de Araujo, A.S.F., Mendes, L.W., Lemos, L.N., Antunes, J.E.L., Beserra, J.E.A., Figueiredo, M.d.V.B., de Almeida Lopes, Â.C., Gomes, R.L.F., Bezerra, W.M., Melo, V.M.M., de Araujo, F.F., & Geisen, S. (2018). Protist species richness and soil microbiome complexity increase towards climax vegetation in the Brazilian Cerrado. Communications Biology1 (1), 1-8.
De Deyn, G. B., Cornelissen, J. H., & Bardgett, R. D. (2008). Plant functional traits and soil carbon sequestration in contrasting biomes. Ecology Letters11 (5), 516-531.
Fan, D., Kong, W., Wang, F., Yue, L., & Li, X. (2020). Fencing decreases microbial diversity but increases abundance in grassland soils on the Tibetan Plateau. Land Degradation & Development31 (17), 2577-2590.
Feng, W., Zhang, Y., Lai, Z., Qin, S., Yan, R., Sun, Y., & She, W. (2021). Soil bacterial and eukaryotic co‐occurrence networks across a desert climate gradient in northern China. Land Degradation & Development32 (5), 1938-1950.
Fierer, N., Bradford, M. A., & Jackson, R. B. (2007). Toward an ecological classification of soil bacteria. Ecology88 (6), 1354-1364.
Fierer, N., Lauber, C. L., Ramirez, K. S., Zaneveld, J., Bradford, M. A., & Knight, R. (2012). Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients. The ISME Journal6 (5), 1007-1017.
Fontaine, S., Hénault, C., Aamor, A., Bdioui, N., Bloor, J., Maire, V., Mary, B., Revaillot, S., & Maron, P.A. (2011). Fungi mediate long term sequestration of carbon and nitrogen in soil through their priming effect. Soil biology and Biochemistry43 (1), 86-96.
Fournier, B., Dos Santos, S.P., Gustavsen, J.A., Imfeld, G., Lamy, F., Mitchell, E.A., Mota, M., Noll, D., Planchamp, C., & Heger, T.J. (2020). Impact of a synthetic fungicide (fosetyl-Al and propamocarb-hydrochloride) and a biopesticide (Clonostachys rosea ) on soil bacterial, fungal, and protist communities.Science of The Total Environment738 , 139635.
Geisen, S., Hu, S., dela Cruz, T. E. E., & Veen, G. C. (2021). Protists as catalyzers of microbial litter breakdown and carbon cycling at different temperature regimes. The ISME Journal15 (2), 618-621.
Geisen, S., Mitchell, E. A., Adl, S., Bonkowski, M., Dunthorn, M., Ekelund, F., … & Lara, E. (2018). Soil protists: a fertile frontier in soil biology research. FEMS Microbiology Reviews42 (3), 293-323.
Grossmann, L., Jensen, M., Heider, D., Jost, S., Glücksman, E., Hartikainen, H., Mahamdallie, S.S., Gardner, M., Hoffmann, D., Bass, D., & Boenigk, J. (2016). Protistan community analysis: key findings of a large-scale molecular sampling. The ISME Journal10 (9), 2269-2279.
Guillou, L., Bachar, D., Audic, S., Bass, D., Berney, C., Bittner, L., … & Christen, R. (2012). The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote small sub-unit rRNA sequences with curated taxonomy. Nucleic Acids Research41 (D1), D597-D604.
Guo, S., Xiong, W., Xu, H., Hang, X., Liu, H., Xun, W., Li, R., & Shen, Q. (2018). Continuous application of different fertilizers induces distinct bulk and rhizosphere soil protist communities. European Journal of Soil Biology88 , 8-14.
Hermans, S.M., Buckley, H.L., Case, B.S., Curran-Cournane, F., Taylor, M., & Lear, G. (2017). Bacteria as emerging indicators of soil condition. Applied and Environmental Microbiology83 (1), e02826-16.
Hu, P. L., Liu, S. J., Ye, Y. Y., Zhang, W., Wang, K. L., & Su, Y. R. (2018). Effects of environmental factors on soil organic carbon under natural or managed vegetation restoration. Land Degradation & Development29 (3), 387-397.
Hu, P., Xiao, J., Zhang, W., Xiao, L., Yang, R., Xiao, D., Zhao, J., & Wang, K. (2020). Response of soil microbial communities to natural and managed vegetation restoration in a subtropical karst region.Catena195 , 104849.
Hu, P., Zhang, W., Chen, H., Li, D., Zhao, Y., Zhao, J., Xiao, J., Wu, F., He, X., Luo, Y., & Wang, K. (2021). Soil carbon accumulation with increasing temperature under both managed and natural vegetation restoration in calcareous soils.Science of The Total Environment767 , 145298.
Jiang, Z., Lian, Y., & Qin, X. (2014). Rocky desertification in Southwest China: impacts, causes, and restoration. Earth-Science Reviews132 , 1-12.
Johnson, D., Vandenkoornhuyse, P.J., Leake, J.R., Gilbert, L., Booth, R.E., Grime, J.P., Young, J.P.W., & Read, D.J. (2004). Plant communities affect arbuscular mycorrhizal fungal diversity and community composition in grassland microcosms. New Phytologist161 (2), 503-515.
Kara, E. L., Hanson, P. C., Hu, Y. H., Winslow, L., & McMahon, K. D. (2013). A decade of seasonal dynamics and co-occurrences within freshwater bacterioplankton communities from eutrophic Lake Mendota, WI, USA. The ISME Journal7 (3), 680-684.
Ladygina, N., & Hedlund, K. (2010). Plant species influence microbial diversity and carbon allocation in the rhizosphere. Soil Biology and Biochemistry42 (2), 162-168.
Lan, J. (2021). Responses of soil organic carbon components and their sensitivity to karst rocky desertification control measures in Southwest China. Journal of Soils and Sediments21 (2), 978-989.
Li, D., Wen, L., Xiao, K., Song, T., & Wang, K. (2021). Responses of soil gross nitrogen transformations to three vegetation restoration strategies in a subtropical karst region. Land Degradation & Development32 (8), 2520-2527.
Li, S. L., Liu, C. Q., Chen, J. A., & Wang, S. J. (2021). Karst ecosystem and environment: Characteristics, evolution processes, and sustainable development. Agriculture, Ecosystems & Environment306 , 107173.
Lian, T., Jin, J., Wang, G., Tang, C., Yu, Z., Li, Y., Liu, J., Zhang, S., & Liu, X. (2017). The fate of soybean residue-carbon links to changes of bacterial community composition in Mollisols differing in soil organic carbon. Soil Biology and Biochemistry109 , 50-58.
Liu, G. Y., Chen, L. L., Shi, X. R., Yuan, Z. Y., Yuan, L. Y., Lock, T. R., & Kallenbach, R. L. (2019a). Changes in rhizosphere bacterial and fungal community composition with vegetation restoration in planted forests. Land Degradation & Development30 (10), 1147-1157.
Liu, X., Zhang, W., Wu, M., Ye, Y., Wang, K., & Li, D. (2019b). Changes in soil nitrogen stocks following vegetation restoration in a typical karst catchment. Land Degradation & Development30 (1), 60-72.
Liu, Z., Liu, G., Fu, B., & Zheng, X. (2008). Relationship between plant species diversity and soil microbial functional diversity along a longitudinal gradient in temperate grasslands of Hulunbeir, Inner Mongolia, China. Ecological Research23 (3), 511-518.
Mellado-Vázquez, P.G., Lange, M., Bachmann, D., Gockele, A., Karlowsky, S., Milcu, A., Piel, C., Roscher, C., Roy, J., & Gleixner, G. (2016). Plant diversity generates enhanced soil microbial access to recently photosynthesized carbon in the rhizosphere. Soil Biology and Biochemistry94 , 122-132.
Newsham, K. K., Upson, R., & Read, D. J. (2009). Mycorrhizas and dark septate root endophytes in polar regions. Fungal Ecology2 (1), 10-20.
Nilsson, R.H., Larsson, K.H., Taylor, A.F.S., Bengtsson-Palme, J., Jeppesen, T.S., Schigel, D., Kennedy, P., Picard, K., Glöckner, F.O., Tedersoo, L., Saar, I., Kõljalg, U., & Abarenkov, K. (2019). The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic acids research47 (D1), D259-D264.
Pettersson, M., & Bååth, E. (2003). Temperature-dependent changes in the soil bacterial community in limed and unlimed soil. FEMS Microbiology ecology45 (1), 13-21.
Pietikäinen, J., Pettersson, M., & Bååth, E. (2005). Comparison of temperature effects on soil respiration and bacterial and fungal growth rates. FEMS Microbiology Ecology52 (1), 49-58.
Poll, C., Marhan, S., Ingwersen, J., & Kandeler, E. (2008). Dynamics of litter carbon turnover and microbial abundance in a rye detritusphere. Soil Biology and Biochemistry40 (6), 1306-1321.
Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., & Glöckner, F.O. (2012). The SILVA ribosomal RNA gene database project: improved data processing and web-based tools.Nucleic Acids Research41 (D1), D590-D596.
Read, D. J., & Perez‐Moreno, J. (2003). Mycorrhizas and nutrient cycling in ecosystems–a journey towards relevance? New Phytologist157 (3), 475-492.
Ritz, K. (2011). The architecture and biology of soils: Life in inner space. Cabi.
Rognes, T., Flouri, T., Nichols, B., Quince, C., & Mahé, F. (2016). VSEARCH: a versatile open source tool for metagenomics. PeerJ4 , e2584.
Samal, S., Dwivedi, S., Rao, K., Choubey, A.K., Prakash, V., Kumar, S., Mishra, J., Bhatt, B., & Moharana, P. (2020). Five years’ exposure of elevated atmospheric CO2 and temperature enriched recalcitrant carbon in soil of subtropical humid climate. Soil and Tillage Research203 , 104707.
Sanaei, A., Sayer, E. J., Saiz, H., Yuan, Z., & Ali, A. (2021). Species co‐occurrence shapes spatial variability in plant diversity–biomass relationships in natural rangelands under different grazing intensities. Land Degradation & Development .
Santos, S.S., Schöler, A., Nielsen, T.K., Hansen, L.H., Schloter, M., & Winding, A. (2020). Land use as a driver for protist community structure in soils under agricultural use across Europe. Science of The Total Environment717 , 137228.
Schmidt, S., Nemergut, D., Darcy, J., & Lynch, R. (2014). Do bacterial and fungal communities assemble differently during primary succession? Wiley Online Library.
Schneider, T., Keiblinger, K.M., Schmid, E., Sterflinger-Gleixner, K., Ellersdorfer, G., Roschitzki, B., Richter, A., Eberl, L., Zechmeister-Boltenstern, S., & Riedel, K. (2012). Who is who in litter decomposition? Metaproteomics reveals major microbial players and their biogeochemical functions. The ISME Journal6 (9), 1749-1762.
Schulz, G., Schneider, D., Brinkmann, N., Edy, N., Daniel, R., Polle, A., Scheu, S., & Krashevska, V. (2019). Changes in trophic groups of protists with conversion of rainforest into rubber and oil palm plantations. Frontiers in Microbiology10 , 240.
Seppey, C.V., Broennimann, O., Buri, A., Yashiro, E., Pinto‐Figueroa, E., Singer, D., Blandenier, Q., Mitchell, E.A., Niculita‐Hirzel, H., Guisan, A., & Lara, E. (2020). Soil protist diversity in the Swiss western Alps is better predicted by topo‐climatic than by edaphic variables. Journal of Biogeography47 (4), 866-878.
Smith, S.E., & Read, D.J. (2010). Mycorrhizal symbiosis. Academic press.
Stefan, G., Cornelia, B., Jörg, R., & Michael, B. (2014). Soil water availability strongly alters the community composition of soil protists. Pedobiologia57 (4-6), 205-213.
Talukder, B., Ganguli, N., Matthew, R., van Loon, G. W., Hipel, K. W., & Orbinski, J. (2021). Climate Change‐Triggered Land Degradation and Planetary Health: A Review. Land Degradation & Development .
Toljander, J. F., Eberhardt, U., Toljander, Y. K., Paul, L. R., & Taylor, A. F. (2006). Species composition of an ectomycorrhizal fungal community along a local nutrient gradient in a boreal forest. New Phytologist170 (4), 873-884.
van der Wal, A., Geydan, T. D., Kuyper, T. W., & De Boer, W. (2013). A thready affair: linking fungal diversity and community dynamics to terrestrial decomposition processes. FEMS Microbiology Reviews, 37(4), 477-494.
Waldrop, M. P., Zak, D. R., Blackwood, C. B., Curtis, C. D., & Tilman, D. (2006). Resource availability controls fungal diversity across a plant diversity gradient. Ecology Letters9 (10), 1127-1135.
Wang, J., Bao, J., Su, J., Li, X., Chen, G., & Ma, X. (2015). Impact of inorganic nitrogen additions on microbes in biological soil crusts. Soil Biology and Biochemistry88 , 303-313.
Wang, K., Zhang, C., Chen, H., Yue, Y., Zhang, W., Zhang, M., Qi, X., & Fu, Z. (2019). Karst landscapes of China: patterns, ecosystem processes and services. Landscape Ecology34 (12), 2743-2763.
Wang, R., Wang, Y., Zheng, W., Hou, F., Hu, Y., & Guo, S. (2021). Converting croplands to orchards changes soil microbial community composition and co‐occurrence patterns. Land Degradation & Development32 (8), 2509-2519.
Wang, S. J., Liu, Q. M., & Zhang, D. F. (2004). Karst rocky desertification in southwestern China: geomorphology, landuse, impact and rehabilitation. Land Degradation & Development15 (2), 115-121.
Wen, L., Li, D., Yang, L., Luo, P., Chen, H., Xiao, K., Song, T., Zhang, W., He, X., Chen, H., & Wang, K. (2016). Rapid recuperation of soil nitrogen following agricultural abandonment in a karst area, southwest China. Biogeochemistry129 (3), 341-354.
Wiesmeier, M., Urbanski, L., Hobley, E., Lang, B., von Lützow, M., Marin-Spiotta, E., … & Kögel-Knabner, I. (2019). Soil organic carbon storage as a key function of soils-A review of drivers and indicators at various scales. Geoderma333 , 149-162.
Xiao, D., Che, R., Liu, X., Tan, Y., Yang, R., Zhang, W., He, X., Xu, Z., & Wang, K. (2019). Arbuscular mycorrhizal fungi abundance was sensitive to nitrogen addition but diversity was sensitive to phosphorus addition in karst ecosystems.Biology and Fertility of Soils55 (5), 457-469.
Xiao, D., Liu, X., Yang, R., Tan, Y., Zhang, W., He, X., Xu, Z., & Wang, K. (2020). Nitrogen fertilizer and Amorpha fruticosaleguminous shrub diversely affect the diazotroph communities in an artificial forage grassland. Science of The Total Environment711 , 134967.
Xiao, W., Feng, S., Liu, Z., Su, Y., Zhang, Y., & He, X. (2017). Interactions of soil particulate organic matter chemistry and microbial community composition mediating carbon mineralization in karst soils. Soil Biology and Biochemistry107 , 85-93.
Xu, E., & Zhang, H. (2020). Human–desertification coupling relationship in the karst region. Land Degradation & Development .
Yang, W., Guo, Y., Wang, X., Chen, C., Hu, Y., Cheng, L., Gu, S., & Xu, X. (2017). Temporal variations of soil microbial community under compost addition in black soil of Northeast China. Applied Soil Ecology121 , 214-222.
Zeilinger, S., Gupta, V.K., Dahms, T.E., Silva, R.N., Singh, H.B., Upadhyay, R.S., Gomes, E.V., Tsui, C.K.-M., & Nayak S, C. (2016). Friends or foes? Emerging insights from fungal interactions with plants.FEMS Microbiology Reviews40 (2), 182-207.
Zhang, W., Chen, H. S., Su, Y. R., Wang, K. L., Lin, H. F., & Liu, K. P. (2013). Effects of reclamation and fertilization on calcareous soil fertility in the initial period of cultivation. Chinese Journal of Soil Science44 (4), 925-930.
Zhao, Z., Wei, X., Wang, X., Ma, T., Huang, L., Gao, H., Fan, J., Li, X., & Jia, X. (2019a). Concentration and mineralization of organic carbon in forest soils along a climatic gradient. Forest Ecology and Management432 , 246-255.
Zhao, Z.B., He, J.Z., Geisen, S., Han, L.L., Wang, J.T., Shen, J.P., Wei, W.X., Fang, Y.T., Li, P.P., & Zhang, L.M. (2019b). Protist communities are more sensitive to nitrogen fertilization than other microorganisms in diverse agricultural soils.Microbiome7 (1), 1-16.
Zhou, J., Xue, K., Xie, J., Deng, Y., Wu, L., Cheng, X., Fei, S., Deng, S., He, Z., Van Nostrand, J.D., & Luo, Y. (2012). Microbial mediation of carbon-cycle feedbacks to climate warming. Nature Climate Change2 (2), 106-110.