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Abstract. In this work, we study the Watson-type integral transforms for the convo-
lutions related to the Hartley and Fourier transformations. We establish necessary and
sufficient conditions for these operators to be unitary in the L2(R) space and get their
inverse represented in the conjugate symmetric form. Furthermore, we also formulated
the Plancherel-type theorem for the aforementioned operators and prove a sequence of
functions that converge to the original function in the defined L2(R) norm. Next, we
study the boundedness of the operators (Tk). Besides, showing the obtained results, we
demonstrate how to use it to solve the class of integro-differential equations of Barbashin
type, the differential equations and the system of differential equations. And there are
numerical examples given to illustrate these.
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1. Introduction

One of the integral transforms studied by many mathematicians is the Watson integral
transform. This transform is built for the Mellin convolution (see [25, 27]) with the kernel
k(xy) in the following form:

f(x) 7−→ g =

(
f ∗
M
k

)
, where g(x) =

+∞∫
0

k(xy)f(y)dy, k(xy) is the kernel of transformation.
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Furthermore, we can study the Watson-type integral transform as follows

(1.1) f(x) 7−→ g = D (f ∗ k) (x),

where D is an arbitrary operator and k is a known function. In recent years, there have been
some results of integral transformations for convolutions involving Fourier sine, Fourier
cosine and Kontorovich-Lebedev transformations in case D is the differential operator of
order 2 or 2n. From there, the authors use these results to solve in a closed form some
classes of differential equations, Parabolic equations (see [6, 8, 14, 18, 20, 22, 26]) in the
space L1(R+). These above convolutions are also used to solve in a closed form some classes
of integral equations of Fredholm and Toeplitz-Hankel type and study the boundedness
of the solution (see [11, 19, 21, 23, 28]). As we know, the integro-differential equation of
Barbashin type was first introduced by E. A. Barbashin in 1957 (see [4]) and studied in
[2, 3], which has the following form

(1.2)
∂f(t, s)

∂t
= C(t, s)f(t, s) +

b∫
a

K(t, s, ρ)f(t, ρ)dρ+ g(t, s),

where C(t, s), g(t, s) are the given functions, K(t, s, ρ) is the kernel of the equation and f is
the unknown function. The equation (1.2) has been applied in many fields such as mathe-
matical physics, radiation propagation, mathematical biology and transport problems, e.g
more detail in (see [2], Chapter 4. §19. p421−447). One of the characteristics of the equa-
tion (1.2) is that studying solvability of the equation is heavily dependent on the kerner
K(t, s, ρ) of the equation. For example, we can use the Cauchy integral operator to study
the equation in case the kerner does not depend on t. In some other cases, we need to use
the partial integral operator to study the equation (see [2, 3]). Until now, the solution of
the equation (1.2) is still an open problem in case K(t, s, ρ) is an arbitrary general kerner.

On the other hand, if we call A as the operator defined by A :=
∂

∂t
− C(t, s)I, where I is

the identity operator, then the equation (1.2) is written in the following form

(1.3) Af(t, s) =

b∫
a

K(t, s, ρ)f(t, ρ)dρ+ ϕ(t, s).

The main contents of the paper are presented in sections 3, 4 and 5. In section 3, by

choosing the operator D =

(
I − d2

dx2

)
and using the scheme (1.1), we build Watson-

type integral transforms for the convolutions defined by the formula (2.2), (2.4). These
convolutions are related to the Hartley, Fourier integral transformations studied in [9, 24].
We establish necessary and sufficient conditions for these operators to be unitary in the
space L2(R) and the inverse symmetric transform, which are the contents of the Theorems
3.1 and 3.2. In [13], the authors proved Plancherel’s Theorem in general form for the Fourier
transform on L2(R) and confirmed that this transformation is unitary and this result is
also still true for Hartley transforms. The main contents of section 4 are studying the
Plancherel-type theorems of the operators presented in Section 3, by using the technique
in [8] specifically the study of approximation in the norm of space L2(R), for the operator
(Tk) constructed in the formula (3.13). Specifically, if suppose that the image function
Ψ(x) = (Tkf) (x) and the original function f(x), then it can approximate to sequences
of functions in the space L2(R) that converge normally in L2(R) to an arbitrary function
f(x), which also belongs to L2(R). By using Risez’s interpolation Theorem [17], we study
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the boundedness of operator (Tk) from Lp(R) to Lq(R) with
1

p
+

1

q
= 1 and 1 ≤ p ≤ 2,

which are the contents of the Theorems 4.1 and 4.2.
At the end of this paper, in section 5, we use some integral transformation techniques

presented in section 3 and some other results in [15, 9, 24, 12] to solve in a closed form
some classes of integro−differential equation of Barbashin type (5.1), differential equations
(5.9) and system of differential equations (5.12). Results obtained here are to establish the
explicit formulas and a space of solutions for the above problems (see Theorems 5.1, 5.2,
5.3 and 5.4). After theorems, we construct numerical examples to illustrate the obtained
results. It should be further clarified that the use of convolution and polyconvolution
techniques related to Hartley and Fourier integral transforms to solve in a closed form
some classes of integro−differential equation of Barbashin type is a new idea in the theory.
We have not found any previous results using this method.

2. Recalling some results of the Hartley, Fourier convolutions

In this section, we briefly recall some useful results of the Hartley, Fourier convolutions
and the Hartley convolution, which will be used in the next sections of the article.

The generalized convolution for the Hartley−Fourier integral transforms is of the form

(see [24]). Let f, g ∈ L1(R) then
(
f ∗

1
g
)
∈ L1(R) and

(2.1) H1

(
f ∗

1
g
)

(y) := (H1f)(y)(Fg)(y), y ∈ R,

where

(2.2)
(
f ∗

1
g
)

(x) :=
1

2
√

2π

+∞∫
−∞

g(y)
[
f(x+y)+f(x−y)+if(−x−y)−if(−x+y)

]
dy, x ∈ R.

In (p. 364, [9]), the authors used integral transformations

(T1f) (x) =
1√
π

+∞∫
−∞

cos
(
xy +

π

4

)
f(y)dy

and

(T2f) (x) =
1√
π

+∞∫
−∞

sin
(
xy +

π

4

)
f(y)dy

to study the convolutions

(
f ∗
T1
g

)
and

(
f ∗
T2
g

)
. It’s obvious that, we get:

cos
(
xy +

π

4

)
=

√
2

2
cas(−xy) and sin

(
xy +

π

4

)
=

√
2

2
cas(xy). Therefore, (T1f) ≡ (H2f)

and (T2f) ≡ (H1f), where H{ 1
2}

is the Hartley transform defined by (2.5). Consequently,

the Theorem 3.5 (p 337 in [9]) and the Theorem 3.14 (p 378 in [9]) can be rewritten in
the following form.

Assume that f, g belong to L1(R) then
(
f ∗

2
g
)
∈ L1(R) and

(2.3) H{ 1
2}
(
f ∗

2
g
)

(y) =
(
H{ 1

2}
f
)

(y)
(
H{ 1

2}
g
)

(y), y ∈ R,
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where

(2.4)
(
f ∗

2
g
)

(x) :=
1

2
√

2π

+∞∫
−∞

f(y)
[
g(x+y)+g(x−y)+g(−x+y)−g(−x−y)

]
dy, x ∈ R.

Notably, the results for the Hartley convolutions was studied in Rn by (see [1]). The Hartley
transform was proposed as an alternative to the Fourier transform by R. V. L. Hartley
in 1942. Compared to the Fourier transform, the Hartley transform has the advantages of
transforming real functions to real functions (as opposed to requiring complex numbers)
and has following form (see [5, 16, 25]).

(2.5)
(
H{ 1

2}
f
)

(y) :=
1√
2π

+∞∫
−∞

f(x) cas(±xy)dx, y ∈ R.

And the inverse transform is of the form

(2.6) f(x) :=
1√
2π

+∞∫
−∞

(
H{ 1

2}
f
)

(y) cas(±xy)dy, x ∈ R.

The Fourier (F ) integral transforms were studied in (see [5, 16, 25]).

(2.7) (Ff)(y) :=
1√
2π

+∞∫
−∞

e−ixyf(x)dx, y ∈ R,

where: cas(xy) = cos(xy) + sin(xy) =
1 + i

2
e−ixy +

1− i
2

eixy and

(2.8) e−ixy =
1 + i

2
cas(xy) +

1− i
2

cas(−xy).

(2.9) (Ff) (y) = H{ 1
2}

(
1− i

2
f(±x) +

1 + i

2
f(∓x)

)
(y).

(2.10)
(
H{ 1

2}
f
)

(y) = F

(
1± i

2
f(x) +

1∓ i
2

f(−x)

)
(y).

3. The Watson-type Theorems

In this section, we study the Watson-type integral transform for the convolutions were
defined in the formulas (2.2) and (2.4) in the L2(R) space. We establish the necessary and
sufficient conditions for these operators to be unitary. Moreover, the inverse transforma-
tions can be represented in the conjugate symmetric form.

Lemma 3.1. Suppose that, f, g ∈ L2(R) then
(
f ∗

1
g
)
,
(
f ∗

2
g
)

belong to the space L2(R)

and were determined respectively by (2.2),(2.4). We get the factorization equalities (2.1),
(2.3) and the Parseval’s equality is as follows

(3.1)
(
f ∗

1
g
)

(x) = H1

(
(H1f)(y)(Fg)(y)

)
(x),
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(3.2)
(
f ∗

2
g
)

(x) = H{ 1
2}

((
H{ 1

2}
f
)

(y)
(
H{ 1

2}
g
)

(y)

)
(x).

Proof.

+∞∫
−∞

∣∣∣∣ (f ∗1 g) (x)

∣∣∣∣2dx ≤ 1

2
√

2π

+∞∫
−∞

 +∞∫
−∞

∣∣∣∣ g(y)

[
f(x+ y) + f(x− y) + if(−x− y)− if(−x+ y)

]∣∣∣∣2dy
 dx

≤ 4

2
√

2π

+∞∫
−∞

+∞∫
−∞

|g(y)|2
[
|f(x+ y)|2 + |f(x− y)|2 + |f(−x− y)|2 + |f(−x+ y)|2

]
dydx

= 2

√
2

π

+∞∫
−∞

+∞∫
−∞

|g(y)|2|f(x− y)|2 dxdy + 2

√
2

π

+∞∫
−∞

+∞∫
−∞

|g(y)|2|f(x+ y)|2 dxdy

Since f, g belong to the L2(R) space, using Fubini’s Theorem and the variable trans-
formation formula for u = x− y; u = x+ y, we obtain

+∞∫
−∞

∣∣∣∣ (f ∗1 g) (x)

∣∣∣∣2dx ≤ 4

√
2

π

 +∞∫
−∞

|g(y)|2dy

 +∞∫
−∞

|f(u)|2du

 < +∞,

On the other hand, the proof of factorization equality of convolution
(
. ∗

1
.
)

in L2(R) space

is similar to in the L1(R) and combining the unitary property of the Hartley transform,
we obtain equality (3.1) (refer Lemma 4.2 in [24]).

Similarly, using the same above method to prove the convolution (2.4), we will get the
equalities (2.3), (3.2). The proof of lemma is completed. �

Lemma 3.2. Suppose that, h ∈ L2(R) is a given function a satisfying the following
condition (A1) : (1 + y2)|(Fh)(y)| < +∞, y ∈ R and f ∈ L2(R), then

(3.3) H1

((
1− d2

dx2

)(
f ∗

1
h
)

(x)

)
(y) = (1 + y2)(Fh)(y)(H1f)(y), y ∈ R.

Proof. It is well-known that ξ(y), yξ(y), . . . , ynξ(y) ∈ L2(R) if and only if

F (ξ)(x),
d

dx
(Fξ)(x), . . . ,

dn

dxn
(Fξ)(x) belong to L2(R) following (Theorem 68, p.92, [25]).

Combined with formulas (2.9), (2.10) the above confirmation is still true for the Hartley
H{ 1

2}
transform, which means f(y), yf(y), y2f(y) ∈ L2(R) if and only if(

H{ 1
2}
f
)

(x),
d

dx

(
H{ 1

2}
f
)

(x),
d2

dx2

(
H{ 1

2}
f
)

(x) belong to L2(R). Moreover, we have

d

dx
cas(±xy) = −y cas(∓xy). Furthermore, since H1(f(±t)) = H2(f(∓t)), then

d2

dx2

(
H{ 1

2}
f
)

(x) =
1√
2π

d2

dx2

( +∞∫
−∞

f(y) cas(±t)dy
)

(3.4) =
1√
2π

+∞∫
−∞

f(y)(−y)2 cas(±xy) dy = H{ 1
2}

(−y2f(y))(x).
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On the other hand f(y), yf(y), y2f(y) ∈ L2(R), using the formula (3.4), we have

(3.5)

(
1− d2

dx2

)(
H{ 1

2}
f(y)

)
(x) = H{ 1

2}

(
(1 + y2)f(y)

)
(x) ∈ L2(R).

Thanks to the formula (3.1) in Lemma 3.1 and (3.5), we obtain(
1− d2

dx2

)(
f ∗

1
h
)

(x) =

(
1− d2

dx2

)
H1

(
(H1f)(y)(Fh)(y)

)
(x)

= H1

(
(1 + y2)(H1f)(y)(Fh)(y)

)
(x)

According to the condition (A1): (1 + y2)(Fh)(y) < +∞ and (H1f) ∈ L2(R), which
implies that (1 + y2)(Fh)(y)(H1f)(y) ∈ L2(R). And

(3.6)

(
1− d2

dx2

)(
f ∗

1
h
)

(x) = H1

(
(1 + y2)(H1f)(y)(Fh)(y)

)
(x) ∈ L2(R).

In addition, the Plancherel’s Theorem for the Hartley transform is unitary in the space
L2(R), which means H{ 1

2}
×H{ 1

2}
= I. From the formula (3.6), we obtain

H1

((
1− d2

dx2

)(
f ∗

1
h
))

(y) = (1 + y2)(H1f)(y)(Fh)(y), y ∈ R.

The proof of lemma is completed. �

Next, we present the Watson-type integral transform that allows the convolution de-
fined by the formula (2.2). If we fix a function, say g ≡ h(x), which h is a known function,
and let the remaining function f vary in certain function spaces, then we get an integral
operator of the convolution type. We consider the following operator

Th : L2(R) −→ L2(R)

f 7−→ ϕ = Th

(
f ∗

1
h
)

= D
(
f ∗

1
h
)
,

where D is the second order differential operator defined as D :=

(
I − d2

dx2

)
and

image
(3.7)

ϕ(x) = (Thf)(x) =

(
1− d2

dx2

)(
f ∗

1
h
)

(x)

=
1

2
√

2π

(
1− d2

dx2

){ +∞∫
−∞

h(y)

[
f(x+ y) + f(x− y) + if(−x− y)− if(−x+ y)

]
dy

}
, x ∈ R.

Theorem 3.1. Suppose that h ∈ L2(R) is a given function. Then, the condition

(A2) : |(Fh)(y)| = 1

1 + y2
with y ∈ R is the necessary and sufficient one for operator (Th)

given by formula (3.7) to be unitary in the L2(R) space. Moreover, the inverse operator of
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(Th) has a symmetric form and is represented by the formula
(3.8)

f(x) = (Th̄ϕ) (x) =

(
1− d2

dx2

)(
ϕ ∗

1
h̄

)
(x)

=
1

2
√

2π

(
1− d2

dx2

){ +∞∫
−∞

h̄(y)

[
ϕ(x+ y) + ϕ(x− y) + iϕ(−x− y)− iϕ(−x+ y)

]
dy

}
, x ∈ R,

where h̄ is a complex conjugate of h function.

Proof. By the (A2) condition, (1 + y2)(Fh)(y) is a bounded function, and f ∈ L2(R)
implies that (H1f)(y) ∈ L2(R). Thus, (1 + y2)(Fh)(y)(H1f)(y) is a function that belongs
to the L2(R) space. Using the formula (3.6) in Lemma 3.2, we obtain
(3.9)

ϕ(x) = (Thf) (x) =

(
1− d2

dx2

)(
f ∗

1
h
)

(x) = H1

(
(1 + y2)(Fh)(y)(H1f)(y)

)
(x) ∈ L2(R).

According to the formula (3.9) and in the L2(R) space then ‖H{ 1
2}
f‖L2(R)= ‖f‖L2(R),

combined with (A2) condition and we have the following evaluation in the L2(R) space
(3.10)
‖ϕ‖L2(R)= ‖Th f‖L2(R)= (1 + y2)|(Fh)(y)| ‖(H1f)(y)‖L2(R)= ‖(H1f)(y)‖L2(R)= ‖f‖L2(R).

This means that (Th) is an isometric transformation or unitary in the L2(R) space. Using
the Plancherel’s Theorem for the (H1) transformation and from the expression (3.9), we
obtain

(3.11) (H1ϕ)(y) = H1(Thf)(y) = (1 + y2)(Fh)(y)(H1f)(y) ∈ L2(R).

From the (A2) condition and the equality (3.11), we obtain

(3.12) (H1f)(y) = (1 + y2)(Fh̄)(y)(H1ϕ)(y) ∈ L2(R),

where h̄ is a complex conjugate of h function. By the same argument as in the above, we
obtain

f(x) = H1

(
(1 + y2)(Fh̄)(y)(H1ϕ)(y)

)
(x) ∈ L2(R).

Using the formulas (3.6) and (3.1) consecutively, we have

f(x) =

(
1− d2

dx2

)
H1

(
(Fh̄)(y)(H1ϕ)(y)

)
(x)

=

(
1− d2

dx2

)(
ϕ ∗

1
h̄
)

(x)

=
1

2
√

2π

(
1− d2

dx2

){ +∞∫
−∞

h̄(y)

[
ϕ(x+ y) + ϕ(x− y) + iϕ(−x− y)− iϕ(−x+ y)

]
dy

}
≡ (Th̄ϕ) (x).

Sufficient condition: Suppose that the operator (Th) mapping f(x) 7→ (Thf) (x) ≡ ϕ(x)
determined by (3.7) with the inverse operator (3.8). We need to show that h satisfies
condition (A2), which means

|(Fh)(y)| = 1

1 + y2
, y ∈ R.
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Indeed, since (Thf) ≡ ϕ(x) is unitary in the L2(R) space and ϕ(x) can be rewritten in the
form (3.9), we obtain

||H1ϕ||L2(R) = ||H1 (Thf) ||L2(R) = ||ϕ||L2(R),

equivalent to

‖H1

(
(1 + y2)(Fh)(y)(H1f)(y)

)
‖L2(R) = (1 + y2)|(Fh)(y)| ‖(H1f)(y)‖L2(R)

= ‖H1f‖L2(R)= ||f ||L2(R), ∀f ∈ L2(R).

This shows that there exists a multiplication operator of the form MΘ(.) defined by
MΘ(f)(y) := Θ(y).f(y), where Θ(y) = (1 + y2)|(Fh)(y)|. The above expression can be
rewritten

‖H1f‖L2(R)= ‖MΘ(H1f)‖L2(R), ∀f ∈ L2(R).

It means MΘ(.) is unitary in the L2(R) space, and this happens if and only if
(1+y2)|(Fh)(y)| ≡ 1, ∀y ∈ R, implies that the function h must satisfy the condition (A2).

The proof of theorem is completed. �

Lemma 3.3. (Follow [10]) Let ω ∈ L1(R+), ϕ ∈ L1(R) then
(
ω ∗

4
ϕ
)

(x) ∈ L1(R) and get

the factorization equality

H1

(
ω ∗

4
ϕ
)

(y) = (Fcω)(|y|)(H1ϕ)(y), y ∈ R,

with
(
ω ∗

4
ϕ
)

(x) :=
1√
2π

+∞∫
0

[
ω(x+ u) + ω(x− u)

]
ϕ(u)du, x ∈ R. This result is also true

for in case ω ∈ L2(R+), ϕ ∈ L2(R), where Fc determined by the formula (5.5).

Remark 1. We can replace the (A2) condition in the Theorem (3.1) with a weaker con-

dition denoted by (A
′
2) and state the following:

Suppose that h is a given function belonging to (L2) space and satisfying the following

condition (A
′
2) : 0 < c1 6 (1 + y2)|(Fh)(y)| 6 c2 < +∞. We have the following assertions

(i) c1‖f‖L2(R)6 ‖Thf‖L2(R)6 c2‖f‖L2(R)

(ii) The inverse operator of (Tk) have the form

f(x) = (Tωϕ) (x) =

(
1− d2

dx2

)(
ω ∗

4
ϕ
)

(x).

Indeed, from (3.10) and the (A
′
2) condition, we obtain

c1‖f‖L2(R) = c1‖H1f‖L2(R)6 ‖(1 + y2)(Fh)(y)(H1f)(y)‖L2(R)

= (1 + y2)|(Fh)(y)| ‖(H1f)(y)‖L2(R)= ‖(Thf)‖L2(R)6 c2‖H1f‖L2(R)= c2‖f‖L2(R).

Furthermore, from the (A
′
2) condition, we also get

0 <
1

c2(1 + y2)
6

1

(1 + y2)2|(Fh)(y)|
6

1

c1(1 + y2)
.

Therefore
1

(1 + y2)2(Fh)(y)
belongs to the L2(R+) space, and this shows that there exists

a function ω ∈ L2(R+) such that (Fcω)(|y|) =
1

(1 + y2)2(Fh)(y)
∈ L2(R+). From the
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formula (3.12) and combining with the (A
′
2) condition and Lemma 3.3, we obtain

(H1f)(y) =
1

(1 + y2)(Fh)(y)
(H1ϕ)(y) = (1 + y2)

1

(1 + y2)2(Fh)(y)
(H1ϕ)(y)

= (1 + y2)(Fcω)(|y|)(H1ϕ)(y) = (1 + y2)H1

(
ω ∗

4
ϕ
)

(y).

Continuing to use Plancherel’s Theorem for the (H1) transformation and combining with
the formula (3.3), we get the following inverse operator

f(x) = (Tωϕ)(x) = H1

(
(1 + y2)

(
H1

(
ω ∗

4
ϕ
)

(y)
))

(x) =

(
1− d2

dx2

)
H1

(
H1

(
ω ∗

4
ϕ
)

(y)

)
(x)

=

(
1− d2

dx2

)(
ω ∗

4
ϕ
)

(x).

Another remarkable point is that the inverse operator obtained here does not preserve the
symmetry.

An example is given below to illustrate the above result.

Example 3.1. Let we choose h(x) =

√
π

2
e−|x| ∈ L2(R), then

(Fh)(y) =

√
π

2

1√
2π

+∞∫
−∞

e−ixye−|x|dx =
1

2

+∞∫
−∞

e(−|x|−ixy)dx

=
1

2

 0∫
−∞

e(1−iy)xdx+

+∞∫
0

e−(1+iy)xdx


=

1

2

(
1

1− iy
+

1

1 + iy

)
=

1

1 + y2
.

Thus, |(Fh)(y)| satisfies the condition (A2). Then

(Fcω)(|y|) =
1

(1 + y2)2(Fh)(y)
=

1

1 + y2
∈ L2(R+).

So, there exists a function ω(x) =

√
2

π

+∞∫
−∞

1

1 + y2
cos(xy)dy =

√
π

2
e−x ∈ L2(R+).

Next, we study the Watson-type integral transform for the Hartley convolution defined
by the formula (2.4).

Let the operators (Tk) be defined by mapping

Tk : L2(R) −→ L2(R)

f 7−→ Ψ ≡ Tk
(
f ∗

2
k
)

= D
(
f ∗

2
k
)
,
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where D =

(
1− d2

dx2

)
and function Ψ is determined by the formula

(3.13)

Ψ(x) = (Tkf)(x) =

(
1− d2

dx2

)(
f ∗

2
k
)

(x)

=
1

2
√

2π

(
1− d2

dx2

){ +∞∫
−∞

f(y)

[
k(x+ y) + k(x− y) + k(−x+ y)− k(−x− y)

]
dy

}
, x ∈ R.

Theorem 3.2. Suppose that k is a given function belonging to L2(R) space and satisfying

the condition (A3) : (1 + y2)

∣∣∣∣(H{ 1
2}
k
)

(y)

∣∣∣∣= 1 with y ∈ R. Then, the (A3) condition

is the necessary and sufficient one for (Tk) to be an unitary operator in the L2(R) space.
Moreover, the inverse operator of (Tk) can be represented in the conjugate symmetric form.
(3.14)

f(x) = (Tk̄Ψ) (x) =

(
1− d2

dx2

)(
Ψ ∗

2
k̄
)

(x)

=
1

2
√

2π

(
1− d2

dx2

){ +∞∫
−∞

Ψ(y)

[
k̄(x+ y) + k̄(x− y) + k̄(−x+ y)− k̄(−x− y)

]
dy

}
, x ∈ R.

where k̄ is a complex conjugate of k function.

Proof. By the same argument as in Theorem 3.1 and consecutively using the formulas
(3.5), (3.2), we obtain

(3.15)
Ψ(x) = (Tkf)(x) =

(
1− d2

dx2

)(
H{ 1

2}
((
H{ 1

2}
f
)

(y)
(
H{ 1

2}
k
))

(y)

)
(x)

= H{ 1
2}
(

(1 + y2)
(
H{ 1

2}
k
)

(y)
(
H{ 1

2}
f
)

(y)
)

(x) ∈ L2(R).

Thus, f belongs to L2(R) space. Besides, in L2(R) we obtain ‖H{ 1
2}
f‖L2(R) = ‖f‖L2(R).

So we have the evaluation of the equality (3.15) and the (A3) condition as follows

‖Ψ‖L2(R)= ‖Tkf‖L2(R) =

∣∣∣∣∣∣∣∣H{ 1
2}

(
(1 + y2)

(
H{ 1

2}
k
)

(y)
(
H{ 1

2}
f
)

(y)

)∣∣∣∣∣∣∣∣
L2(R)

= (1 + y2)

∣∣∣∣ (H{ 1
2}
k
)

(y)

∣∣∣∣ ∣∣∣∣∣∣∣∣ (H{ 1
2}
f
)

(y)

∣∣∣∣∣∣∣∣
L2(R)

=

∣∣∣∣∣∣∣∣ (H{ 1
2}
f
)

(y)

∣∣∣∣∣∣∣∣
L2(R)

= ‖f‖L2(R).

Therefore, the (Tk) operator is an isometric transformation or an unitary operator in L2(R)
space, using the formula (3.15), we obtain

(3.16)
(
H{ 1

2}
Ψ
)

(y) = H{ 1
2}

(Tkf) (y) = (1 + y2)
(
H{ 1

2}
k
)

(y)
(
H{ 1

2}
f
)

(y),

From (3.16) together with the (A3) condition and using Plancherel’s theorem for the

Hartley transform is unitary
(
H{ 1

2}
×H{ 1

2}
= I

)
in the L2(R) space, we obtain(

H{ 1
2}
f
)

(y) = (1 + y2)
(
H{ 1

2}
k̄
)

(y)
(
H{ 1

2}
Ψ
)

(y)
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f(x) = H{ 1
2}

(
(1 + y2)

(
H{ 1

2}
k̄
)

(y)
(
H{ 1

2}
Ψ
)

(y)

)
(x) ∈ L2(R).

We continue to use formulas (3.5) and by using the Parseval’s identity (3.2) in Lemma
3.1, then the above expression can be rewritten

f(x) = (Tk̄Ψ) (x) =

(
1− d2

dx2

)
H{ 1

2}
((
H{ 1

2}
Ψ
)

(y)
(
H{ 1

2}
k̄
)

(y)
)

(x)

=

(
1− d2

dx2

)(
Ψ ∗

2
k̄
)

(x).

To prove the sufficient condition, suppose that To prove the sufficient condition, suppose
that the operator (Tk) in (3.13) is unitary in L2(R+) and that the inversion operator (Tk̄)
is given by (3.14), we obtain

‖Ψ‖L2(R)= ‖Tkf‖L2(R) = (1 + y2)

∣∣∣∣ (H{ 1
2}
k
)

(y)

∣∣∣∣ ∣∣∣∣∣∣∣∣ (H{ 1
2}
f
)

(y)

∣∣∣∣∣∣∣∣
L2(R)

=

∣∣∣∣∣∣∣∣ (H{ 1
2}
f
)

(y)

∣∣∣∣∣∣∣∣
L2(R)

= ‖f‖L2(R).

This equality holds for all f ∈ L2(R) if and only if k function satisfies condition (A3).
The proof of theorem is completed. �

The following example is an illustration of the above result.

Example 3.2. Now, we choose k(x) =

√
π

2
e−|x| ∈ L2(R), then

(
H{ 1

2}
k
)

(y) =

√
π

2

1√
2π

+∞∫
−∞

e−|x| cas(±xy)dx

=
1

2

+∞∫
−∞

e−|x|
[

cos(xy)± sin(xy)
]
dx

=

+∞∫
0

e−|x| cos(xy)dx =
1

2

+∞∫
0

[
e−(1−iy)x + e−(1+iy)x

]
dx

=
1

2

(
1

1− iy
+

1

1 + iy

)
=

1

1 + y2
.

Thus, k is satisfies the condition (A3), which implies that

(1 + y2)

∣∣∣∣ (H{ 1
2}

(√
π

2
e−|x|

))
(y)

∣∣∣∣ = 1.

Remark 2. We extend the study for the operators (Th) and (Tk) in the above theorems by

replacing the second-order differential operator D =

(
1− d2

dx2

)
by the differential operator

of order 2m in the following form D2m :=

n∑
m=0

(−1)mam
d2m

dx2m
, n ∈ N (see [6]). Then, the
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condition (A2) in Theorem 3.1 becomes

(A∗2) : |(Fh)(y)| = 1(
n∑

m=0

amy
2m

) , y ∈ R,

and the condition (A3) in Theorem 3.2 becomes

(A∗3) :

(
n∑

m=0

amy
2m

)∣∣∣∣ (H{ 1
2}
k
)

(y)

∣∣∣∣ = 1, y ∈ R,

where P (y) =
∑n

m=0 amy
2m is a polynomial with real coefficients without real zero points

which implies that, the conditions (A∗2) and (A∗3) are well-defined. Then, the operator

D =

(
1− d2

dx2

)
becomes a special case with n = 1, a0 = a1 = 1.

4. The Plancherel-type Theorems

In this section we indicate the norms approximation of the operators (Tk) defined
by the formula (3.13) in the space L2(R) and get the Planchernel-type theorems. The
approximation here can be understood in the sense of to the norm convergence in L2(R)

space, we study the boundedness of operator (Tk) from Lp(R) to Lq(R) with
1

p
+

1

q
= 1

and 1 ≤ p ≤ 2.

Theorem 4.1. Suppose that k belongs to the L2(R) and satisies the condition (A3) of

Theorem (3.2) such that K(x) =

(
k(x)− d2k

dx2

)
is a locally bounded function on R. Let

f ∈ L2(R) for any positive number N , we set

(4.1) ΨN (x) :=
1

2
√

2π

N∫
−N

f(y)

[
K(x+y)+K(x−y)+K(−x+y)−K(−x−y)

]
dy, x ∈ R.

Then the following assertions hold
(i) ΨN (x) belongs to the L2(R).
(ii) When N −→ +∞, the sequence of functions {ΨN (x)} converge in the sense of the
norm to a function Ψ(x) in L2(R) and satisfy ‖Ψ‖L2(R)= ‖f‖L2(R).

(iii) Let ΨN (x) = Ψ(x).X[−N,N ] and set

fN (x) =
(
TkΨ

N
)

(x) =

(
1− d2

dx2

)(
ΨN ∗

2
k
)

(x),

then the sequence of functions {fN (x)} is converge in the sense of the norm to the function
f(x) in L2(R) space.

Proof. (i) According to the assumptions of the Theorem 4.1 and f belonging to L2(R)
space, the formula (4.1) is rewritten as
(4.2)

ΨN (x) =
1

2
√

2π

N∫
−N

f(y)

(
1− d2

dx2

)[
k(x+y)+k(x−y)+k(−x+y)−k(−x−y)

]
dy, x ∈ R.
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The integration (4.2) is convergent. We continue to change the order of the integration
and the differentiation. Set fN = f.X[−N,N ], it follows fN ∈ L2(R), which X[−N,N ] is the
characteristic function of f on finite interval [−N,N ]. We obtain
(4.3)

ΨN (x) =
1

2
√

2π

(
1− d2

dx2

) +∞∫
−∞

fN (y)
[
k(x+ y) + k(x− y) + k(−x+ y)− k(−x− y)

]
dy

=

(
1− d2

dx2

)(
fN ∗

2
k
)

(y) ≡
(
Tkf

N
)

(y).

By theorem 3.2, we get ΨN (x) ∈ L2(R). So, the first assertion is completed.
(ii) It is clear that ‖fN − f‖L2(R)−→ 0 when N −→ +∞. Following to the formula

(3.13) then Ψ(x) =

(
1− d2

dx2

)(
f ∗

2
k
)

(x) ∈ L2(R). Then, subtracting from both sides of

the expression (4.3) and (3.13), we obtain

(ΨN −Ψ) (x) =

(
1− d2

dx2

)(
fN ∗

2
k
)

(x)−
(

1− d2

dx2

)(
f ∗

2
k
)

(x)

=

(
1− d2

dx2

)(
fN − f ∗

2
k
)

(x) ≡
(
Tk(f

N − f)
)

(x).

Since fN−f ∈ L2(R) and the condition (A3) in Theorem 3.2 is satisfied, we have ΨN−Ψ ∈
L2(R) and ‖ΨN −Ψ‖L2(R)= ‖fN − f‖L2(R). However ‖fN − f‖L2(R)−→ 0 as N −→ +∞, it
follows ΨN −→ Ψ as N −→ +∞ in L2(R) space. Furthermore, seeing Ψ as the image of f
under the operator (Tk) in L2(R) space, by Theorem 3.2, we obtain ‖f‖L2(R)= ‖Tkf‖L2(R)=
‖Ψ‖L2(R), which is unitary. Now, the second assertion is completed.

(iii) Let ΨN (x) = Ψ(x).X[−N,N ] and

(4.4) fN (x) :=

(
1− d2

dx2

)(
ΨN ∗

2
k̄
)

(x) ≡
(
Tk̄Ψ

N
)

(x).

Thus, Ψ ∈ L2(R) then ΨN ∈ L2(R). Besides, k̄ is a complex conjugate of k and satisfies
the conditions (A3). So, by Theorem 3.2 then fN ∈ L2(R), by using (3.14) and (4.4), we
obtain

(fN − f)(x) =

(
1− d2

dx2

)(
ΨN −Ψ ∗

2
k̄
)

(x) ≡
(
Tk̄(Ψ

N −Ψ)
)

(x).

Since ΨN − Ψ ∈ L2(R) it follows (fN − f) ∈ L2(R) and ‖fN − f‖L2(R)= ‖ΨN − Ψ‖L2(R).

Moreover, ΨN −→ Ψ when N −→ +∞, which implies thatfN −→ f as N −→ +∞.
The proof of theorem is completed. �

A note that, the functions k were shown in examples 3.2 also satisfying the conditions

of Theorem 3.2 respectively and K(x) =

(
1− d2

dx2

)(√
π

2
e−|x|

)
=

√
π

2

2− x2

ex
< +∞

with x > 0 are the functions locally bounded on R.
In the next theorem, we consider the boundedness of the operators (Tk) from Lp(R) to

Lq(R), with 1 ≤ p ≤ 2 and
1

p
+

1

q
= 1.
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Theorem 4.2. Suppose that k ∈ L1(R) ∩ L2(R) has second order continuous derivatives

on R with K(x) =

(
k(x)− d2k

dx2

)
is the locally bounded functions on R and h satisfy the

condition (A3) of Theorem 3.2. Then, the operator (Tk) is a bounded operator from Lp(R)

to Lq(R), with 1 ≤ p ≤ 2 and
1

p
+

1

q
= 1.

Proof. If p0 = 1 then q0 =∞, according to the formula (3.13) then

(Tkf)(x) =
1

2
√

2π

(
1− d2

dx2

) +∞∫
−∞

f(y)

[
k(x+ y) + k(x− y) + k(−x+ y)− k(−x− y)

]
dy

is convergent. We can change order of taking differentiation and integration, and obtain

(Tkf)(x) =
1

2
√

2π

+∞∫
−∞

f(y)

(
1− d2

dx2

)[
k(x+ y) + k(x− y) + k(−x+ y)− k(−x− y)

]
dy

=
1

2
√

2π

+∞∫
−∞

f(y)

[
K(x+ y) +K(x− y) +K(−x+ y)−K(−x− y)

]
dy.

According to the assumption of the theorem, K(x) =

(
k(x)− d2k

dx2

)
is the locally bounded

functions on R, which means ∃M > 0 such that |K(x)| ≤M, ∀x ∈ Ω ⊂ R. Moreover,

|(Tkf)(x)| ≤ 1

2
√

2π

+∞∫
−∞

|f(y)|. |K(x+ y) +K(x− y) +K(−x+ y)−K(−x− y)| dy

≤ 4M

2
√

2π

+∞∫
−∞

|f(t)|dt = M

√
2

π
‖f‖L1(R)< +∞,

which implies that (Tk) is a bounded operator from L1(R) −→ L∞(R). On the other
hand, if p1 = 2 then q1 = 2, by theorem 4.1 it follows (Tk) is a bounded operator from
L2(R) −→ L2(R). Thus, using Riesz’s interpolation Theorem (refer Theorem 1.3, p. 179,
Chapter 5 in [17]), we obtain (Tk) is a bounded operator from Lp(R) −→ Lq(R), where p, q

is a pair of conjugate exponents and p is determined by formula
1

p
=

1− α
1

+
α

2
= 1− α

2
.

The condition 0 < α < 1 implies 1 < p < 2. Adding the cases p = 1, p = 2 that already
hold, we conclude that the operator (Tk) is bounded from Lp(R) to Lq(R) for all 1 ≤ p ≤ 2.

The proof of theorem is completed. �

Remark 3. By setting Ψ(x) = (Tkf)(x) = lim
N−→∞

(
1− d2

dx2

)(
fN ∗

2
k
)

(x) and

f(x) = lim
N−→∞

(
1− d2

dx2

)(
ΨN ∗

2
k̄
)

(x), then Ψ, f are the locally bounded functions from

Lp(R) to Lq(R) and with 1
p + 1

q = 1, where the limits are understood in the norm sense in

the space Lq(R) and fN = f.X[−N,N ], ΨN = Ψ.X[−N,N ].

We have Ψ(x) = lim
N→+∞

(
Tkf

N
)

(x) and f(x) = lim
N→+∞

(
Tk̄Ψ

N
)

(x) with k̄ is conjugates

function of k. Following Theorem 4.2, then the (Tk) and (Tk̄) are bounded operator from
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Lp(R) to Lq(R). Implies that Ψ and f are the locally bounded functions from Lp(R) to
Lq(R).

5. Some Applications

In this section, we will use the obtained results in section 3, combined with the tech-
niques of convolution and polyconvolution in [9, 15, 24] and [12] to study the solving
of some classes of the integro-differential equations of Barbashin type (5.1), differential
equations (5.9) and system of differential equations (5.12). We will give explicit formu-
las of solutions and determine the function spaces of solutions. Following each result are
illustrative examples.

5.1. Solving the integro−differential equations of Barbashin type. The main idea
of this section is that we replace the expressionAf(t, s) of the equation (1.3) by the formula

Af(t, s) :=

(
1− d2

dx2

)
(f ∗ g)(x). Then the equation (1.3) can be rewritten as follows

(5.1)

(
1− d2

dx2

)
(f ∗ g)(x) =

b∫
a

K(x, u, v)f(u)du+ Φi(x),

where g,Φi(x), i = 1, 2 are the given functions, K(x, u, v) are some given kernels and
f is an unknown function. To solve the equation (5.1), we choose (f ∗ g) defined by the
formula (2.2), (2.4) and K(x, u, v) as the kernel of the convolution, polyconvolution defined
in [15, 9].

Lemma 5.1. (See [15]), Suppose that f, ϕ2 ∈ L2(R), ϕ1 ∈ L2(R+). Then, polyconvolution(
∗
3
(f, ϕ1, ϕ2)

)
belongs to L2(R) and

(5.2) H{ 1
2}

(
∗
3

(f, ϕ1, ϕ2)

)
(y) =

(
H{ 1

2}
f
)

(y)(Fcϕ1)(|y|)
(

(H{ 2
1}
ϕ2

)
(y), y ∈ R,

where

(5.3)

(
∗
3

(f, ϕ1, ϕ2)

)
(x) :=

1

4π

+∞∫
−∞

+∞∫
0

f(u)ϕ1(v)Φ(x, u, v) dudv, x ∈ R.

And

(5.4)
Φ(x, u, v) = ϕ2(−x+ u+ v) + ϕ2(x− u+ v) + ϕ2(−x+ u− v) + ϕ2(x− u+ v)

+ ϕ2(−x− u+ v)− ϕ2(x+ u− v) + ϕ2(−x− u− v)− ϕ2(x+ u+ v).

And

(5.5) (Fcϕ1)(y) =

√
2

π

+∞∫
0

ϕ1(x) cos(xy)dx, y > 0.

• Firstly, we choose (a, b) = (−∞,+∞), and (f ∗ h) ≡ (f ∗
2
k) which is defined by the

formula (2.4), and the selected kernel of equation K(x, u, v) = − 1

4π

+∞∫
0

Φ(x, u, v)dv, where
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Φ(x, u, v) is defined by (5.4). Applying the formulas (3.7) and (5.3), then the equation
(5.1) can be rewritten as follows

(5.6) (Tkf)(x) +

(
∗
3

(f, ϕ1, ϕ2)

)
(x) = Φ1(x),

where the operator (Tkf) defined by the formula (3.7), the polyconvolution

(
∗
3
(f, ϕ1, ϕ2)

)
is defined by the formula (5.3), ϕ1, ϕ2, k,Φ1 are given functions and f is a unknown
function.

Theorem 5.1. Let ϕ2, k,Φ1 be functions that belong to L2(R) space and ϕ1 ∈ L2(R+) are
given functions satisfying the following condition

(A4) :

(
H{ 1

2}
Φ1

)
(y)

(1 + y2)
(
H{ 1

2}
k
)

(y) + (Fcϕ1)(|y|)
(
H{ 1

2}
ϕ2

)
(y)
∈ L2(R), y ∈ R.

Then, the equation (5.6) has a unique solution in L2(R) which can be presented in the
form

f(x) =
1√
2π

+∞∫
−∞

(
H{ 1

2}
Φ1

)
(y)

(1 + y2)
(
H{ 1

2}
k
)

(y) + (Fcϕ1)(|y|)
(
H{ 1

2}
ϕ2

)
(y)

cas(±xy)dy, x ∈ R,

where H{ 1
2}
, Fc are respectively determined by (2.5) and (5.5).

Proof. Applying the Hartley H{ 1
2}

transformation on both sides of the equation (5.6) and

using consecutively the formulas (3.16), (5.2), we obtain

H{ 1
2}

(Tkf) (y) +H{ 1
2}

(
∗
3

(f, ϕ1, ϕ2)

)
(y) =

(
H{ 1

2}
Φ1

)
(y),

or equivalently,

(1+y2)
(
H{ 1

2}
k
)

(y)
(
H{ 1

2}
f
)

(y)+
(
H{ 1

2}
f
)

(y)(Fcϕ1)(|y|)
(
H{ 2

1}
ϕ2

)
(y) =

(
H{ 1

2}
Φ1

)
(y).

Under the condition (A4), we have(
H{ 1

2}
f
)

(y)

[
(1 + y2)

(
H{ 1

2}
k
)

(y) + (Fcϕ1)(|y|)
(
H{ 2

1}
ϕ2

)
(y)

]
=
(
H{ 1

2}
Φ1

)
(y),

which means(
H{ 1

2}
f
)

(y) =

(
H{ 1

2}
Φ1

)
(y)

(1 + y2)
(
H{ 1

2}
k
)

(y) + (Fcϕ1)(|y|)
(
H{ 2

1}
ϕ2

)
(y)
∈ L2(R), y ∈ R.

By using the inverse transform of Hartley defined in the formula (2.6), we obtain

f(x) =

+∞∫
−∞

(
H{ 1

2}
Φ1

)
(y)

(1 + y2)
(
H{ 1

2}
k
)

(y) + (Fcϕ1)(|y|)
(
H{ 2

1}
ϕ2

)
(y)

cas(±xy)dy, x ∈ R,

and f(x) belongs to L2(R). The proof of theorem is completed. �

An example is given below to illustrate the above result.
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Example 5.1. We choose Φ1(x) = ϕ2(x) = k(x) =

√
π

2
e−|x| as functions belonging

to the L2(R) space and ϕ1(x) =

√
π

2
e−x ∈ L2(R+). We have H{ 1

2}

(√
π

2
e−|x|

)
=

Fc

(√
π

2
e−x
)

=
1

1 + y2
are satisfying the condition (A4) and(
H{ 1

2}
Φ1

)
(y)

(1 + y2)
(
H{ 1

2}
k
)

(y) + (Fcϕ1)(|y|)
(
H{ 2

1}
ϕ2

)
(y)

=
1 + y2

(1 + y2)2 + 1
∈ L2(R).

With the help of Mathematica 5.1 tool, we have the solution for this case as follows

f(x) =
1√
2π

+∞∫
−∞

1 + y2

(1 + y2)2 + 1
cas(±xy) dy =

√
2

π

+∞∫
0

1 + y2

(1 + y2)2 + 1
cos(xy) dy

=

√
π

32
e−
√

1+
√

2x

(√
2(1− i)e

√
1−ix +

√
2(i+ 1)e

√
1+ix

)
.

• To further study the solvability of the equation (5.1), we choose (a, b) = (−∞,+∞)

and the convolution (f ∗ g)(x) =
(
f ∗

1
g
)

(x), which is determined by the formula (2.2).

Now, the kernel of the equation is chosen by the expression

K(x, y, t) ≡ K(x, y) = − 1

2
√

2π

[
ϕ3(x+ y) + ϕ3(x− y) + ϕ3(−x+ y)− ϕ3(−x− y)

]
.

Applying the formulas (3.7) and (2.4), then the equation (5.1) can be rewritten as follows

(5.7) (Thf)(x) +
(
f ∗

2
ϕ3

)
(x) = Φ2(x),

where (Thf)(x) =

(
1− d2

dx2

)(
f ∗

1
h
)

(x) is defined by formula (3.7) and h, ϕ3,Φ2 are the

given functions, f is an unknown function.

Theorem 5.2. Suppose that h, ϕ3,Φ2 belong to L2(R) space and satisfy the following
condition

(A5) :
(H1Φ2)(y)

(1 + y2)(Fh)(y) + (H1ϕ3)(y)
∈ L2(R).

Then the equation (5.7) has a unique solution in L2(R) which is of the form

f(x) =
1√
2π

+∞∫
−∞

(H1Φ2)(y)

(1 + y2)(Fh)(y) + (H1ϕ3)(y)
cas(xy) dy, x ∈ R,

where H1, F are respectively defined by the formulas (2.5) and (2.7).

Proof. Applying the H1 transformation on both sides of the equation (5.7) and using the
formulas (3.11), (2.3), we obtain

H1(Thf)(y) +H1

(
f ∗

2
ϕ3

)
(y) = (H1Φ2)(y).

or equivalently

(1 + y2)(H1f)(y)(Fh)(y) + (H1f)(y)(H1ϕ3)(y) = (H1Φ2)(y).
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Under the condition (A5), we have (H1f)(y) =
(H1Φ2)(y)

(1 + y2)(Fh)(y) + (H1ϕ3)(y)
∈ L2(R) and

f(x) =
1√
2π

+∞∫
−∞

(H1Φ2)(y)

(1 + y2)(Fh)(y) + (H1ϕ3)(y)
cas(xy)dy, x ∈ R,

and f(x) belongs to L2(R) space. The proof of theorem is completed. �

The following example is an illustration of the above result.

Example 5.2. Now, choose h(x) = ϕ3(x) = Φ2(x) =

√
π

2
e−|x| ∈ L2(R). Then

F

(√
π

2
e−|x|

)
= H1

(√
π

2
e−|x|

)
=

1

1 + y2
satisfies the condition (A5) and

(H1Φ2)(y)

(1 + y2)(Fh)(y) + (H1ϕ3)(y)
=

1

2 + y2
∈ L2(R).

Following the formula (21, p.616, [7]), we have the solution for this case as follows

f(x) =
1√
2π

+∞∫
−∞

1

2 + y2
cas(xy)dy =

√
2

π

+∞∫
0

1

2 + y2
cos(xy)dy

=

√
π

2
e−
√

2x ∈ L2(R+) ⊂ L2(R).

5.2. Solving the differential equations. According to Theorem 4.1 in (Chapter 4, p.
224, see [12]) gives a closed-form solution of the Cauchy-type problem.{ (

Dα
a+f

)
(x)− λf(x) = Φ(x), (a < x 5 b;α > 0;λ ∈ R)(

Dα−k
a+ f

)
(a+) = bk, (bk ∈ R; k = 1, · · · , n = −[−α]) ,

(5.8)

where Φ(x) ∈ Cγ [a, b](0 5 γ < 1) with the Riemann-Liouville fractional derivative(
Dα
a+f

)
(x) of order α > 0 given by

(
Dα
a+f

)
(x) :=

1

Γ(n− α)

(
dn

dxn

){ x∫
a

f(t)

(x− t)α−n+1
dt

}
, (n = [α] + 1;x > a).

In this part of the paper, we study closed-form solutions of a narrow class of differential
equations than equation in the problem (5.8) by choosing λ = −1 and substituting the

operator
(
Dα
a+f

)
by operator D(f ∗ g) where D =

(
I − d2

dx2

)
. Then the equation in

Cauchy-type problem (5.8) can be rewritten as follow

(5.9) f(x) +

(
1− d2

dx2

)
(f ∗ g)(x) = Φj(x), x ∈ R.

where Φj , j = 3, 4 and g are given function, f is an unknown function. The idea to
solve the equation (5.9) is that, we use the operators (Th) or (Tk) studied in section 3 and
choose (f ∗ g) as one of the two convolutions studied in results (see [24] or [9]).
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• In this case if we choose (f ∗ g)(x) ≡
(
f ∗

1
h
)

(x), which is defined by the formula (2.2),

then the equation (5.9) can be rewritten in the form

(5.10) f(x) + (Thf)(x) = Φ3(x),

where Φ3, h are given functions and (Thf) =

(
1− d2

dx2

)(
f ∗

1
h
)

(x) is determined by

(3.7).

Theorem 5.3. Suppose that h,Φ3 are given functions in L2(R) satisfying the following

condition (A6) :
(H1Φ3)(y)

1 + (1 + y2)(Fh)(y)
∈ L2(R). Then the equation (5.10) has a unique

solution in L2(R) which can be presented in the form

f(x) =
1√
2π

+∞∫
−∞

(H1Φ3)(y)

1 + (1 + y2)(Fh)(y)
cas(xy)dx ∈ L2(R), x ∈ R,

where H1, F the respectively defined by the formulas (2.5),(2.7).

Proof. Applying the H1 transform on both sides of equation (5.10) and using the formula
(3.11), we obtain

(H1f)(y) +H1(Thf)(y) = (H1Φ3)(y),

or equivalently

(H1f)(y) + (1 + y2)(H1f)(y)(Fh)(y) = (H1Φ3)(y),

under the condition (A6) then (H1f)(y) =
(H1Φ3)(y)

1 + (1 + y2)(Fh)(y)
∈ L2(R). And we have a

solution in L2(R) as follows

f(x) =
1√
2π

+∞∫
−∞

(H1Φ3)(y)

1 + (1 + y2)(Fh)(y)
cas(xy)dy, x ∈ R.

The proof of theorem is completed. �

An example is given below to illustrate the above result.

Example 5.3. We choose Φ3 =

√
π

2
e−|x| and h =

√
π

2
|x|e−|x| as functions belonging to

the L2(R). Following the formula (5, p611, [7]), we have

F

(√
π

2
|x|e−|x|

)
=

1− y2

(1 + y2)2
.

H1

(√
π

2
e−|x|

)
=

1

1 + y2
.

Then
(H1Φ3)(y)

1 + (1 + y2)(Fh)(y)
=

1

2(1 + y2)
∈ L2(R). And we have the solution for this case

as follows

f(x) =
1√
2π

+∞∫
−∞

1

2(1 + y2)
cas(xy)dy =

1√
2π

+∞∫
0

1

1 + y2
cos(xy)dy =

1

2

√
π

2
e−x ∈ L2(R+) ⊂ L2(R).
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• On the other hand, if we choose the convolutions (f ∗ g)(x) ≡
(
f ∗

2
k
)

(x), it means(
1− d2

dx2

)
(f ∗ g)(x) = (Tkf)(x), which is determined by the formula (3.13). Then the

equation (5.9) is rewritten as

(5.11) f(x) + (Tkf)(x) = Φ4(x),

Applying the Hartley H{ 1
2}

transformation on both sides of the equation (5.11) and using

the formulas (3.16), we get the following corollary.

Corollary 5.1. Let k,Φ4 ∈ L2(R) are functions satisfying the following condition (A7) :(
H{ 1

2}
Φ4

)
(y)

1 + (1 + y2)
(
H{ 1

2}
k
)

(y)
∈ L2(R). Then the equation (5.11) has a solution in L2(R)

which can be presented in the form

f(x) =
1√
2π

+∞∫
−∞

(
H{ 1

2}
Φ4

)
(y)

1 + (1 + y2)
(
H{ 1

2}
k
)

(y)
cas(±xy)dy, x ∈ R.

Note that if we choose Φ4 = k =

√
π

2
e−|x|, then

(
H{ 1

2}
Φ4

)
(y)

1 +
(
H{ 1

2}
k
)

(y)
=

1

2(1 + y2)
∈ L2(R),

and the solution of the equation (5.11) in this case has the form

f(x) =

√
π

2
√

2
e−x ∈ L2(R+) ⊂ L2(R).

5.3. Solving the system of differential equations. Consider the following system of
differential equations

f(x) +

(
1− d2

dx2

)(
g ∗

1
h

)
(x) = Φ5(x), x ∈ R(

1− d2

dx2

)(
f ∗

2
k

)
(x) + g(x) = Φ6(x), x ∈ R,

(5.12)

where Φ5,Φ6 are given functions, f, g are unknown functions. The convolutions (.∗
1
.), (.∗

2
.)

are respectively determined by the formulas (2.2) and (2.4).

Theorem 5.4. Suppose that h, k,Φ5,Φ6 are given functions belonging to the L2(R) space
and simultaneously satisfy the following conditions

(A8 :) 1− (1 + y2)2H1

(
k ∗

1
h
)

(y) 6= 0, ∀y ∈ R

(A9 :)
(H1Φ5)(y)− (1 + y2)H1

(
Φ6 ∗

1
h
)

(y)

1− (1 + y2)2H1

(
k ∗

1
h
)

(y)
∈ L2(R)

(A10 :)
(H1Φ6)(y)− (1 + y2)H1

(
Φ5 ∗

2
h
)

(y)

1− (1 + y2)2H1

(
k ∗

1
h
)

(y)
∈ L2(R).
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Then the problem (5.12) has solution (f(x), g(x)) ∈ L2(R)×L2(R) which can be presented
in the form

f(x) = H1

((H1Φ5)(y)− (1 + y2)H1

(
Φ6 ∗

1
h
)

(y)

1− (1 + y2)2H1

(
k ∗

1
h
)

(y)

)
(y), x ∈ R,

g(x) = H1

((H1Φ6)(y)− (1 + y2)H1

(
Φ5 ∗

2
h
)

(y)

1− (1 + y2)2H1

(
k ∗

1
h
)

(y)

)
(y), x ∈ R.

where the (H1) transform is defined by (2.5) and (. ∗
1
.), (. ∗

2
.) are respectively determined

by the formulas (2.2) and (2.4) .

Proof. From the formulas (3.7), (3.13), we rewrite the system of differential equations
(5.12) as follows {

f(x) + (Thg)(x) = Φ5(x), x ∈ R,
(Tkf)(x) + g(x) = Φ6(x), x ∈ R.

(5.13)

Applying the H1 transformation respectively on both sides of the first and the second in
the system of equations (5.13) and using the formulas (3.11),(3.16), we obtain{

(H1f)(y) + (1 + y2)(H1g)(y)(Fh)(y) = (H1Φ5)(y), y ∈ R,
(1 + y2)(H1f)(y)(H1k)(y) + (H1g)(y) = (H1Φ6)(y), y ∈ R.

Combining the factorization equalities (2.1),(2.3), we have

∆ =

∣∣∣∣ 1 (1 + y2)(Fh)(y)
(1 + y2)(H1k)(y) 1

∣∣∣∣ = 1− (1 + y2)2H1

(
k ∗

1
h
)

(y)

∆1 =

∣∣∣∣(H1Φ5)(y) (1 + y2)(Fh)(y)
(H1Φ6)(y) 1

∣∣∣∣ = (H1Φ6)(y)− (1 + y2)H1

(
Φ6 ∗

1
k
)

(y)

∆2 =

∣∣∣∣ 1 (H1Φ5)(y)
(1 + y2)(H1k)(y) (H1Φ6)(y)

∣∣∣∣ = (H1Φ6)(y)− (1 + y2)H1

(
Φ5 ∗

2
k
)

(y).

Under the conditions(A8 −A10), we get

(H1f)(y) =
∆1

∆
=

(H1Φ5)(y)− (1 + y2)H1

(
Φ6 ∗

1
h
)

(y)

1− (1 + y2)2H1

(
k ∗

1
h
)

(y)
∈ L2(R), y ∈ R

(H1g)(y) =
∆2

∆
=

(H1Φ6)(y)− (1 + y2)H1

(
Φ5 ∗

2
h
)

(y)

1− (1 + y2)2H1

(
k ∗

1
h
)

(y)
∈ L2(R), y ∈ R.
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Using the inverse transform formula (2.6) then this implies that

f(x) = H1

(H1Φ5)(y)− (1 + y2)H1

(
Φ6 ∗

1
h
)

(y)

1− (1 + y2)2H1

(
k ∗

1
h
)

(y)

 (y), x ∈ R

g(x) = H1

(H1Φ6)(y)− (1 + y2)H1

(
Φ5 ∗

2
h
)

(y)

1− (1 + y2)2H1

(
k ∗

1
h
)

(y)

 (y), x ∈ R,

and (f, g) ∈ L2(R)× L2(R). The proof of theorem is completed. �

We will end the article with an example illustrating the above result

Example 5.4. Now, we choose h = k = e−|x| and Φ5 = Φ6 =

√
π

2
e−|x| where h, k,Φ5,Φ6

are given functions belonging to the L2(R) space.

We have F
(
e−|x|

)
= H1

(
e−|x|

)
=

√
2

π

1

1 + y2
and H1Φ5 = H1Φ6 =

1

1 + y2
, which satisfy

the condition (A8), which implies that

1− (1 + y2)2H1

(
k ∗

1
h
)

(y) = 1− 2

π
6= 0.

Furthermore, we obtain H1

(
Φ6 ∗

1
h
)

(y) = H1

(
Φ5 ∗

2
h
)

(y) =

√
2

π

1

(1 + y2)2
, which also

are functions satisfying the condition (A9), which implies that

(H1Φ5)(y)− (1 + y2)H1

(
Φ6 ∗

1
h
)

(y)

1− (1 + y2)2H1

(
k ∗

1
h
)

(y)
=

1

1 +

√
2

π

1

1 + y2
∈ L2(R).

And under the condition (A10), we get

(H1Φ6)(y)− (1 + y2)H1

(
Φ5 ∗

2
h
)

(y)

1− (1 + y2)2H1

(
k ∗

1
h
)

(y)
=

1

1 +

√
2

π

1

1 + y2
∈ L2(R).

In conclusion, the solution of the system equations (5.12) in this case has the form

(f, g) =


√
π

2

1 +

√
2

π

e−|x|,

√
π

2

1 +

√
2

π

e−|x|

 ∈ L2(R)× L2(R).
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