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1 | INTRODUCTION

The linear superposition principle is encountered in many branches of physics and can be employed to solve essentially all lin-
ear problems". This principle states that, for linear systems, superposition provides large classes of solutions and gives rise to
generalized solutions of linear problems in the form of a linear combination of the independent solutions. When linear superpo-
sition holds, a system can be decomposed into its constituent parts and the behavior of each component is independent of other
components”. Conversely, when linear superposition fails, such systems often exhibit behaviors reflecting the fact that individ-
ual system components are not independent of each other. Linear superposition normally operates in linear systems. Instead, the
lack of linear superposition is one of the crucial characteristics of nonlinear systems. The loss of linear superposition also has
implications for causation, reduction, emergence, and natural laws in nonlinear dynamics, all of which raise important issues
for the application of nonlinear models to real-world problems. Generally, because of the nonlinear terms, linear superposition
principle does not hold well in nonlinear theories even for nonlinear integrable systems where the nonlinear superpositions are
valid. Nonetheless, it was found to apply for specific cases, such as periodic solutions***%*%4 The main property that allows
for the application of linear superposition principle to these specific nonlinear cases is the reduction of the nonlinear cross terms
into linear ones, which then combine with other linear terms ™™ . This is possible only for certain types of solutions with this
property.

Here, we will explicitly show a different method allowing for suitable linear combinations of special decomposition solutions
which leads to completely different types of solutions. What is even more remarkable is that the decompositions allow us to
uncover unexpected relations between various different integrable systems. To illustrate our approach, we begin with the B-type
Kadomtsev-Petviashvili equation (BKP).

The BKP equation

Uy + (U + 15uu, + 15u° — 15u0 — Suyy) ey — Suy, =0, v

vy x = Uy ey
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where u, = d.u, u, = diu, Uy = Oiu, ..., is one of the most mystery models possessing many elegant properties ™™ For
simplicity only, we consider the potential form of (II) by setting u = w

x°

w,, =5w,, —(w,s + 15w,w,; + 15wi - Sw,w, - 5w K,. 2)

xxy)x =
When u is y independent or u, ~ au,, the BKP equation (II) is returned to the known Sawada-Kotera (SK) equation ™" which
can be widely applied to many physical fields where the KdV equation is valid and the higher-order perturbations need to be
considered"*.

In the next section, the potential BKP (PBKP) hierarchy is briefly rewritten down employing the mastersymmetry method
(MM) ™52 which is equivalent to the formal series symmetry approach (FSSA)Z"*%  Then, we detail the steps leading to
some special types of decompositions of the PBKP hierarchy in Section B. These decompositions provide simple and interesting
relationships for classical integrable systems and are fundamental for subsequent construction of linear superposition solutions.
In Section B, we show that suitable linear superpositions of some special decomposition solutions obtained in Section B of the
PBKEP hierarchy are still in fact new solutions of the same equations. Using these linear superposition formulas, we find several
types of exact solutions including m+n solitons, » solitons with periodic cnoidal background waves, n soliton solutions combined
with soliton-cnoidal wave interaction solutions, and combination solutions of two different modified Schwarzian KdV waves,
etc. of the fifth PBKP equation. In section B, we present that similar special types of decompositions and linear superpositions
still work for the dispersionless PBKP (dPBKP) hierarchy. Section B is devoted to conclusions.

2 | PBKP HIERARCHY VIA MASTERSYMMETRY METHOD

A symmetry, o, of the PBKP equation (D) is defined as a solution of
o, =0.K'c=a, (sa;lai — 0 = 151,40, — 15w,0° — 45120, + 1519, + 15,0, + safay) -, 3)

which means (@) is invariant under the infinitesimal transformation w — w + ec with infinitesimal parameter €. If ¢ is not
explicitly # dependent, then the symmetry definition equation (B) is equivalent to

Ko =0, O]
where the commutate operator K| | is defined as
Kyf =K'f = f'K =lim S K@+ ef) = £+ eK)] 5)
for arbitrary f.
Conjecture 1.
Ky = ﬁK[ﬁ]yn, n=12, ..., o ©)

are all symmetries of the PBKP equation (B), that means y" is a master symmetries for all positive integers n > 1 and K[”]Jr Iy =o0.

According to conjecture [, the PBKP hierarchy can be written as

1 n ..n
w; = K2n—1 = mK[’]y N n= 1, 2, sy OO. (7)
After finishing some tedious calculations, we have proved the conjecture [l for n = 1, 2, 3, 4 and 5 with the following explicit

forms,

1
wy, = Ky = 75Ky = ws (®)
1
w,, = Ky = 7= Ki}y* = 3w, ©)
1 -
w, = Ks = ﬁKE]f = 50x1wy2 -w,s — w,w; — 15wi + 5w, + 15w,w, = K, (10)
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e 1 4 4
I/Ut7 = K7 = MK[']'V (11)

= —wy = 21w, = 2lwyw,, - 21w w,s + 2107 (ww,,) + 70w 5 + 2w, w,,
2

—2w qw, + 420 (wyw,) — 6307 (Wiw,) - 21w w,, — 63ww’ — 1260w 5 + 21w, ,
+21w,0; w,, — 63w} + 63 /2w,
1 5.5
=K,=——K 12
“i = R0 = 1125000 1”7 (12)

= 9();2{6;1wy4 — W5+ OW, 5 — 27wawizwy + 3w
+3(10w

+27wxwiy + Sw,pw, —3w,w, - 92lw,w,, + 10w, w, —w, + 7w, Wy + 36w, W, .,

2
wsy2 T 36wyx2 + 9wxwx3y2 + 9wxwy3

105w, ,w,, — 1w, w,» = g — 93w, w,, + Sw,,)w Bw, w

xy2 yx3 yx6

—4510,, W5 + W07 w5 — 18w g1, + 27w, w5 + 25w, — 2TW)w,, + 3w, w,Hlw,,
+3Gw, - 27Tw? - 20w w

+9u0,,, (07w, — 12wx> + Sw,w, - 27w?,)},

2
et — AW Wy, + Wy p)w,s — 3w Lw,

fo = 6(15w,w,, — 2w, — w w, + 54wiw,, — 07w, —3(ww,),.

It should be mentioned that the ninth-order PBKP equation (I2) is also only a (2+1)-dimensional extension of the seventh-order
Sawada-Kotera (SK) equation. Both equations () and () will be reduced back to the seventh-order SK equation when we
take w, = aw,.

y X

02.03,04

Though the conjecture is difficult to prove for general n, its formal extended form can be restrictly proved by using FSSA *=-“

Proposition 1. The PBKP equation (0) possesses formal series symmetries

_ 15 (n=k) gk _
Om-1 = 35 kz:;)f Kiy' n=1,2, .., o, (13)

where f is an arbitrary function of 7.

The correctness of proposition [l has been proved for general z-independent K by one of the present authors (Lou) in several
earlier works 7% Thus, conjecture [l is equivalent to assuming that the formal series (I3) is truncated up to # and the special
function f = 1.

3 | DECOMPOSITIONS OF THE PBKP HIERARCHY

By using the symmetry constraint method to the Lax pair of the BKP equation, it is known that the BKP hierarchy can be solved
by decomposing the BKP hierarchy to the KAV flows*'. After finishing some tedious calculations, we find that for every equation
of the PBKP (and then BKP) hierarchy, there are three consistent decompositions from the PBKP hierarchy to potential KdV
(PKdV) flows. More different ways to relate BKP and KdV hierarchies with reductions were described in™" Another point
worth bringing up is that in addition to the KdV hierarchy, we have found relationships between other classical systems and the
BKP hierarchy. The relationships between these various models are illustrated below.

3.1 | Decompositions of the fifth-order PBKP equation (2)

Usually, for a higher dimensional integrable system, one can formally separate some variables by using symmetry constraints
on its Lax pair. For PBKP equation (0), the Lax pair possesses the form

W, + W+ 3wy, =0, (14)
v, — s — 45w, w3 — 45wy, — 15Qw 5 + 3wi —w, )y, =0. (15)

It is not difficult to verify that y, is a special symmetry of the PBKP equation, i.e., ¢ = y, is a solution of (B). Thus, substituting
the symmetry constraint y, = w,, i.e,
v =w, (16)
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into the Lax pair (I4) and (I3), we have
w,+w,;+ 3w)2c =0, A7)
w, — w5 — 45Quw,; + 3wHw, = 0. (18)

Because equation (I7) is not explicitly z-dependent and (I8) is not explicitly y-dependent, this kind of decomposition is called
nonlinearization”™ and also known as variable separation approach®™. Since w is still a function of y and ¢, we call this kind of
method as formally variable separation approach (FVSA)*"**. The separation equations (IIZ) and (IX) are nothing but the KdV
and the fifth-order KdV equations, respectively. That means if w is a solution of the KdV and fifth-order KdV decompositions
(IC7) and (LX), then it is also a solution of the PBKP equation (2).

In fact the FVSA can be applied to nonlinear systems irrelative the existence of Lax pairs™, since it can be conjectured that
any (2+1)-dimensional nonlinear system has a solution decomposed in the form

w, = Fw, w,, Wy, ..., W), 19
w, =G(w, Wy, Wy, ..., Wy,) (20)

with the consistent condition
Wy — Wy, = [F, G]=0 21

preserved. So it is not necessary to stipulate the exact forms of the functions F and G, it is only necessary to specify that
() and (20) satisfy the PBKP equation (M) and the consistent condition (11). Then a direct calculation shows the following
decomposition theorem.

Proposition 2. If w,, w,, w;, w,, ws and wy are the solutions of the following decomposed systems

wy, = (@ + w,, +¢;, ) =07 +4w,, — 207w,

) (22)
wy, = (907 + 15¢®, + 5(c* + 3¢))w,,

wa = ®2W2X + Cl, (Dz = 0)2( + 2I/U2x - 0;11/02)(2,

3 23)
Wy, = (9D3 + 15¢))w,,,

\

w;, = _%(@3 —20)ws, + ¢, @y = 02 + 4w, — 207wy,

) (24)
Wi = <502 + 15¢; - %@g)wh,

( 3 waztxz 3.4 2

J w4y:w4X3_ZW+§W - =Pyt Wi=wy, +e, 25)

Wy, = 9wy, + 15¢,wy,, ©y=0]'WoW o, + W2 +9.'W?a,,

ws, = i(4q>§ + 6c®s + 3c?)ws,, D5 =0, + %ws + %wSXa;l,
) (26)
9
ws, = E(mqf; +40c®? + 40> ®: + 20’ D5 + Schyws,,
w6y = Cwﬁx + Cl,
3 (27)
w6t = _w6x5 + S(C - 3w6x)w6x3 + 156w2x - ISWZX + 5(62 + 3C1)w6x,

\

then w,, w,, w;, w,, ws and wy are all solutions of the PBKP equation ().

Proof. Substituting (I9) and (Z0) with m > 3 into the PBKP equation (0) and the decomposition consistent condition (), and
finishing some tedious calculations, one can find that there is no possible decomposition (I9) and (2Zd) with m > 3. Thus, we just
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take m = 3 and then n = 2m — 1 = 5 in the decomposition relations (IY) and (Z0). Substituting (I9) and (Z0) into (), we have

w(1+ 5Fj3 —5F, +G, )+ W(xp x;, ..., x5) =0, (28)
where F = F(w, w,, W,,, Wwy) = F(xy, X1, X5, X3), G = G(w, W, Wy, W3, Wy, W) = G(xy, X1, ..., X5) and
W = Wi(xy, x|, ..., x5)is a complicated expression of x,, x;, ..., xs5. Vanishing coefficient of w ¢, we have

G=GF, - 5FX23 — Dx5 + G (xg, X5 ...y Xg), (29)
where G| = G|(x,, x;, ..., x4)1is afunction of {x,, x;, ..., x,}. By using the relation (Z4), (£8) is changed to
wys |Gy, = 5(F + 2)(xyFy o +x3F, , +x,F, . +xF, )+ 10F_F,_+5F_| +W; =0, (30)
where W, = Wi(xg, x;, ..., X4)1s wx5 independent. Ehrnlnatlng the coefficient of w5 y1e1ds
G, =5(F,, +2)( x4 xs T X3F o F X0 F o+ x F x4 +5x,F 2F, + 1)+ Gy, (€28)

with G, = G,(x(, x|, X,, Xx3) being afunctlon of {xy, x|, x5, x3}.
Similarly, substituting the decomposition (I9) and (Z0) with m = 3, n = 5 and the results (Z9) and (BTl into the consistent
condition (ZI1), we have

51 = F ) (x, Fy o+ X0 F o+ x3F  + X, F, )+ =0, (32)
where I' =T'(x,, ..., x¢) is a w,; independent function of the lower-order differentiations of w with respect to x.
Vanishing the coefficient of w,,w,, in (B2), we get
F = F(xg, x|, X)x5 + H(xg, x1, X5). (33)

Substituting (B3) into (B2) and requiring the coefficient of w, being zero results F;(x,, x;, x,) = a, a constant. Thus, we have,
F =ax; + H(xy, x{, X,). (34)

Because of the simplification (B4), (Bd) is simplified to
Wy |Gay, = 5a+2)x3H,  —5(a+2)x,H, , +5x,3—aH

xx, —3a—2H
—10aH, - 5H2 —5H, | +W,=0 (35)

xoxz)

with W, = W,(x,, x;, x,). Vanishing the coefficient of w, in (B3) leads to

G, = 5[%2 t 2 H,, +(@+2x,H,  —x,(3—aH, . —3a-2H, )+2aH,
+sz + Hxl]x3 +J =0, (36)
where J = J(x,, x|, X,). Up to now, the decomposition relation is simplified to
w, = aw,; + H, 37)
= (5> +5a = Dw,s +5Qa + D H,, +5[%3 E 2 H, (@ + D% H,
-x;(3-aH,, -3a-2H, )+2aH, + sz +H, |x;+J =0, (38)

with one constant a and two undetermined functions H = H (x,, x;, x,) and J = J(x,, X, X,).
Inserting (B2) and (BR) into the PBKP equation (2) and the consistent condition (1), then, vanishing the coefficients of w,,
for k > 3 leaves the determining equations on {a, H, J},

aH, . =0, (1-a)[2(a+2)(xH, ., + X Hy )+ (H2 +3H, ), 1= (39)
(I =ala+2)2xx,H, ., +x onxoxz + x2 H, . .)+(0-a(xH,,  + lex[)Xl)

+l(a+2)x, -2x,H |H, . —2x,H, H, , —9%x,] =0,
(1 -a)(x H,,, +x,H, ) =0, 1 -a)H,, =0, (5¢° ~2)0] H =0,

X1 X2

QH, - 3ax16xO = 3axy0, )H, ,, =0, (Ta* = 4)9; H =0,
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[(5‘12 - 2)(x20x] + xlaxn)axz + (7‘12 - 4)ax| - asz ot (6 =9a) szz]Hszzxz =0,
[3(7a2 —4)(xy0, +x,0,)+2(1 -4a)H, 1H, , . =0,
- 5(2a + 1)(2x1x26x X0 + x?@f{o + x%dil + xzaxo)sz
—5(a + 2)(xzaxI + xlaxo)Hx] -5+ Za)on - SHx2(3x1 + 2Hx]) =0

S(a+1)(x]0} + x3a3 + 3x2x102 0y, +3%,220, 0 +3x,%,02 +3x20, IH
Xo 1 Xg Xo 1%X0
+5H)(2(x%a2 + x202 +2x,x,0 xo T xzde)H + S(lexl + 3x% + H)on
+5x,Hy (Hy +3x)) — x I — %, — 15x,(3x] — H) = 0,

-3(x70;, +x202 +2x1x2a” +x,0, )0 H +(3x,0, +3x,0, —2H )H, . +6H,

-10H, . H

XpXp 7T X Xy

+2(3x, — H, + H} )0} H =0,

(@a-1’O-H, , +xH,  +x xlmz) +(-aQH H,, +3H,, +3H,, -
—-6x H —6H (x2 Xz)x2

+9xl X0X1X, + 9X2 XXy x2x2 XXy

(Ox, =3H, +H;)=0

XXXy
szz

~(@ +2)(x]03 +3x7x,07 9, +3x,x30, 07 +x307 +3x,x,05 +3x30,  IH,,
+Qa+ DI(xH,, + 2x1x2Hx + sz A H )H, 4 (TH, o +2xx,H

+2xx, H + x2 xxx) 2x2Hx2HxlX1 +2xH H, . +2xH H,  —3x,H

XoX1 Xy

+3Q2 =) Hyy, + X H, )P = Xp(H + 9%, = 3H, )H, . ~ HXOXZH —15ax,H

XX

+2aHH, —9x§Hxx +6x,H_+HH,_ =0,
02 0*2 2 042

Xy

4(a — 54> - S)x,H v, T —@)éxx,H,  H, .+ 2x2H o Her, + 2x2Hx2x2 i
2
+20,H, H  )+@-a)(xH, H, . +4,H, Hxlxl +dx H,  H,  +6x,H.

+6X1 XoXo xlxz X" x,

—6(a* + 2)(x xoxxx T 2x1x2HxOx]x X tXx HXOXOX o)t 2+ a)(a- 2)(x XXX X0

3 2
+x onxoxoxzxz + ?’xlx2 XoXoX1 XX + 3x1x onx]xlquz + 3x1x2 XoXoX2X2 + 3x2HXox1X2X2)
+2xH H,  +2,H H, +xH H +CH,  +xH  +2xxH,
+x2H ) xzxzxz] + 2(10 - 7a)(x2Hx1x2 + X xoxz)(xl XXy Xy + x2Hx xzxz)
+3aH, (x]0; +2x,X,0,  +X;0% )szxz -2x,(7¢* =2a+4H, . —Qx H. —3ax,H,
2
—aH +18x7 -2H)H, , . — Qx,H_ —6x,H, +18x;x,)H, . +4(1+ Za)sz H,

+[4+ Sa)on = 18ax,]H, ,, - 18aH, =0,

XX

—(18x, — 2H§2 - 6HXI)H

XoX1X2

+xH, o +xH s H, + le H, 0+ -alx(a-DH,, —(a+2)(xH,,.

)+ (- @2H, H, , —2a+2)H, —6(a+1)(x,0,0. —x,0} )H]

(40)

(41)

(42)

(43)

(44)
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—(a+2)(x;

(154 = 5a)(10x30, 03 + 10x,x]0; +30x,x303 05 +30x]x30, 05 +x307 +x703

+5xX30, 0y +5x,x10} 0, +10x3x707 0 + 10x7x307 92 )H

172%x
=5Qa+ D@x1 X Hy y vy + X1 Hy o, + X0 H, (OOTH, X0 H,  + 203 H  + X, H, )
—5xi(ax,H, ot sz +2x0,H, , +2xH, )(xlaio + 3x20§OaXI)H
-5+ 2)(x,H,  +x H, )+ Qa+1DH, + Hi -3(1 - a)xl](xza;fl + 3xldilaxO)H
+5Q2a+ D{ = H, [6x30, 05 +x{0y + x50} +6x1x,00 +12x,x307 9, +4x,x30, 97
+Ox{x307 07 +4x7x,0] 0, 1= H, [x]0] +3x,x107 9, +3x,%,0; +3x30, 0, 1= x3H, 07
—H, [x{07 +x30, 0., +x,0, 1} H = 5H,  [(a+2)x}H
+x H, )+ x,x1Sa+TH, . +xH,_3x,H,_ +2x,H,)+3Q2ax;+x] +x3)H,
=91 - a)xzx%] - 15[x1(5a2x§ + ax? + Saxg - x? - x%)aio + x2(5a2x§ + 3ax§ + 5ax§ - 3x?
=x3)07 0, 1H = 10(a + Dxox7H, - —5H,  [3(a+2D(H, ., +x,x3H, )
+x,x5(Ta+8)H,  + Sa+4xx,H, +x,H, Gx,H, +4x H, +6x7) = 9(1 — a)x,x3]
=5(a+2)x;H; | +aB3x,x]0; 0 +3x3x,0, 07 + X307 +x703)J = 5x3[(2H, +3x)H,,
+3(a+ DH, 1H, . +x,0,H, +3ax)J, 4+ x,2x H, +3ax;)J, . +x3H, J,

~(10x, H, H, +15x,x,H, +x,J, = DH, +J, (,H, +xH, —H)=0,

0X1X2

+ax H,

X2

%ot T X1%,(a+ 2)(3x2Hxlx2

oxy T X5 —(a+8)(x,H,
+x, H,  )(2x, x50, + xfago +x307 +x,0,)H,, — [X{H. +(1 - a)x{H,
+3ax;x, H, +x(a+2)H —3Q2a" + 1)x3 - 9x)1H, . —[(@+2)x]H, + (4 —a)x;x,H,,
+2x,0,H +3ax3H, +xy(aH — 18x] + 2H)]H, . + (2a® + D[6x7x,0] +6x30, 07

22 44 3 3 2,252 32 353 4 54
+12x)x30 0, + X(0; +4x,X,0, 0, +6x1X50, 07 +4x,x,0; 0, +x30, 1H

XX + 2x2x1Hxe1 + x2Hx0)(xZaxl + xlax())Hx2x2 1%y

1
+(1 = a)l(a + 1)(6x,x30] 0, +6x7x,07 97 +2x]0] 0, +2x30; )H
—H, (x307 +2x,x,0, 07 +x707 0, +2x,05 +3x,0,  VH —xH, H, ]
—-(10=Ta)x H, , (H, . +x,H, )+ 2x§HXZHjUX
~(Sa+4)x H, +Qx H,, +3x)H, —x,H, —2H, H\H, , —3ax;x;H H, . .
+(a + 2)x§(4 -3xH, ., —a)H, . —[x,(4xH, +3(a+2)x)H, , +(16—-Ta)x;x,H,
+Ha+2)x H, —x H; —(aH +9x] ~ H)|H, , +xXH; (6-xH, . +H,.)
+H, (2x;H, . 0, — axfajo - axgai] - 3ax2xfaio 9, —2xH, 0, )H, —H,_, [2(x{H,
+X3H,  + X H OH, +(a+2)(x]0] +x30] +3x,x]0] 0, +3x,x,0; )H]|
+(5a* + 2a + 2)X%Hx0x0x0 +2Q2d* +2a+ 5x1xH, o — @+ 2)x,x,H, + 3x§Hx]
—9x3x1H, ., + (5" +2a+2)x, = 3x{H,  1H, , +[(Ta—13);H, . —3x,H,
+9xX,1H, . — 54ax,x; +3[(5a + Dx, +2aH, 1H, +18ax,H, —[(4a+5)x,H,,
—18ax31H, , —3x,x,(a+2)H,  H, . —3aJ, /5=0.

XoXo

Lt [9Qa + Dxx, +4x,x, H, H,

1X2

0X0

XX XoXo

(45)

(46)

From the determining equation (B9), we know that the determining equations (39)-(Bf) should be solved in three separated cases
fora=0, a=1anda#0, 1, respectively. Now, it is easy to finish the final work by solving (B9)-(E8).
Case 1. a = 0. In this simple case, the final solutions of H and J read

H =cx,+c¢; =cw, +c, J =15cw’ — 15w + (5¢* + 15¢))w,.

Case 2. a = 1. In this case, one can find four different solutions

3 45
H = Ex% —-c, J = 7()(% +x?)+ 15¢1x, xg =w, x| = W,, Xy = W,y,

(47)

(48)



8 HAO ET AL

H = cw, + 3w’ + ¢, J =90w? +45cw? + 5c*w, + 15¢,w, + 4502, (49)
3uw? 3 315w* 45(w, — 2¢) 45
H=¢ - —2—+2u?, J=15cw, - 2 x 2+ =W, 50
T dcrwy 2 T et wy | Actwy 2T (50)
H = %[Z(w + ), + 202 + (c + w)w,], (51)
J = ‘1‘_2{16w§2 +[40(w + w, + 4w + )’ lw,, + 12w + 12w + )’ w? + (w + o) *w, }.

Case 3. a # 0, 1. In this case, we find that a should be fixed as a = —% and the functions H and J are also be fixed as
H = —%wi +cw, +c;,J = —%wix - %wi +5c¢%w, + 15¢,w,. (52)
c and ¢, in all cases are arbitrary constants. By substituting these solutions (E4)—(E2) into the decomposition relations (E7) and
(BR), proposition @ is proved. O

Proposition @ provides simple and interesting relationships between classical integrable systems and PBKP equation (). The
first three decompositions (Z2)—(24) are all the KAV decompositions. The first equation of the fourth decomposition (Z3) is an
integrable model which is a special form of the Svinolupov-Sokolov (SS) equation proposed in®*. The decomposition (Z8) is
related to the so-called Sharma-Tasso-Olver (STO) equation (the third-order equation of the Burgers hierarchy)* . The sixth
decomposition is a natural SK decomposition. The unexpected linear superposition property of these decompositions continues
to surprise us in Sec. B.

3.2 | Decompositions of the seventh-order PBKP equation (I1)

For the seventh-order PBKP equation, decompositions can be found in the similar way. We just list the results in the following
proposition.
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Proposition 3. The functions w;, i =1, 2, ..., 6 satisfying the following decomposition systems

wly = ((I)l + C)wlx + Cl,

J (53)
wy, = [27®7 + 63¢®? + (42¢ + 63¢))®@, + Te(c? + 9e)w,,

Wy, = D,w,, +c,

4 (54)
Wy, = (2793 + 63¢, D) w,,,

\
-

1
ws, = —§(¢3 —2c)ws, + ¢y,
3 (55)
27 63 7
wsy, = §q>g - ch)g + E(3c2 —9¢))®@; + Te(c® + 9¢)) | ws,,

Wy, = Oqwy, + ¢q,
J (56)
LU4[ = 27¢2LU4X + 6361®4W4x,

L

ws, = 411(4c1>§ + 6cDs5 + 3cD)ws,, |
3 57
ws, = 2-1(64@2 +224c®? + 336¢7 D% + 280c° D] + 140c* D] + 427Dy + 7w,

w6y = CLU6X + Cl,

3 we, = 84cicwg, + T we, + 213w, + weys3)e® — 21(W; + Wy Wey3 — W ,)C (58)

3 2 2
—63we, (W, + 24, W3 + We o) = 21 (W, Weys + Wexy Wy + We 3) = Wy
are all solutions of the seventh-order PBKP equation () with #; = 1.

To prove proposition B, one can directly substitute the decompositions to the seventh-order PBKP equation (Il) and finish
some integrations by parts. Here, we omit the details on the proof procedure. Same as in the fifth-order BKP equation, decom-
positions make it possible to find interrelations between classical integrable systems and the seventh-order PBKP equation. The
first three decompositions are the usual potential KdV and seventh-order potential KdV reductions. The fourth decomposition
is related to the special SS equation (Z3) and its seventh-order flow. The fifth decomposition is related to the third-order Burgers
(STO) and seventh-order Burgers equations in potential forms. The sixth decomposition is simply the seventh-order potential
SK reduction of the seventh-order PBKP equation.

3.3 | Decompositions of the ninth-order PBKP equation (1)

In the same way, we directly write down the decomposition theorem for the ninth-order PBKP equation () without detailed
verifications.
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Proposition 4. The functions w;, i = 1, ..., 6 provide solutions of the ninth-order PBKP equation (I2) with ¢ty = ¢ if they
satisfy
Wy, = (@ +wy +¢y, p= g(Zc4 + 54c¢,c* + 456‘%),
) (59)
| Wy, = 81D} +243¢®] + 243(c” + ¢ )@ + 18¢(5¢* + 27¢ )P + plwy,,
Wy, = D,w,, + ¢y,
3 405 (60)
| wa = <81<I>‘2‘ +243¢,0; + ch>w2x -,
( 1
W3y = _E(q):; - 2C)W3x + Cl,
2 5 5 61)
81 ., 81(2c”+3c¢)) _,  9c(8c” —9¢c)
Wi = 1_6(1)3 - 1 o + 5 DO; + pl|ws,,
Wy, = D,wy, + ¢y,
62
) \ ) 4052 62)
Wy = 810wy, +243¢c, O w,, + Tw4x,
(1 =] 4@2 + 6Dy + 3c?
wsy—z( 5 +6c®s + 3¢ Ws,,,
81
| ws, = ﬁ(256o1>§ + 1152¢®] + 2304¢>®S + 2688c D] + 2016¢ D% + 1008¢° D3 (63)
+336c°@2 + 72¢7 D5 + 9c¥)ws,.,
We), = CWg, + Cy,
W, = =N63wW, + 126W7 w3 + 63We, W7, + 21 W, Weys + 21 ey Wy + 217 5 + Wey7)C
2 (64)
+54(3w§x + We3)e® + 27(8w2x + 8wg, We,3 + 8¢ wg, + 7wéx2 + Weys)c? + 135(3w§x
+wg,3)e c + gwﬁx(zc‘* +45¢7) = 27(15w]  + 15w, Wy + Weys)C).

Similar to the decompositions of the fifth- and seventh-order PBKP equations, the first three decompositions (89)—(k1l) are the
potential KdV decompositions, the fourth decomposition (B2) is the special SS decomposition, the fifth decomposition (B3) is
the higher-order Burgers decomposition and the sixth decomposition (B4) is the SK reduction. By observing the decomposition
propositions B, B and B, we conclude that classical integrable systems solve the PBKP hierarchy after simple decompositions.

Conjecture 2. Each order equation in PBKP hierarchy (@) possesses six types of {y, ¢t} decomposed solutions.

The first three types of KdV decompositions can be obtained from the nonlinearization procedure of the Lax pairs of the
PBKP hierarchy, the fourth decomposition is the special SS decomposition and the fifth type of the STO decomposition can be
concluded from hints of the Bécklund transformations of the bilinear PKP equation. The sixth type of SK reduction is a direct
conclusion because the PBKP hierarchy is just a (2+1)-dimensional extension of the (1+1)-dimensional SK hierarchy.

4 | SPECIAL LINEAR SUPERPOSITIONS OF THE PBKP HIERARCHY

It is well known that for the physical systems frequently characterized by nonlinear differential equations, there is no linear
superposition theorem. However, there exist some types of nonlinear superposition properties if the solutions are linked by
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some special requirements such as the Biiclund/Darboux transformations“®*+#*55808%2 For the BKP equation (alias (2+1)-
dimensional Sawada-Kotera equation), the nonlinear superpositions have been studied by Li and Hu™ in bilinear forms. In
this section, we investigate the possible linear superpositions of the PBKP hierarchy for the possible decomposition solutions
obtained in the last section.

4.1 | Special linear superpositions of the fifth-order PBKP equation (2)

For the fifth-order PBKP equation (@), if w; and w; are the decompositions of the PBKP equation listed in the last section, then
requiring the linear combination a,w; + a,w; is also a solution of the PBKP equation (&) yields the following special linear
superposition theorem.

Proposition 5. Suppose that w,, w,, ws;, w,, ws and wy are solutions of the PBKP equation (B) with the conditions
wy, = (@, + w,,, wy, = ODPT + 15¢®, + 5cHw,,, B, =92 + 4w, —20]' w,,,

Wy, = (D) = Ow,,, Wy, = 9] — 15¢®, + 5c*)w,,, B, = 9 + 4w,, — 20 w,,,,
2 — 32 —
Wy, = D303, Wy, = IDTW;,, Oy = 07 + 4wy, — 20wy,

Wyy = Py, Wy = 9(I>iw4x, D, = 0)% +2w,, — 0;1w4x2, (65)
¢ 2 _ 5¢? — 32 -1
wsy, = Osws, — o W = (Gl T)I’USX’ @5 = 0, + 2ws, = 0 W5,

2 2
c 2 5¢ ) -1
Wey = P, = —» W = (9P — 7)1’06):’ Q4 = 0, + 2we, = 0, Wy

6
then the linear superpositions

Wy =Wy + Wy, Wy =ws + %wm Wy = %(ws + W) (66)
are at the same time the solutions of the PBKP equation ().

Proof. By substituting the linear superposition relations (Bfl) with the decomposition results (B3) into the PBKP equation (),
one can directly prove the proposition. O

In fact, one can directly substitute the general superposition assumption w = f(w;, w;) with w; and w; being any one of the
decompositions given in the proposition [ to prove that the results (Bf) are the only possible superpositions if there is no further
relations among w; and w;.

It is noted that though there are six possible decompositions for the fifth-order PBKP equation (2) as shown in the proposition
@, only the first two types of decomposition solutions (Z2) and (Z3) can be linearly combined to construct new solutions of the
PBKP equation (&). The third type of KdV decomposition (Z4), the special SS decomposition (Z3), the STO decomposition (Zf)
and the third SK reduction (Z2) can not be used to find new solutions via superposition assumption w = f(w;, w;) if there is
no further relations among seed solutions w; and w It It should be emphasized that w; and w o by J = 1, 2, ..., 6, appeared in
superpositions () are independent solutions of the decompositions. There is no further relations. Here, we list some special
linear superposition structures of the fifth BKP equation.

Example 1. n + m solitons.

_ cx
wy =2(In 1) w, =2(n f) w3 = w| o> w4 = W,y ws =4(0ngh), + 5 We = w5|gn+_)g; , (67)
fE=Y exr><z weEE+ ) Miﬂj0$>’ gr= ) eXp<2 prE+ Y f) (68)
u=0,1 i=1 1<i<j<n u=0,1 i=1 1<i<j<n
where the summation of y should be done for all permutationsof y; =0, 1, i=1, 2, ..., n,
&y = kinX + ki (kyy £ )y + O3, £ 15¢k), + 57k, )t + £, (69)
(k[i - kji)z

My = kX + ki (ki + 0y + Ok}, + 15k}, + 5k, )t + 15, exp(d}) = ———,
N N (kii +k ji)

andk;,, c, f;f) and ;1:—5 are arbitrary constants. All the related solutions of the BKP equation (Il) with u = w, and w = w4, wg, wy
expressed in the proposition B with (B7), (BX) and (&Y) denote some types of n + m solitons solutions. To illustrate the linear
superposition structure more clearly, let us look at some figures. The following figures are intended to illuminate two-soliton,
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three-soliton and their linear superposition of the BKP equation () respectively with condition {¢ = 2,k; = —1,k, = 1.5,k; =
=2,&10=2,&,=10,&, =10} attime t = 0.

(a) (b) (©

FIGURE 1 Two-soliton (a), three-soliton (b) and their linear superposition (c) of BKP equation located at t = 0, respectively.

Example 2. n solitons with periodic cnoidal background waves. If one of w, and w, in example 1 is replaced by a periodic
solution, say,
Wy, = 2k*mPen? (kx + [4K°(2m* — 1) — ckly + [Sc*k — 60k>2m* — e + 72K°(Tm* — Tm* + D)t + &, m),  (70)

where cn(&, m) is a Jacobi cn function with the modula m, then w; = w; + w, becomes an n-soliton solution on a periodic
cnoidal background wave. Figure B is drawn for the case of three-soliton moving on a periodic cnoidal wave by taking simply
{C = 12, kl = —1, k2 = 15, k3 = —2,50 = 510 = 2,520 = 530 = lo,m = 12,k = 0.5} atr = O.

() (b) ©

FIGURE 2 Structures of three-soliton (a), periodic cnoidal wave (b) and their linear superposition (c) of BKP equation at f = 0,
respectively.
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Example 3. n solitons solution combined with soliton-cnoidal wave interaction solution. If wj is given by (B2) and w, is fixed as
2

8o _ 2o 45, tanh(s) — 45 tanh? 71
Wy, = 3 sy 3s, 2+ 3—2 + 45, tanh(s) — 45 tanh“(s), 1)
s =mkx + Iy + a)ot +& — arctanh(msn(kx +Ily+ot+&, m2)) (72)

with arbitrary constants k, m, &, &, Aand l, = mkA — mk3(1 +3m>)(m?* +3),1 = ki+ = [(m - 1> - 16m*], 0 =
1512 — 2 kA% + 2 (3m® +20m0 +722m* +20m’ +3)andw0— 15102 = Smk2? — 22 (5m® - 1806 — 428 — 180m2 +5),

then w = w; + 2w4 expresses an n-soliton solution combined with a soliton-cnoidal wave interaction solution. In figure § ,
we draw the behavior of a two-soliton, a soliton-cnoidal wave and their linear combination of BKP equation () at y = 0 with
arbitrary parameters fixed as {¢ = 0,k; =0.9,k, =0.65,&,, = 12,&,, =0,k =03,m =0.8,¢, = —10,¢, = 10,1 = 0.3}.

(a) (b) (©)

FIGURE 3 Two-soliton (a), soliton-cnoidal interaction wave (b) and their linear combination (c) of BKP equation at y = 0,
respectively.

Example 4. Combination solutions of two different modified Schwarzian KdV waves. If the solutions of (B3) for w5 and wy are
rewritten in the forms

s A
ws, =252 — % -5+ ?1 +4s,,, tanh(s;) — 452 tanh’(s,), (73)
1x
52 J)
wey = 257, — SM S, + 32 +4s,,, tanh(s,) — 452 tanh’(s,), (74)
2x

where s, and s, are any solutions of the modified Schwarzian KdV systems

3 2
Si S Six3 Sixa .
Y, = S—2S A Y~_—TiE—,SiE - ,i=1, 2, (75)
Six ix Six ZS%X
27 52 1547 s
T, =98, + > =S7+ISA4S + — > + T + 6s (9s —15S8; = 54;) = 90s;, (76)

with arbitrary constants 4;, then w = %(w5+w6) is a combination solution of two modified Schwarzian KdV waves. The modified
Schwarzian KdV systems ([3) and ([Zf) are related to the Schwarzian KdV systems (the systems of (3) and ([Zf) contain only
the Mobius transformation invariant terms related to the Mobius invariants T}, Y;, S;, S;,,, 4; and c¢) by the transformation
5; = arctanh(s[‘l). The modified Schwarzian KdV systems (3) and ([Z8) possess various interaction solutions including the
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following soliton-cnoidal interaction solutions®*
s; = mk,x + py+ ot + & — arctanh[m;sn(k,x + q,y + Q1 + 1,9, m})], (77)

with arbitrary constants k;, m;, 4;, &g, H;9, i = 1, 2, and the other constants {k,, p;, g;, ®;, ;} being given by
mlkf
2

Py =mk A — (m? +3)(3m; + 1),

k3
q =k, A, + é[(m% ~1)? - 16m?],

5 9
w, = 15p, 4, + Emlkl(cz -3 - gmlk§ [5m® — 180m}(1 + m}) — 418m],
Skl 2 2 9k? 8 6 4 2
Q, =15¢,4, + T(C —31)+ ?(3m1 + 20m] +722m| + 20m; + 3),
k2 2 k% 2 4
ky = —7(m2 +1, pp=42,—- 7(1 + 14m; + m3),
k3
g = kyAy — 72(5 +6m2 + 5m}),
= 15p, 4, + 2(2 =222 9k338 212m*(1 + m*) + 3
wy = )2) 2+§(C - 2)+?( m2+ m2( +m2)+ ),
5, .2 2 9%k 8 2 4 4
Q) = 1504, = Ska(e® =34) + ?(43(1 +m3) + 180m5(1 + my) + 322m}).

Figure B shows a linear superposition structure of two soliton-cnoidal interaction waves for the field u with the conditions
k, =03,k, =025 m =12,m, = 06,85 = &y = 0,10 = 1y = 10,4, = 1, = 0 at y = 0. Obviously, figures (c)

FIGURE 4 Two soliton-cnoidal interaction waves (a) and (b), their linear superposition (c) of BKP equation at y = 0.

in Figures M @ clearly display the linear superpositions of (a) and (b), correspondingly. Interestingly, two waves can pass
through each other without altering each other. Sometimes, this leads to some truly weird behaviors. It also means that waves
can constructively or destructively interfere under the effect of linear superposition.
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4.2 | Special linear superpositions of the seventh-order PBKP equation (1)

Similar to the fifth-order PBKP equation, though there are six decomposition solutions (83)—(BX), only the first two decompo-
sitions (B3) and (B4)) can be used to construct new solutions of the seventh-order PBKP equation ([1) via linear superpositions.
The result is summarized in the following proposition.
Proposition 6. If w,, w,, w;, w,, ws and wy are solutions of the seventh-order PBKP equation ([l) with conditions

wy, = (@) + )w,,, wy, = 27D} + 63¢@] +42¢°®, + TP w,, —c,

Wy, = (D, = Oy, Wy, = 27D] — 63c®; + 422D, — Tc*)w,, — ¢y,

_ _ 3
wy, = Diws,, wy = 27<I>3w3x —-c,

: (79
LU4y = ¢4LU4X, W4t = 27®4W4x - C]y
ws, = Osws, + ¢y, ws, = 9(3d>g + 7c,P5)ws, — c,
We, = Dywg, + ¢, We = 9(3@2 + 7c,Dg)wg, — ¢4,
then the special combinations corresponding to
1 1

are also solutions of the seventh-order PBKP equation ().

Substituting (80) with (9) into (), one can directly prove proposition B. Therefore, in the seventh PBKP case, the principle
of linear superposition (BO) holds for the special types of decomposition solutions given by (II9).

4.3 | Special linear superpositions of the ninth-order PBKP equation (I2)

For the ninth-order PBKP equation (), we have an analogous result for the linear superpositions of decomposition solutions.

Proposition 7. Let w;, w,, w;, w,, ws and wg be solutions of the ninth-order PBKP equation (I2) with the decompositions
wy, = (@) + w,,, wy, = B1D] +243c D} + 243¢° DT + 90D, + 9w, —c,

= (D, — Ow,,, Wy, = (81D] — 243¢D] + 243> D] — 90’ D, + 9w, — ¢,

_ _ 4
wy, = Oyw;,, wy =310 ws, —c,

wzy

w4y = <I>4w4x, Wy = 81CDiw4x — €y, (81)

ws, = Osws, + ¢, Ws, = <81d>‘5t + 243cld>§ + %c%)wﬁ -c,

we, = Pglg, + €|, We = <81c1>g +243¢, @] + %qz)wéx —c,

then w; = w, + w,, wg = w; + %w4 and wy = %(w5 + wy) are still solutions of the ninth-order PBKP equation (I2).

From the detailed examples of the fifth-, seventh-, and ninth-order PBKP equations, similar linear superposition conjecture
can be found for the whole PBKP hierarchy ([).

Conjecture 3. For every equation of the PBKP hierarchy, there exist three possible special types of linear superposition
solutions.

It should be mentioned that though the solutions w;, i = 1, ..., 6 shown in the propositions 5, 6 and 7 are the potential KdV
decomposition solutions, their special linear superposition solutions w,, wg and wy are not the decomposition solutions.
In the next section, we study the possible decompositions and linear superpositions for the dispersionless PBKP hierarchy.
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S | DECOMPOSITIONS AND SPECIAL LINEAR SUPERPOSITIONS OF THE
DISPERSIONLESS PBKP HIERARCHY

5.1 | Mastersymmetries and dPBKP hierarchy
The dPBKP equation possesses the form
Wy, = 15w, w, — w’), + 5wy, =0, (15w,w, — 15w’ + 507 w,,) =0,V (82)

Using the mastersymmetry approach similar to that described in conjecture [ for the PBKP equation, one can make the
following conjecture for the dPBKP equation (B2).

Conjecture 4. y" for arbitrary positive integers are mastersymmetries with V[T'l y'=0.

If the conjecture is correct, then we can write the dPBKP hierarchy in the form

1 n_.n
w’anl = Vz"—l = 3nl5n V[,]y . (83)
€ have check that the conjecture & 1s correcttorn = 1, 2, ..., 6. € corresponding equations of the 1erarc
We have check that the conj b f 1,2 6. Th ponding equations of the dPBKP hierarchy (E3)
possess the forms
1
w, = 15 Y= Wy, (84)
1
w,, = a5V = 3wy (85)
I 33
wi = sy =Vs =V, (86)
_ 1 aa_
i = 3500010 =Y ©n
_ _ _ _ 63
= 210 (w,wyy) + 707w, — 63wl w, + 12607 (w,w ,w,) — 63w} + 21w 0, (w,y) + 7w§,
1 5.5
- V5=, 88
“i = 1125000 07 T 70 (85)
=0 { zgwxz[ISwi — 108wl w, + 360, (w,w,w,) + 697 (W) + 202w 5]

—81w, (12w} — 5w, w, — 07 wy) + 135w,w , + 54w0,0; ' w5 + 270 (w,w),),

X Xy

+1620;1(wx2wxwy2 —wauw? )+ 96;2wy4 },
S A AT (89)
33750000 [ i
= 0.2 {wys[ 7128w + 330wy — 59402 (w,w? ) + 9997 (10, w0,5) + 990, (W w,3)
+5940 (W, w o wy0) + 19807 (w,w ) — 9907 (wzw) + 356407 (W w ,w,) — 29707 (wiw,,)
—9504w, w7, — 1485w30; ' w,, +495w,07 W, + 99wd w31 + w,,,[2079/2w + 999 2w,
+17820 (W, w,,w,) + 2970 (w,wyy) — 3267wt — 2970w w, + 495w,07 w ]
+10,,5(1386w,w, — 1980w’ + 16507 ' w,,) + (19812 + 231w, w5 + w’,(35640w? — 24948w’w,
—2970w,0" w,5) + Wy, [10,,(9900] ' w,, — 22572w? — 4158w, w,) + w,, (2079w, — 5346w?)
+297w,0 w3 + 2970 (w,,w,) + 2970, (w,w,3) — 17820 (wxw)zcy) + 17820 (w, w,pwyy)
+990 2wy + W} (=5346w7 + 2079w,) + w,, (1782w, w,, + 2970w 5) + 9w, 0w,

495 ,

+3307 ' w w, + 110 %w,s + - W~ 1980w} + 5940, (wypw pw,) + 5940, (wpw,w,,5)

+1980 (W, w, o wy3) + 6607 (W, w,5) )
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5.2 | Decompositions of dPBKP hierarchy

Proposition 8. If w,, w,, w; and w, are solutions of the following dispersionless KdV systems,

wly = azw%x + alwlx + Cl,
3 (90)
Wy, = (a2 +3)(4a, — 3)w +5a,2a, + 3)w + 5(a + 3c)wy .,

L
o

Wy, = azw + a,w,, +cy,

3 On
Wy, = %( — 1)(4a, +3)(a, + 6)w + 7al(4a + 19a, — 3)w + bw Lt 7a1(a + 9¢c)w,,,

L
p

LU3y = a2w3x + QII/U3X + Cl,

< (92)
| W, = %az(az + 9)(8a, —9)(4a, + 9)w + c4w + c3w + c2w + gcl W3y,
Wy, = azwfbc + a Wy, +cy,
3 93)
Wy, = (d6w + 3d5w4x + 15d4w4 + 10d3w4 + 15d2w4 + 15d,w,,),

with b = 21(a%a2 +3ca, + 3a1), c; =9a,(2a, + 3)(4a§ +30a, —21),¢; = 9(8a%a§ +20c¢, a% + 58afa2 +45¢c,a, + 24a% —45¢)),
¢, = 9(11(4a?a2 +39¢,a, + 18a% +45¢)), ¢, = 2a‘1t + 54c1a% + 45(:12, dg = (ay + 12)(5a, — 6)(4a, + 15)(8a, — 3)(a, + 1), d5 =
a (1 60a‘21 +2236a; +4551 a% —3357a,-2160),d, = (40a?ag +84c, a; +490afa§ +483c¢, a% +780afa2 —189¢,a,— 270a% —378c)),
dy = a1(40a?a§ + 252c1a§ + 390a?a2 +1197¢;a, + 360a% —189¢)), d, = IOa‘l‘az + 144clafa2 + 60(1‘1l + 189c12a2 + 378c1a%) and
d, = a,(2a] + 66¢,a7 + 189¢}), then w, w,, w; and w, are solutions of the fifth-, seventh-, ninth- and eleventh-order dPBKP
equations (EA), (B4), (8R) and (B9), respectively.

In fact, for the dPBKP hierarchy there are more general decomposition solutions than those shown in proposition B. Here is
a general decomposition conjecture:

Conjecture 5. The dPBKP hierarchy (83) possesses a {y, t,,_; } decomposed solution w, for the nth-order equation

w,, = F(w,,),

94)
wnlzn_l = G(wnx)
with F(w,,) being an arbitrary function of w,, and G(w,,) being a function determined by F(w,, ). Especially, if
F(w,,) =) auf, (95)
k=0
then
(m=1)(n—1)+1
Gw,)= Y  bauk (96)
k=0

with b, being determined by a,.
For the fifth-order dPBKP equation (BH), n = 3, it is easy to find that
G(x3) = —15x] + 15x; F + sa;ij}, F = F(x3), X3 = ws,.
For the seventh-order dPBKP equation (B2), n = 4, we have
21 _
Glxy) = -5 [6x3 = 3F2 + 0. (6x3F,, — 4x,F2)]. F = F(x,), X4 = Wy,

Proposition B is just for the special cases of conjecture B related to m = 2 of () and (26).
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5.3 | Linear superpositions of dPBKP hierarchy

Similar to the PBKP hierarchy (1), for some special decomposition solutions, the dPBKP hierarchy also admits solutions in
terms of their sum. For the fifth-, seventh-, ninth- and eleventh-order dPBKP equations (Bf), (B4), (EX) and (B9), some special
linear superposition theorems are summarised in the following propositions 9, 10, 11 and 12.

Proposition 9. Assume w;, w,, ws;, w,, ws and w, are solutions of the fifth-order dPBKP equation (Bf) with the
decomposition conditions

wy, = 3w}, +cw,,, wy, =90w; +45cwi +5¢w,,, CH)

Wy, = 3w§x = CWyy, Wy, = 90w%x - 45cw§x +5c%w,,, (98)

w3y = 3w§x’ w3t5 = 90w;x’ (99)
3 45

Wy, = Ewix’ Wy, = 7103,(, (100)

gy = 202, 4 0 g, = B, 4 150,04, (ton

w6y = %wéx + 1 wéts = 475ng + 1501w6x’ (102)

then w,, wg and w, with the linear superposition properties

Ww; = w; + w,, wg =uws+ %w4, wy = %(wS + wg) (103)
are also solutions of the fifth-order dPBKP equation (Kf).
Proposition 10. If the solutions w;, i = 1, 2, ..., 12, of the seventh-order dPBKP equation (B1) are satisfied by the
decomposition properties
wy, = 3wy +cw,,, wy, =7(135w] +90cw; +18c*w; +cw,,), (104)
Wy, = 3w, — cw,,, wy, =7(135w; —90cw; +18c°w;, - w,,), (105)
ws, = 3w, wsy, = 94505, (106)
3 945
w4y = Ewézlx’ w4t7 = ?wix’ (107)
3 945 189
Wsy = §w§x e, Wy, = ?ng + Tclngv (108)
3 945 189
Wey = §w§x * e Wer, = ?ng + Tclwﬁx’ (109)
wq, = 3w5, wy, = 945u], (110)
2 280
Wwg,y, = —gwéx’ Wy, = _ﬁng’ (1D
280
Wy, = —gng’ Wy, = —ﬁng, (112)
280
_ 2 _ 4
Wiy = _gwle’ w10t7 - _mex’ (113)
2 5 280 4
Wiy, = —gw”x, wyy, = —Ew”x, (114)
945
Wigy = W Wiz, = == Wiy, (115)
then w;, i = 13, ..., 18, with the linear superposition behaviors
1 1
Wiz = Wy + Wy, Wy = W3 + §w4, Wis = E(w5 + wg),
2 2 2 1
Wie = W7 = GWs, Wy7 = —§(w9 + W), wig = —o%n + FWn (116)

are also solutions of the seventh-order dAPBKP equation (K7).
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Proposition 11. The solutions w;,

i=1,2, ..,

12, with the decomposition relations

wy, = 3w o T ew, wy, =9%w, (6w, +c)Bw,, + c)(63w +2lcw,, +c?),

Wy, = 3w2x = CWyy, Wy = Yw,, (6w,, — c)Bw,, — c)(63w2x —2lcw,, +c ),
ws, = 3w5,, wy, = 10206w; ,
3 5 5103 5
Way = FWap Waty = o= Wy
3 5103 1215 405
ws, = Ew; +¢p, ws, = ngx Tclng - 2ws,.,
3 5103 1215 405
w6y = Eng + Cq, w% = _8 ng —2 Clng + T 2w6X,
wq, = 3w3, wy, = 102063,
3 5 5103 5
Wgy = _§w8x’ w8fg = 8 Wg s
3 5 5103 5 1215 405 ,
Wgy, = _Eng +cq, Wy, = ngx - T 1 + —— ¢ Woy,

3 5 _ 5103 5 1215 3 405 ,
Wl()y__zwlox‘i'cl, wloh) = _8 wl()x__2 lwl()x > ——C{ Wigys
_ 3, _ 5103 5 1215 3 405 2
wl1y——§w11x+cl, w“’g__g LUMX——2 LWy, - CiWy s
3 5 5103 5 1215 3 5 5

Wizy = Wiy T Wiy, = g Wiz 3 12x T 5 1 Wiax
of the ninth-order dPBKP equation (BX) give rise to the linear superposition solutions
1
w13 = wl + wZ, w14 = I/U3 + EI/U4, w15 = E(LUS + w6),
1 1 1 1
Wie = Wy = 5 W, Wy7 = _§(W9 + wp), wig = —5%n + 5%

of the same equation.

Proposition 12. For any solution w;,

wy, = 3wy, +cw,,, wy, = 11w, (c+ 3w, )3402w] +2268cw; +504c*w
€)(3402w;  — 2268cw; + 504c*w 2 — 426w, + b,

wy, = 3w§x — CWyy, Wy = 1w, Bw,, —
ws, = 3w3,, wy, = 112266u5
3 6237
LU4y = Ewix + Cl, LU4t“ - 16 2 (9w4x + 10C1w4x + 462)
3 6237
ws, = 3 5x+cl, 51, = e w? (9 o+ lOclw +4c2)
3 6237
We, = —§w6x ey, Wy, =— T w? (9 lOclwéx + 4c12),
Wy, = _%ng o, Wy, = _6%37 2. Ows = 10c,w3 +4c)),
3 5, _ 56113 ¢
Wy = 3Wsxr Wary = 707 Waw
_ 2 _ 56113 W
w9y - _EWQX’ w9t]1 - 16 9X
) 4032(503275411c, —30935290)
Wioy = 6, Wigy Wior,, = 519921875
) 4032(503275411c, —30935290)
Wy1y = 6C, Wy Wy, = 519921875 “itw
4032(503275411c_ — 30935290)
Wiy, = 6c_ w]zx Wiy, = Wisx

Wiz, = 6c_ wa

i=12, ..,

519921875

_4032(503275411c_ — 30935290)

519921875

Wiox» €

6

w13x’

13, satisfying decomposition conditions

2 .t 42¢w,, + b,

_ =109 + v/44881

1605 ’

(117)
(118)
(119)

(120)
(121)

(122)
(123)
(124)

(125)
(126)
(127)

(128)

(129)

(130)
(131)
(132)

(133)
(134)
(135)
(136)
(137)

(138)
(139)
(140)
(141)

(142)
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there exist the linear superposition solutions

1 1 1
Wiy =W + Wy, W5 = E(sz + Wws), Wig = —E(WG +w;), wy; = §(w4 — We);
1 1
wlg = M)3 + §w8, w19 = I/U3 - ELUQ, w20 = I/U3 + 26+w10, u.)21 = LU3 + 20_w12,
1 1 1 1
Wy = 5Ws + 20wy, Wy = 7Ws +2c Wiy, Wy =2c,wy = 5 Wo Wns = 2c_wyp = 5 Wo:
LU26 = 26‘+w10 + 2C+w11, LU27 = 2C+w10 + 2(2_11)12, LU28 = zc_wlz + 2C_w13 (143)

of the eleventh-order dPBKP equation (E9).
Conjecture 6. As the orders of the dPBKP equations increase, the possible types of linear superposition solutions increase.

Same as in the PBKP hierarchy cases, the special linear superposition solutions of the dPBKP equations are not decomposition
solutions.

6 | CONCLUSIONS

We analyze the special decompositions and some linear superpositions of the BKP hierarchy and the dispersionless BKP hier-
archy from their potential forms which are constructed in terms of the mastersymmetry approach. For the PBKP hierarchy, we
conjecture that every order PBKP equation admits six different types of decomposition solutions. Particularly, we prove this
conjecture for three lower-order PBKP equations. These decompositions provide simple and surprising relationships between
several classic integrable systems and the PBKP hierarchy. The interrelations between different integrable systems enable us
to discover unexpected connections of various mathematical and physical problems, ultimately solve them. Another interest-
ing result about these special decomposition solutions is their suitable linear superpositions can also yield new solutions of the
PBKP hierarchy, although the linear superposition theorem does not apply to nonlinear systems in general. This is equivalent
to say that a possible linear combination of two special types of decomposition solutions holds again a solution to the same
equation. The obtained linear superposition formulas allow us to construct many new exact solutions including m+n solitons, n
solitons with periodic cnoidal background waves, n soliton solutions combined with soliton-cnoidal wave interaction solutions,
and combination solutions of two different modified Schwarzian KdV waves, etc. of the PBKP hierarchy. We mention that only
two of the decomposition solutions can be linearly combined to construct three new possible solutions, although there are six
possible decompositions for all equations in the PBKP hierarchy. The correctness of this has been verified through the fifth-,
seventh-, and ninth-order PBKP equations.

Furthermore, we propose conjectures about the existence of decompositions and linear superposition solutions for each
equation in the dPBKP hierarchy and, particularly, verify these conjectures for the fifth-, seventh-, ninth-, and eleventh-order
dPBKP equations. Different from that which is common to all the members of the PBKP hierarchy containing the same possible
linear superpositions, the possible ways of linear superposition increase rapidly as the order of the dPBKP equation increases.

We also emphasize that the significance of our findings about linear superposition properties is not restricted to the PBKP
hierarchy or the dispersionless PBKP hierarchy. Our findings confirm the existence of some possible special linear superposition
solutions in nonlinear systems and add the richness of exact solutions. Particularly, the existence of such linear superposition
solutions in nonlinear systems provides us a totally new insight into the physical nature.

Naturally, generalizing the linear superposition principle, we will further consider whether possible linear superpositions of
three or more special types of decomposition solutions exist in the PBKP hierarchy or dPBKP hierarchy. And is it possible to find
linear superposition properties in other wonderful properties such as Hirota’s bilinear representations, Schwarzian forms, etc.
of the integrable systems? There is much remaining to be explored about how linear superposition principle can challenge and
enrich our understanding of nonlinear systems. These, and other issues concerning linear superpositions, merit investigation.
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