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Abstract 
Associations between host genotype and the microbiome of holobionts have been shown in a variety of animal clades, but studies on teleosts mostly show weak associations. Our study aimed to explore these relationships in four sympatric Serrasalmidae (i.e. piranha) teleosts from an Amazonian lake, using datasets from the hosts genomes (SNPs from GBS), skin and gut microbiomes (16S rRNA metataxonomics), and diets (COI metabarcoding) from the same fish individuals. Firstly, we investigated whether there were significant covariations of microbiome and fish genotypes at the inter and intraspecific scales. We also assessed the extent of co-variation between Serrasalmidae diet and microbiome, to isolate genotypic differences from dietary effects on community structure. We observed a significant covariation of skin microbiomes and host genotypes at interspecific (R2=24.4%) and intraspecific (R2=6.2%) scales, whereas gut microbiomes correlated poorly with host genotypes. Serrasalmidae diet composition was significantly correlated to fish genotype only at the interspecific scale (R2=5.4%), but did not covary with gut microbiome composition (Mantel R=-0.04; only 6 microbiome taxa involved). Secondly, we tested whether microbial taxa represent reliable host traits to complement host genotypic variations in these species. By using an NMDS ordination-based approach, we observed that subsets of the skin and gut microbiomes selected by a machine-learning Random Forest algorithm can complement host genotypic variations by increasing significantly the average interspecific differentiation. The complementarity of genome and microbiome variations suggests that combining both markers could potentially benefit our understanding of the evolution of Serrasalmidae in future studies.
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Introduction
In the last decade, the rapid development of next-generation sequencing technologies has revolutionized the field of population genomics, enabling the thorough characterization of animal genotypes and the identification of drivers shaping the genotypic diversity of wild populations (Beheregaray et al., 2015; Hendricks et al., 2018). Animal genotypic diversity has been shown to co-vary significantly with various phenotypic traits, including microbiome composition (Glasl et al., 2019; Kolde et al., 2018). Several studies suggest that there are proximate interactions between the host’s microbiome and its genome (Bordenstein & Theis, 2015; Margulis & Fester, 1991; Zhu et al., 2008; Zilber-Rosenberg & Rosenberg, 2008;). Indeed, the microbiome includes a diverse genomic repertory encompassing thousands of unique genes not found in its host's genome (Zhu et al., 2010). This genomic diversity, from which the concept of holobiont (i.e. host-microbe complexes) stems, is fundamental to the survival and the adaptation of animal metaorganisms (Margulis & Fester, 1991). Recent research suggests that the holobiont could act as a unit of natural selection (Bordenstein & Theis, 2015; Zilber-Rosenberg & Rosenber, 2008; but also see Douglas & Werren, 2016), making the hologenome (the holobiont’s genome, comprising both the host and microbial genes) a potential new target for ecological, population, and landscape genomic studies (Sylvain et al., 2019; Yang et al., 2019). Aside from the functional co-dependence between the host and its associated microbial genomes, the microbiome taxonomic structure is also known to evolve according to the host phylogeny in many groups of vertebrates, respecting the principle of phylosymbiosis (Kohl et al., 2018; Laviad-Shitrit et al., 2019; Ross et al., 2018). 

Several questions remain regarding the nature of host genome effects on microbiota assembly (Davenport, 2016; Sevellec et al., 2019). Are host–microbiome associations stochastically assembled, or are there deterministic mechanisms that make these associations predictable? Answering this question is challenging since, in natural populations, determining the forces driving phylosymbiosis is equivocal: both environmental and host effects can covary and contribute to microbiota assembly (Sevellec et al., 2019). Furthermore, many host traits are phylogenetically conserved, confounding the extent to which evolutionary versus ecological factors contribute to genome-microbiome associations (Lutz et al. 2019). For instance, diet is an important host trait known to influence animal gut microbiomes (Sylvain et al., 2017). However, this trait is often neglected in studies focused on the forces driving gut microbial community assembly (Chiarello et al., 2018; Smith et al., 2015; Sullam et al., 2015). Describing both the diet and the genotype on the same fish individuals could enable disentangling genotypic from dietary effects on microbiome structure.

In fish holobionts, the correlation between host genotype and microbiome structure shows diverging signals (Bledsoe et al., 2018; Boutin et al., 2014; Chiarello et al., 2019; Doane et al., 2020; FIetz et al., 2018; Minich et al., 2020; Pratte et al., 2018; Riiser et al., 2020; Sevellec et al., 2018; Webster et al., 2018). While some studies have found a correlation between fish genotype and microbiome (Boutin et al., 2014; Chiarello et al., 2019; Doane et al., 2020; FIetz et al., 2018; Minich et al., 2020; Pratte et al., 2018; Sevellec et al., 2018; Webster et al., 2018), others suggest that this correlation is almost inexistent (Bledsoe et al., 2018), or that the influence of the environment/site-specific factors (e.g. diet or water quality) outshines genotype-microbiome interactions in fish (Riiser et al., 2020). Thus, additional data from different clades is needed to truly understand the nature of potential genome-microbiome correlations in fish. Our study aimed to explore the relationship between variations in host genotypes and the structure of the associated microbiomes in four Serrasalmidae (i.e. piranha) species found in the Amazonian basin. While doing so, we also assessed the extent of co-variation between Serrasalmidae diet and microbiome, to isolate genotypic from dietary effects on community structure. These four host species were selected since they are found in sympatry, which reduces environment-specific effects - a source of co-variation often neglected in microbiome analysis (Rothschild et al., 2018) - and they possess a similar strictly piscivorous diet (except for the omnivore Mylossoma duriventre) (Van der Sleen & Albert 2018), which reduces coupling between genome-related and diet-related drivers of the microbiome. 

More specifically, we aimed to respond to the two following questions: (1) Is there a significant covariation between microbiomes structure and Serrasalmidae fish genotypes at the inter/intraspecific scales? (2) Do microbial taxa represent reliable host traits to complement host genotypic variations in these species? To do so, for the first time in fish, we generated and combined datasets from the Serrasalmidae host genomes, skin and gut microbiomes, and diets from the same 40 individuals. We first used a multivariate approach to detect correlations between fish genomes versus skin/gut microbiomes and diets. We then used a Random-Forest machine-learning approach to identify prospective candidate taxa that reliably associate with fish genotypes, and tested whether these taxa could increase interspecific differentiation when combined with genotype data in NMDS ordination plots. 

Material and Methods
1. Ethics approval 
This project and protocol were approved by the Ethics Committee for the Use of Animals of INPA (number 026/2015). All methods were carried out in accordance with the approved guidelines.

2. Fish sampling
All fish were sampled between the 5th-10th November 2015 in Lake Catalão, an eutrophic lake (Sylvain et al., 2019, 2020) from the Brazilian upper Amazon (3°09'47.0"S 59°54'51.8"W). Four Serrasalmidae species (black piranhas (BP), Serrasalmus rhombeus; maculatus piranhas (MAC), Serrasalmus maculatus; caju piranhas (CAJ), Pygocentrus nattereri; pacu (PAC), Mylossoma duriventre) were collected (10 specimens per species, N total = 40). Fishing was done with fixed gillnets. If specimens of the targeted species were in contact with other fishes in the gillnet (e.g. in adjacent net mesh), the specimens were discarded to prevent cross-contamination of the skin microbiome. Since net-fishing can affect fish skin mucus secretion and composition (Shephard, 1994; Smith & Ramos, 1976), we checked the nets every 15 minutes to minimize captive time and to reduce any source of contamination from the net itself. After capture, we immediately sampled the skin mucus of all fishes by rubbing a sterile cotton swab on ≈ 50% of the total surface on the right side of each fish as described in (Sylvain et al., 2019, 2020). A clip of the dorsal fish was also collected from each fish for genotyping. Whole fishes, skin mucus and fin samples were flash-frozen and kept in liquid Nitrogen until arrival at the laboratory. At the laboratory, all fishes were measured and weighed - one way ANOVA showed no significant difference between the average length and weight of different Serrasalmidae species. Then, the fishes were dissected with sterile instruments, under a flame, to isolate the midgut (right after pyloric caeca) and hindgut. The midgut and hindgut were pooled together in one sample for DNA extractions for each fish. The gut microbiome comprised the transient and mucosal bacterial community. Skin mucus and gut samples were kept at -80°C until DNA extraction. 

Environmental water (bacterial eDNA) was also sampled and processed as described in (Sylvain et al., 2019, 2020). In brief, 2 L of water was sampled 30 cm below the surface in sterile Nalgene™ bottles. The species collected in this study are found at these depths (Van der Sleen & Albert, 2018). The water sample was then immediately stored on ice until filtration (about 4 hours later) on 0.2 μm Nucleopore© membranes using a Masterflex Easy-Load® II peristaltic pump (Cole-Parmer®). Post-filtration, the membranes were stored dry at -80°C.

3. Data availability 
The raw sequence files and metadata are available from the Sequence Read Archive with BioProjectIDs: PRJNA691553 and PRJNA665058. The scripts used for the statistical analysis of sequence variants are available on the Open Science Network platform (URL: https://osf.io/uwp43/).

4. Preparation and processing of sequence variants 
DNA extraction of fish fin, skin mucus, guts and the bacterial eDNA sample was performed using DNeasy® Blood and Tissue Kit from QIAGEN according to the manufacturer's instructions. Extracted DNA was stored at -80°C until amplification. 

4.1 Preparation of amplicon libraries
GBS: GBS library preparation was done as described in Abed et al. (2019). In brief, genomic DNA was fragmented in CutSmart buffer with the restriction enzymes PstI and MspI. The adapters were ligated with T4 DNAligase and the DNA was then cleaned with the Qiaquick PCR Purification Kit. Fragments were then amplified with Q5 High-fidelity polymerase using the FWD and REV IonExpress primers (Abed et al., 2019) with the following protocol: 75°C for 5 min; 5 cycles of 98°C for 10s, 55°C for 30s, 72°C for 30s; 7 cycles of 98°C for 10s, 65°C for 30s, 72°C for 30s; ending with 72°C for 5 min. DNA was purified with Axygen PCR cleanup kit before sequencing. Multiplex Sequencing was performed using the Ion Proton platform from Ion Torrent, by the Plateforme d'analyses génomiques at the Institut de Biologie Intégrative et des Systèmes (IBIS) of Université Laval.  16S rRNA: For skin mucus, guts and 0.2 μm membranes from water samples, the hypervariable region V3-V4 (≈ 500 base pairs) of the 16S rRNA gene was amplified by polymerase chain reaction (PCR) using the forward primer 347F (5’-GGAGGCAGCAGTRRGGAAT-3') and the reverse primer 803R (5’-CTACCRGGGTATCTAATCC-3') as described in Nossa et al. (2010). All PCR reactions were performed in 25 l according to the manufacturer's instructions of Q5® High-Fidelity DNA Polymerase from New England BioLabs® Inc (cat # M0491S). PCR program: (1) 30 sec 98°C; (2) 10 sec 98°C; (3) 30 sec 64°C; (4) 20 sec 72°C; (5) 2 min at 72°C; 35 amplification cycles total. At least one negative control was included on every PCR plate used. Negative controls showed no detectable sign of amplification (0 ng/uL of DNA and no band on the electrophoresis gel). Cytochrome c oxidase 1: The same DNA extracts of gut samples used to build 16S rRNA amplicon libraries were used for COI amplicon libraries. A region (≈ 313 base pairs) of the cytochrome c oxidase 1 (COI) mitochondrial gene was amplified by polymerase chain reaction (PCR) using the set of primers described in Leray et al. (2013). All PCR reactions were performed according to the manufacturer's instructions of QIAGEN® Multiplex PCR Kit (cat # 206143). PCR program: (1) 15 min 95°C; (2) 30 sec 94°C; (3) 90 sec 60°C; (4) 90 sec 72°C; (5) 10 min at 72°C; 35 amplification cycles total. 16S rRNA and COI: PCRs were done in triplicates to reduce PCR bias and increase precision in the assessment of microbial community composition and diversity. Replicates were disposed randomly on the PCR plate. Amplified DNA was purified with AMPure beads (Beckman Coulter Genomics) to eliminate primers, dimers, proteins and phenols according to the manufacturer's instructions. DNA concentration and quality were assessed on Nanodrop and by electrophoresis on 1.5% agarose gels. The three PCR replicates for each sample were pooled together before sequencing. Multiplex paired-end sequencing was performed on two separate runs for 16S and COI, using the MiSeq platform from Illumina®, by the Plateforme d'analyses génomiques at the Institut de Biologie Intégrative et des Systèmes (IBIS) of Université Laval. 

4.2 Sequence processing
16S rRNA sequence variant picking: After sequencing, 1 446 822 sequences were obtained (mean of 17 862 sequences per sample). The demultiplexed fastq sequence files were processed through QIIME2 (Bolyen et al., 2019), and the dada2 tool (Callahan et al., 2016) was used for Amplicon Sequence Variant (ASV) picking. We used phangorn for building the phylogenetic tree used for weighted UniFrac analyses (Lozupone & Knight, 2005). Further details on sequence processing are provided in Supplementary material. Four samples with conspicuously lower sampling depth (< 5000 reads) than the others were discarded bringing the lowest sampling depth to 7201 reads. The average Good's coverage index for all samples was 0.9924 ± 0.0004 (S.E.). Supplementary Fig. S1 shows a rarefaction analysis of observed "species" counts and Shannon diversity (according to sampling depth) for each sample type. The relative abundance of the 12 most abundant classes is shown in stacked barplots built from phyloseq (McMurdie & Holmes, 2015) in Suppl. Fig. S2. COI data: After sequencing, 3 516 948 sequences were obtained (mean of 46 276 sequences per sample). Raw COI sequences of all samples were demultiplexed by the Illumina MiSeq Control Software v2.3 and processed through the Barque eDNA metabarcoding analysis pipeline v1.5.2 (https://github.com/enormandeau/barque). Details on this specific pipeline are provided in Supplementary material. The relative sequence abundance of all species reported in the COI analysis is shown in stacked barplots built from phyloseq (McMurdie & Holmes, 2015) in Suppl. Fig. S3. Genotyping by Sequencing: After sequencing, 52 891 364 sequences were obtained (mean of 652 980 sequences per sample). The GBS dataset was analyzed using STACKS v1.44 and the stacks_workflow pipeline v1.46 (https://github.com/enormandeau/stacks_workflow) in R. Details on this specific pipeline are provided in Supplementary material. 2,557 SNPs were retained after filtration.

5. Statistical analysis 
Q1: Is there a significant covariation of microbiome and Serrasalmidae fish genotypes at the inter/intraspecific scales?

Microbiome data: We first assessed to what extent fish individuals cluster according to their host species identity (Fig. 1a,b,c), using skin mucus and gut microbiome data by conducting Principal Coordinates Analysis (PCoA). We performed multivariate analysis of variance tests to assess the significance of the clustering patterns, using the matrix of weighted UniFrac distances (Lozupone & Knight, 2005) used to build microbiome PCoAs. We identified the bacterial taxa which abundances were the most significantly correlated to host species (Fig. 1d,e) using Linear Discriminant Analysis Effect Size (LEfSe) cladograms (Segata et al., 2011). LEfSe iteratively merges all ASVs with identical taxonomic assignations, at each taxonomic level. Discriminant features (taxa) are then identified for each level.

Diet data: To assess how diet differs between species we first performed a PCoA based on the Bray-Curtis distance calculated from the distribution of COI sequences of potential preys species for each individual (Fig. 2a). As for microbiome data, we performed a multivariate analysis of variance test to assess the significance of the clustering pattern. We represented the diet profile (15 most abundant preys) of each fish using a heatmap (Fig. 2b) and stacked barplots (Suppl. Fig. 3). Finally, we investigated the correlation between gut microbiome and diet composition, first at a global scale using a mantel test, and then at specific scale by calculating Spearman correlations between each gut ASV and diet item (Fig. 2c). The COI sequences from pacu samples are not included in diet-genotype analyses, since the pacu is one of the rare Serrasalmidae species with an omnivorous diet encompassing various plants, which contrasts with the piscivorous diet of the three piranha species in this study (Van der Sleen & Albert, 2018). Thus, combining the COI sequences of pacu and piranha samples would have caused a significant bias in the measure of diet-genotype correlations.

Genotype data: We first computed a matrix of pairwise Jukes Cantor distance between each fish, using MEGAX (Kumar et al.,  2018; Stecher et al., 2020). Then, we used this matrix to build a PCoA (Fig. 3a) to assess how individual genotypes cluster according to their species identity. We  also addressed host genomic diversity at the species level by computing the allelic richness and expected heterozygosity. Then, we assessed the correlation between the host genomic diversity and microbiome phylogenetic diversity (Fig. 2b) as in Chiarello et al. (2019). To assess microbial diversity, we used Faith's Phylogenetic Diversity (PD) metric (Faith, 1992) - the sum of the branch lengths of a phylogenetic tree connecting all bacterial species of the target assemblage. 

Genotype correlations with skin/gut microbiomes and diet: We assessed the relationship between fish genotype, microbiomes and diet composition at the individual fish level (Fig. 4) by performing linear regression analyses. We measured the correlations between the genotypic distance and the dissimilarity of the microbiomes/diet using pairwise comparisons between fish individuals. Dissimilarity matrices of Bray-Curtis index (Bray & Curtis, 1957) were used both for the microbiome and diet analysis to enable the comparison of the results from these different datasets using the same distance metric. They were correlated to a log10 transformed matrix of pairwise Jukes Cantor distance between hosts. All matrices were manually curated to select inter (Fig. 4a,b,c) or intraspecific (Fig. 4d,e,f) comparison values. We computed Mantel tests based on Spearman's rank correlation rho, with 10,000 permutations and on all combinations of matrices used for regression modelling.

Q2: Do microbial taxa represent reliable host traits to complement host genotypic variations in these species?

Identifying the microbial taxa that best differentiates host species: To identify the group of taxa that best differentiated host species, we divided the microbiome into five different subsets: (1) whole microbiome; (2) abundant taxa (> 0.1 % abundance); (3) rare taxa (< 0.1% abundance); and (4) the core microbiome (taxa found in > 70% of all samples (as in Sylvain et al., 2019)). The fifth subset considered in this analysis was produced following the implementation of Breiman's random forest machine-learning algorithm for classification (based on Breiman and Cutler's original Fortran code) (Breiman, 2001) using R package randomForest (Liaw & Wiener, 2002) with ntree = 100. P-values were calculated with rfPermute following 10,000 permutation (Archer, 2020). Then, we isolated the 50 ASVs responsible for the most important mean decrease in GINI coefficient (measure of node purity) with significant p-values following Bonferroni correction. These ASVs comprised the 50 taxa that best discriminated host identity (with the lowest classification error rate) in the random forest tests. Once all subsets were defined, we computed DCA analyses to test the percentage of interspecific (host identity) variation explained by each microbiome subset (Table 2). The significance of the clustering (groups = host species identity) for each subset was tested with Adonis with 1,000 permutations.

[bookmark: _GoBack]Assessing the complementarity of microbiome and host genotype variations: Since microbial communities do not always evolve according to the same forces driving host genotypes (Sullam et al., 2015), we assessed whether the variations between microbial communities would complement the ones between fish genotypes. To do so, we studied the power of different ordination plots to differentiate the samples according to their host species identity. We produced NMDS ordinations with seven different combinations of dimensions (Fig. 5b) from the 16S metagenomic and the GBS genotyping datasets. We used the first dimension of the ordinations based on (1) host genotype; (2) whole microbiome; (3) core microbiome; (4) random forest microbiome. NMDS ordinations were computed from a matrix of Bray-Curtis distances for microbiome data, and of Juke-Cantor distances for genotype data. We characterized the power of the NMDS plots to differentiate the samples according to their host species identity by using two metrics: (1) the average Euclidean distance (i.e. length of the segment line) between species centroids; and (2) the area of the convex hull (i.e. the smallest convex polygon that contains all species centroids). On Fig. 5, the plots showing the best discriminative power are shown for skin mucus (a) and gut (c).

Results
Q1: Is there a significant covariation of microbiome and Serrasalmidae fish genotypes at the inter/intraspecific scales?

Microbiome and diet both varied according to host species, but were not correlated:  PCoAs showed a similar percentage of total variance explained by host species for skin mucus (54.6%, Fig. 1a) and gut (51.5%, Fig. 1b) microbiome samples. Both microbiomes showed a significant clustering (p-value < 0.001) according to host species, although the signal was stronger among skin mucus (F = 6.23, df res = 35) than among gut (F = 5.67, df res = 33) samples. We tested if the significant signal from the gut microbiome was driven by the samples from pacu fish since this Serrasalmidae species ecologically diverges  from the three piranhas species in this study (Sylvain et al., 2020; Van der Sleen & Albert, 2018). When pacu samples were removed from the dataset, the clustering signal decreased in strength but was still significant (F = 3.59, df res = 25, p-value < 0.001) (Fig. 1c). Linear Discriminant Analysis Effect Size (LEfSe) cladograms identified the taxonomic groups which abundances were the most significantly correlated to host species (Fig. 1d,e). In the skin mucus, these clades comprised: Betaproteobacteriales and Acinetobacter sp. for PAC samples; Sphingomonadaceae, Enhydrobacter sp. and Moraxellaceae for CAJ; Bacilli, especially Brochothrix sp. and Listeriaceae for MAC; Caulobacteraceae and Candidatus Methylopumilus for BP. In the gut, these clades comprised: Clostridia, especially Clostridium sp. and 13 for PAC; Acetobacterales and Bosea sp. for CAJ; Acinetobacter sp. and Acinetobacter sp. for MAC; the Gammaproteobacteria phylum in general, especially the classes Betaproteobacteriales, Pseudomonadales, and the species Pseudomonas sp. for BP.

The COI (diet) data also significantly clustered according to the species of piranha (Fig. 2a) (% explained variance in PCoA = 71.7%, adonis: F = 3.13, df res = 21, p-value < 0.001), with each species showing a distinct diet (Fig. 2b), suggesting the existence of niche partitioning. Interestingly, a mantel correlation test highlighted a poor correlation between COI and gut microbiome profiles (mantel r = -0.04, p-value = 0.64). This poor correlation concords with the fact that only six ASVs showed a significant Spearman correlation (p < 0.05 after Bonferroni correction) with the abundance of at least one component of the fish diet. Although their importance was low in the overall community, these six ASVs were subtracted from the dataset for other downstream analyses to disentangle dietary from genotypic effects on microbiome. 

Genotypic variations: Using the collection of SNPs of the GBS analysis, we observed that, like the microbiome and diet data, the fish genotypes also significantly clustered according to host species (Fig. 3a) (% variance explained = 15.53%, F = 5.01, df res = 32, p-value < 0.001). Since both microbiome and fish genotype data cluster according to host species, we tested the possible correlation between the genomic/metagenomic diversity of both datasets. At the host species level, no relationship was detected between the diversity of the microbial communities as indicated by Faith’s phylogenetic diversity (PD) (Faith, 1992), and the expected heterozygosity (He) and allelic richness richness (AR) (Fischer et al., 2017) of the host species genotypes (Fig. 3b): PD-He skin mucus: R2 = 0.40, F = 1.34, p-value = 0.37; PD-He gut: R2 = 0.09, F = 0.20, p-value = 0.7; PD-AR skin mucus: R2 = 0.09, F = 0.21, p-value = 0.7; PD-AR gut: R2 = 0.73, F = 5.30, p-value = 0.15.

Skin microbiomes and diet are correlated to fish genotypes: The correlation between microbiome and fish genotype was assessed at both the inter/intraspecific scales by considering separately observations for each individual using the SNPs data. Skin mucus microbiome showed a strong correlation with host genotype (mantel r = 0.35, p-value < 0.001). This correlation was especially strong at the interspecific scale (Fig. 4a) (linear regression R2 = 0.24, F = 174.2, df res = 483, p-value < 0.001), and was weaker, but still significant, at the intraspecific scale (Fig. 4d) (linear regression R2 = 0.06, F = 9.40, df res = 143, p-value = 0.003). In contrast, gut microbiome showed a weak correlation with host genotype (mantel r = 0.15, p-value = 0.03). The linear regression also contrasted with the patterns observed with the skin mucus microbiome: the correlation was not significant at the interspecific scale (Fig. 4b) (linear regression R2 = 0.001, F = 0.62, df res = 483, p-value = 0.43), and showed a strong negative slope at the intraspecific scale (Fig. 4e) (linear regression R2 = 0.26, F = 50.4, df res = 143, p-value < 0.001). The diet was significantly correlated with host genotype when all pairwise comparisons were considered (mantel r = 0.38, p-value < 0.001). However, when data was separated between inter and intraspecific comparisons, we observed diverging patterns for each analysis scale. At the interspecific scale, diet was significantly correlated to genotype (Fig. 4c) (linear regression R2 = 0.05, F = 10.95, df res = 190, p-value = 0.001) but it was not correlated to genotype at the intraspecific scale (Fig. 4f) (linear regression R2 = 0.02, F = 1.74, df res = 82, p-value = 0.19), which supports the existence of the upper-left hub of points in plot of Fig. 4e. 

Q2: Do microbial taxa represent reliable host traits to complement host genotypic variations in these species?

The potential to differentiate host species varies between microbial taxa subsets: We tested the power of five different microbiome subsets to differentiate host species identity. The five subsets were the: (1) whole microbiome; (2) abundant taxa (> 0.1 % abundance); (3) rare taxa (< 0.1% abundance); (4) core microbiome (taxa found in > 70% of all samples); and (5) species-specific ASVs identified with a Random Forest (RF) machine-learning approach. The RF algorithm splits data in a training and a test set - the training set is used to construct consensus trees of classification via bootstrapping, and the test set is then used to estimate the node error rates in the trees of classification (i.e. the out-of-bag estimate of error). The out-of-bag estimates of error rates of the RF assignation tests were 8.33% for the skin and 27.78% for the gut RF microbiome. The phylogenetic characteristics of each subset are described in Table 1. For each host tissue considered, there were three taxa that were ubiquitous in all subsets excluding the “Rare Taxa” subset. In skin mucus, these taxa included: Pseudomonas sp. 1, Pseudomonas sp. 2, and Brochotrix sp.. In gut, they included: Cetobacterium sp., Romboutsia sp., and Mycoplasma sp. (Table 1). The community subsets which covaried the most with the host identity were the core and the RF microbiome (Table 2). In both skin and gut microbiomes, the RF subset explained the most variance (67.3 %) on the DCA (Table 2). Multivariate Adonis tests had the strongest F value with the core (12.84) and RF subsets (11.45) in skin mucus microbiome. The strongest F value was from the RF subset (5.51) in the gut microbiome and all F values from the gut microbiome sample subsets were lower than those of the same subsets in the skin microbiome (Table 2). Overall, the microbiome community subsets which explained the greatest variance between host identities in the two tissues were as follows (from highest F value to the lowest): the RF microbiome, core microbiome, abundant taxa, whole microbiome, and the rare taxa subset.

The species-specific RF microbiome subset complements host genotype variations: Rank-based NMDS ordinations were produced with seven different combinations of dimensions based on (1) host genotype; (2) the RF microbiome subset; (3) the whole microbiome; (4) the core microbiome. The strength of each ordination to differentiate hosts based on their identities was assessed by (1) the average Euclidean distance between species centroids (i.e. the length of the shortest line segment connecting two centroids in the 2D plane of the NMDS); and (2) the area of the convex hull (i.e. the smallest convex shape connecting all species centroids). The plot which combined one dimension from the host genotype ordination and another from the RF microbiome subset ordination is the one which yielded the highest distance between species centroids and the biggest convex hull area (Fig. 5). The plot combining the host genotype and whole microbiome dimensions also yielded a high distance between centroids (0.62 – 0.69) and a large convex hull area (0.09 – 0.24). Overall, the plots combining one host genotype dimension to a dimension from any of the microbiome subsets all had a convex hull area > 4.8 times larger, and a distance between centroids > 1.28 times superior to the plots that did not combine genotype and microbiome data (Fig. 5b).

Discussion
Detection of correlations between genotype and microbiome structure.
The correlation between animal host genotype and the composition of its associated microbiome have been shown in a large array of species from distinct ends of the animal kingdom, including mammals (Laviad-Shitrit et al., 2019), ticks (Diaz-Sanchez et al., 2019), waterbirds (Kohl et al., 2018), insects (Leigh et al., 2018), deer (Li et al., 2018), rodents (Fietz et al., 2018), mosquitoes (Novakova et al., 2017), ants (Sanders et al., 2014), bats (Phillips et al., 2012) and apes (Moeller et al., 2014; Ochamn et al., 2018). In contrast, studies focusing on fish-microbiome systems show a diverging signal, mostly reporting weak genome-microbiome correlation signals both at the interspecific (i.e. in cod/pout (Riiser et al., 2020), catfishes (Bledsoe et al., 2018), and reef fishes (Chiarello et al., 2018)) and the intraspecific levels (i.e. in Atlantic salmon (Webster et al., 2018), European catfish (Chiarello et al., 2019), stickleback (Smith et al., 2015), guppies (Sullam et al., 2015), whitefish (Sevellec et al., 2018)). Here, our project focusing on four Serrasalmidae teleost species detected the existence of significant inter and intraspecific differences in the gut and skin microbiome which correlated to phylogenetic differences in the host fish (Fig. 1,2,3). 

Studies up to now may have detected weak genome-microbiome correlations in fish due to the fact that they did not consider three critical factors known to hamper genome-microbiome correlations. Firstly, intraspecific variability is often ignored (i.e. only 1-3 individuals are sampled per host species) (Chiarello et al., 2018; Li et al.,  2017) or reduced to zero by considering a null distance for the host phylogenetic distances between individuals of the same species (Mazel et al., 2018). Secondly, the individuals/species sampled often come from different environments, while environment-specific microbiome drivers (e.g. hydrochemical parameters and bacterioplankton composition) are not or only partly accounted for (Riiser et al., 2020; Smith et al., 2015; Webster et al., 2018). In teleosts, the ecomorph/ecotype and the sampling site (including its bacterioplankton and hydrochemical parameters) seem to have a more important influence - or at least equally important - on the microbiome structure than differences in the host genotypes (Chiarello et al., 2019; Riiser et al., 2020). Thus, it may be challenging to detect genome-microbiome correlations in natural populations because of extensive environmental variation that overwhelms the signal (Brooks et al., 2016), which is usually weak in comparison to other deterministic factors shaping microbial communities (Mazel et al., 2018). While common garden experiments are useful to resolve the influence of the sampling site factor and have been previously used to study host genome/microbiome interactions in a variety of other organisms (Fraune & Bosch, 2007; Huot et al., 2020), this approach has almost never been used in studies targeting fish hosts (except in Sevellec et al., 2019). Thirdly, the fish individuals from which the microbiome has been sampled are often not genotyped, except in Chiarello et al.,  (2019) and Doane et al.,  (2020) which used microsatellites loci. When considered, the genotypes used often come from online databases or from other individuals of the same species collected in another study (Sevellec et al., 2018; Webster et al., 2018).

Our study design aimed to palliate to the aforementioned factors known to hamper genome-microbiome correlations. To include the effect of natural intraspecific variability, we included 10 individuals per species. Then, to control for the influence of environment-specific factors, we collected all Serrasalmidae species in the same lake. We also characterized the host diets, to identify and remove the bacterial ASVs (N=6) which correlated to abundance of certain preys in Serrasamidae guts to disentangle dietary from genotypic effects on the microbiome. Finally, to account for decoupling between host genotypes and microbiome data, we used the phylogenetic profile of skin and gut microbiomes and the genotypes of the same individuals.

While our sampling design addresses several issues rarely considered in other similar studies, it is also limited by the number of species and sites considered. We considered four species of Serrasalmidae - thus, the results could potentially differ if species from contrasting phylogenies or ecologies would be considered. However, using more species would require sampling fish from different habitats, which would complicate disentangling environmental and genotypic effects on the microbiome. Also, the four Serrasalmidae species considered in our study come from the same lake. While this control of environmental-specific factors strengthens the detection of valid correlations, it is also possible that the observed genome-microbiome correlations in this case are lake-specific, although this is unlikely.

Internal and external microbiotas show different genome-microbiome correlation strengths.
Recent literature suggests that internal communities tend to harbor genome-microbiome patterns much more frequently than external microbiotas (Ross et al., 2019; Sylvain et al., 2020). However, despite external influences, these correlations were found in the skin microbiome of mammals (Ross et al., 2019), amphibians (Ellison et al., 2019), and under controlled conditions in fish (Boutin et al., 2014). In wild fishes, the signal is still not clear: some studies have found significant genome-microbiome correlations on fish skins (Doane et al., 2020; Minich et al., 2020) and gills (Pratte et al., 2018), however, others have detected a weak signal in skin communities (Chiarello et al., 2018), which was attributed to the high intraspecific variability of the skin mucus (Chiarello et al., 2015). Here, we found a strong genotype-microbiome correlation in the skin mucus at both the inter and intraspecific scales (Fig. 4a,d). Moreover, this correlation was stronger than between the host genome and gut communities (Fig. 4b,e). In addition, we observed that skin microbiome samples better clustered according to host fish species, as shown in PCoAs of Fig. 1, and shown by the out-of-bag error rate of the Random Forest assignation tests (8.33% for skin and 27.78% for gut samples). While linear regression analyses showed positive correlations (and higher R2) between skin microbiome and genome distance matrices (Fig. 4a,d), negative or non-significant correlations were detected for gut (Fig. 4b,e). This negative slope on Fig. 4e is largely driven by a hub of points associated to hosts showing a weak genotypic distance but a high microbiome divergence, which could be attributed to individuality (variation of individual preferences) and stochasticity (variation of what was found/eaten recently) in the host diet. Mantel tests also yielded lower correlation statistics between host genome distances and gut microbiome than with skin microbiome (Fig. 4). These tissue-specific differences were also present in the ordination analyses from Fig. 5 – the distance between centroids and convex hull areas was always higher for skin mucus than for gut microbiome ordinations. 


A factor specific to the gut, and which we could not control in a natural setting, was the diet of the fish. Several studies have shown that the gut microbiome varies according to the fish diet (Miyake et al., 2015; Smith et al., 2015; Sylvain et al., 2017). In contrast with most previous studies on genome-microbiome correlations [15], we characterized the diet of each individual fish using COI metabarcoding. We observed that the diet of sympatric Serrasalmidae was species-specific, which suggests the presence of niche partitioning (Hector & Hooper, 2002; MacArthur, 1958) among Serrasalmidae of Lake Catalão. Since diet and gut microbiome are species-specific, it is difficult to completely disentangle genome-microbiome from diet-microbiome correlations in this case. However, a Spearman correlation analysis showed that only six gut bacterial taxa were significantly correlated to items of their hosts diet (Fig. 2c), which suggest that the relative importance of diet-related taxa was weak in the overall gut microbiome. We also need to consider potential limitations arising from our approach: the metabarcoding approach is limited by the completeness of reference sequence databases and the choice of genetic markers (Devloo-Delva et al., 2018). While Matley et al. 2018 showed that using COI metabarcoding can be successful to identify ~80% of preys in fish stomachs up to the genus or species level, they also demonstrated that stable isotope (δ15N and δ13C) mixing models utilizing experimentally derived assimilation data, identified similar diet profile as COI metabarcoding, but at broader temporal scales. Stable isotopes also reflect assimilation patterns of confounding dietary sources over relatively long periods of time and therefore rather show a representation of broad‐scale patterns (i.e. exact prey species are often not identified) over the temporal scale pertinent to the tissue sampled (Matley et al., 2018). Thus, using a combination of different methods (metabarcoding and isotope analysis) could potentially have improved our characterization of fish diet over time.

Microbiome profiling for population genomics.
Pollock et al. (2018) have shown that microbes differ in their extent of cophylogeny with their host, which emphasizes that the microbiome is not a single unit of selection but instead contains many players that vary greatly in the extent of their history of association with the host (Douglas & Werren, 2016). In our study, we used a Random Forest machine-learning algorithm to identify the bacterial taxa with the strongest associations to the host identity. Then, we investigated the potential of these taxa to improve the distinction between host species. A similar approach has been used with other population-dependent traits to improve or confirm the distinction between populations. For instance, recent studies combine populational genomic data with host morphological (Arnoux et al., 2014; Yancan et al., 2019), behavioral (Kukekova et al., 2018; Nater et al., 2017), and ecological traits (Rennison et al., 2019) to study animal population differentiation in a variety of species. 

Our results showed that for both skin and gut tissues, the maximum host species discrimination strength was achieved after combining one dimension of the host genotype and another from the Random Forest (RF) microbiome NMDS ordinations in the same plot, rather than when considering them separately. The microbiome composition is shaped by several factors, including the host genotype, but also the host life history, diet, developmental stage, immunity, and the pool of environmental microbes (Llewellyn et al., 2014). This sensitivity of the microbiome to various factors fuels interindividual differences, which add noise in the NMDS analysis. However, since the Random Forest analysis selects ASVs that are strongly associated to host identities (and not to interindividual differences), the RF microbiome subset provides an interesting complementary holobiont trait that population genomic studies could potentially use, along with the host genome, to characterize animal populations/species. Overall, integrating fish microbiome as an additional host trait is an asset to investigate how the genotypic signature of host populations/species varies across natural gradients. However, the integration of microbiome as an additional feature of holobionts in population, landscape or comparative genomics could only be performed in controlled or semi-controlled environments (e.g. common garden experiments).

Conclusions
Here, we investigated how four Serrasalmidae species genotypes correlate with the phylogenetic profile of their microbiome at different scales. We showed that the fish skin mucus microbiome correlates strongly with the host’s genome in both inter/intraspecific scales, whereas the gut microbiome exhibits a poor correlation. Interestingly, in the four species studied, the gut microbiomes also showed poor correlations with the host diet profiles, which were species-specific. We showed that amongst different subsets of the global microbiome, the discriminant taxa identified through a Random Forest algorithm provided the best differentiation among species. Finally, we found that by combining the NMDS ordinations from the Random Forest subset and the host genotypes on the same plot, we can accentuate the interspecific differentiation. Thus, our work suggests that the phylogenetic structure of Serrasalmidae fish microbiomes could potentially constitute an insightful and complementary tool to unravel the mechanisms driving speciation in this clade.

Acknowledgements
We thank the anonymous reviewers for their insightful comments on this manuscript. Thank you to Maria de Nazare Paula da Silva, Fernanda Dragan, Rogerio Pereira and Raquel Abecassis (INPA) for organizing sampling expeditions. Thank you to the three fishermen that helped us on the field: Fabiano Mota, Francisco Fonseca, and Frank Queiroz Coelho. Thank you to Thiago L. A. Nascimento and Derek Campos (INPA) for continuous help during sampling expeditions. Thank you to ICMBIO/Instituto Chico Mendes de Conservação da Biodiversidade for in situ support for fish collection and for issuing the permit to transport biological samples (permit number 29837/11). Thank you to Jansen Zuanon, Derek Campos, Dinho Heinrichs and Natalia Wagner (INPA) for help with fish identification. Thank you to Brian Boyle and Sidki Bouslama for molecular analysis and bioinformatics support. Thank you to Émie Audet-Gilbert for her help in the morphometric analyses. Thank you to Pierre-Luc Mercier for support with samples processing in the laboratory. This research was part of the ADAPTA project at INPA and was supported by Ressources Aquatiques Québec, the Fonds de recherche du Québec – Nature et technologies (FRQNT) grant to F-ÉS, INCT ADAPTA (CNPq/FAPEAM/CAPES) and INPA/MCTI grants to ALV, and the Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery grant (grant #6333) to ND.

References

Abed, A., Légaré, G., Pomerleau, S., St-Cyr, J., Boyle, B., Belzile, F.J. (2019). Genotyping-By-Sequencing on the Ion Torrent Platform in Barley. In: Wendy A. Harwood (Eds.), Barley: Methods and Protocols. (pp. 313).

Archer, E. (2020). rfPermute: Estimate Permutation p-Values for Random Forest Importance Metrics. https://CRAN.R-project.org/package=rfPermute
Arnoux, E., Eraud, C., Navarro, N., Tougard, C., Thomas, A., Cavallo, F., . . . Garnier, S. (2014). Morphology and genetics reveal an intriguing pattern of differentiation at a very small geographic scale in a bird species, the forest thrush Turdus lherminieri. Heredity, 113(6), 514-525. doi:10.1038/hdy.2014.56
Beheregaray, L. B., Cooke, G. M., Chao, N. L., & Landguth, E. L. (2015). Ecological speciation in the tropics: insights from comparative genetic studies in Amazonia. Frontiers in Genetics, 5. doi:10.3389/fgene.2014.00477
Bledsoe, J. W., Waldbieser, G. C., Swanson, K. S., Peterson, B. C., & Small, B. C. (2018). Comparison of Channel Catfish and Blue Catfish Gut Microbiota Assemblages Shows Minimal Effects of Host Genetics on Microbial Structure and Inferred Function. Frontiers in Microbiology, 9. doi:10.3389/fmicb.2018.01073
Bolyen, E., Rideout, J. R., Dillon, M. R., Bokulich, N., Abnet, C. C., Al-Ghalith, G. A., . . . Caporaso, J. G. (2019). Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnology, 37(8), 852-857. doi:10.1038/s41587-019-0209-9
Bordenstein, S. R., & Theis, K. R. (2015). Host Biology in Light of the Microbiome: Ten Principles of Holobionts and Hologenomes. Plos Biology, 13(8). doi:10.1371/journal.pbio.1002226
Boutin, S., Sauvage, C., Bernatchez, L., Audet, C., & Derome, N. (2014). Inter Individual Variations of the Fish Skin Microbiota: Host Genetics Basis of Mutualism? Plos One, 9(7). doi:10.1371/journal.pone.0102649
Bray, J. R., & Curtis, J. T. (1957). An ordination of the upland forest communities of southern Wisconsin. Ecological Monographs, 27(4), 326-349. doi:10.2307/1942268
Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5-32. doi:10.1023/a:1010933404324
Brooks, A. W., Kohl, K. D., Brucker, R. M., van Opstal, E. J., & Bordenstein, S. R. (2016). Phylosymbiosis: Relationships and Functional Effects of Microbial Communities across Host Evolutionary History. Plos Biology, 14(11). doi:10.1371/journal.pbio.2000225
Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A., & Holmes, S. P. (2016). DADA2: High-resolution sample inference from Illumina amplicon data. Nature Methods, 13(7), 581-+. doi:10.1038/nmeth.3869
Chiarello, M., Auguet, J. C., Bettarel, Y., Bouvier, C., Claverie, T., Graham, N. A. J., . . . Villeger, S. (2018). Skin microbiome of coral reef fish is highly variable and driven by host phylogeny and diet. Microbiome, 6. doi:10.1186/s40168-018-0530-4
Chiarello, M., Paz-Vinas, I., Veyssiere, C., Santoul, F., Loot, G., Ferriol, J., & Bouletreau, S. (2019). Environmental conditions and neutral processes shape the skin microbiome of European catfish (Silurus glanis) populations of Southwestern France. Environmental Microbiology Reports, 11(4), 605-614. doi:10.1111/1758-2229.12774
Chiarello, M., Villeger, S., Bouvier, C., Bettarel, Y., & Bouvier, T. (2015). High diversity of skin-associated bacterial communities of marine fishes is promoted by their high variability among body parts, individuals and species. Fems Microbiology Ecology, 91(7). doi:10.1093/femsec/fiv061
Davenport, E. R. (2016). Elucidating the role of the host genome in shaping microbiome composition. Gut Microbes, 7(2), 178-184. doi:10.1080/19490976.2016.1155022
Devloo-Delva, F., Huerlimann, R., Chua, G., Matley, J. K., Heupel, M. R., Simpfendorfer, C. A., & Maes, G. E. (2019). How does marker choice affect your diet analysis: comparing genetic markers and digestion levels for diet metabarcoding of tropical-reef piscivores. Marine and Freshwater Research, 70(1), 8-18. doi:10.1071/mf17209
Diaz-Sanchez, S., Hernandez-Jarguin, A., Torina, A., de Mera, I. G. F., Blanda, V., Caracappa, S., . . . de la Fuente, J. (2019). Characterization of the bacterial microbiota in wild-caught Ixodes ventalloi. Ticks and Tick-Borne Diseases, 10(2), 336-343. doi:10.1016/j.ttbdis.2018.11.014
Doane, M. P., Morris, M. M., Papudeshi, B., Allen, L., Pande, D., Haggerty, J. M., . . . Dinsdale, E. A. (2020). The skin microbiome of elasmobranchs follows phylosymbiosis, but in teleost fishes, the microbiomes converge. Microbiome, 8(1). doi:10.1186/s40168-020-00840-x
Douglas, A. E., & Werren, J. H. (2016). Holes in the Hologenome: Why Host-Microbe Symbioses Are Not Holobionts. Mbio, 7(2). doi:10.1128/mBio.02099
Ellison, S., Knapp, R. A., Sparagon, W., Swei, A., & Vredenburg, V. T. (2019). Reduced skin bacterial diversity correlates with increased pathogen infection intensity in an endangered amphibian host. Molecular Ecology, 28(1), 127-140. doi:10.1111/mec.14964
Faith, D. P. (1992). Conservation evaluation and phylogenetic diversity. Biological Conservation, 61(1). doi: 10.1016/0006-3207(92)91201-3
Fietz, K., Hintze, C. O. R., Skovrind, M., Nielsen, T. K., Limborg, M. T., Krag, M. A., . . . Gilbert, M. T. P. (2018). Mind the gut: genomic insights to population divergence and gut microbial composition of two marine keystone species. Microbiome, 6. doi:10.1186/s40168-018-0467-7
Fischer, M. C., Rellstab, C., Leuzinger, M., Roumet, M., Gugerli, F., Shimizu, K. K., . . . Widmer, A. (2017). Estimating genomic diversity and population differentiation - an empirical comparison of microsatellite and SNP variation in Arabidopsis halleri. Bmc Genomics, 18. doi:10.1186/s12864-016-3459-7
Fraune, S., & Bosch, T. C. G. (2007). Long-term maintenance of species-specific bacterial microbiota in the basal metazoan Hydra. Proceedings of the National Academy of Sciences of the United States of America, 104(32), 13146-13151. doi:10.1073/pnas.0703375104
Glasl, B., Smith, C. E., Bourne, D. G., & Webster, N. S. (2019). Disentangling the effect of host-genotype and environment on the microbiomie of the coral Acropora tenuis. Peerj, 7. doi:10.7717/peerj.6377
Hector, A., & Hooper, R. (2002). Ecology - Darwin and the first ecological experiment. Science, 295(5555), 639-640. doi:10.1126/science.1064815
Hendricks, S., Anderson, E. C., Antao, T., Bernatchez, L., Forester, B. R., Garner, B., . . . Luikart, G. (2018). Recent advances in conservation and population genomics data analysis. Evolutionary Applications, 11(8), 1197-1211. doi:10.1111/eva.12659
Huot, C., Clerissi, C., Gourbal, B., Galinier, R., Duval, D., & Toulza, E. (2020). Schistosomiasis Vector Snails and Their Microbiota Display a Phylosymbiosis Pattern. Frontiers in microbiology, 10, 3092. https://doi.org/10.3389/fmicb.2019.03092
Kohl, K. D., Dearing, M. D., & Bordenstein, S. R. (2018). Microbial communities exhibit host species distinguishability and phylosymbiosis along the length of the gastrointestinal tract. Molecular Ecology, 27(8), 1874-1883. doi:10.1111/mec.14460
Kolde, R., Franzosa, E. A., Rahnavard, G., Hall, A. B., Vlamakis, H., Stevens, C., . . . Huttenhower, C. (2018). Host genetic variation and its microbiome interactions within the Human Microbiome Project. Genome Medicine, 10. doi:10.1186/s13073-018-0515-8
Kukekova, A. V., Johnson, J. L., Xiang, X. Y., Shaohong, F. H., Liu, S. P., Rando, H. M., . . . Zhang, G. J. (2018). Red fox genome assembly identifies genomic regions associated with tame and aggressive behaviours. Nature Ecology & Evolution, 2(9), 1479-1491. doi:10.1038/s41559-018-0611-6
Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Molecular Biology and Evolution, 35(6), 1547-1549. doi:10.1093/molbev/msy096
Laviad-Shitrit, S., Lzhaki, I., Lalzar, M., & Halpern, M. (2019). Comparative Analysis of Intestine Microbiota of Four Wild Waterbird Species. Frontiers in Microbiology, 10. doi:10.3389/fmicb.2019.01911
Leigh, B. A., Bordenstein, S. R., Brooks, A. W., & Mikaelyan, A. (2018). Finer-Scale Phylosymbiosis: Insights from Insect Viromes. Msystems, 3(6). doi:10.1128/mSystems.00131-18
Leray, M., Yang, J. Y., Meyer, C. P., Mills, S. C., Agudelo, N., Ranwez, V., . . . Machida, R. J. (2013). A new versatile primer set targeting a short fragment of the mitochondrial COI region for metabarcoding metazoan diversity: application for characterizing coral reef fish gut contents. Frontiers in Zoology, 10. doi:10.1186/1742-9994-10-34
Li, J. Y., Zhan, S. P., Liu, X. Z., Lin, Q., Jiang, J. P., & Li, X. Z. (2018). Divergence of Fecal Microbiota and Their Associations With Host Phylogeny in Cervinae. Frontiers in Microbiology, 9. doi:10.3389/fmicb.2018.01823
Li, T. T., Long, M., Li, H., Gatesoupe, F. J., Zhang, X. J., Zhang, Q. Q., . . . Li, A. H. (2017). Multi-Omics Analysis Reveals a Correlation between the Host Phylogeny, Gut Microbiota and Metabolite Profiles in Cyprinid Fishes. Frontiers in Microbiology, 8. doi:10.3389/fmicb.2017.00454
Li, Y. C., Chao, T. L., Fan, Y. H., Lou, D. L., & Wang, G. Z. (2019). Population genomics and morphological features underlying the adaptive evolution of the eastern honey bee (Apis cerana). Bmc Genomics, 20(1). doi:10.1186/s12864-019-6246-4
Liaw, A., Wiener, M. (2002). Classification and Regression by randomForest. R News. doi:2(3):18-22.
Llewellyn, M. S., Boutin, S., Hoseinifar, S. H., & Derome, N. (2014). Teleost microbiomes: the state of the art in their characterization, manipulation and importance in aquaculture and fisheries. Frontiers in Microbiology, 5. doi:10.3389/fmicb.2014.00207
Lozupone, C., & Knight, R. (2005). UniFrac: a new phylogenetic method for comparing microbial communities. Applied and Environmental Microbiology, 71(12), 8228-8235. doi:10.1128/aem.71.12.8228-8235.2005
Lutz, H. L., Jackson, E. W., Webala, P. W., Babyesiza, W. S., Peterhans, J. C. K., Demos, T. C., . . . Gilbert, J. A. (2019). Ecology and Host Identity Outweigh Evolutionary History in Shaping the Bat Microbiome. Msystems, 4(6). doi:10.1128/mSystems.00511-19
Macarthur, R. H. (1958). Population ecology of some warblers of northeastern coniferous forests. Ecology, 39(4), 599-619. doi:10.2307/1931600
Margulis, L., Fester, R. (1991). Symbiosis as a source of evolutionary innovation: Speciation and morphogenesis. Cambridge, MA: The MIT Press. 
Matley, J. K., Maes, G. E., Devloo-Delva, F., Huerlimann, R., Chua, G., Tobin, A. J., . . . Heupel, M. R. (2018). Integrating complementary methods to improve diet analysis in fishery-targeted species. Ecology and Evolution, 8(18), 9503-9515. doi:10.1002/ece3.4456
Mazel, F., Davis, K. M., Loudon, A., Kwong, W. K., Groussin, M., & Parfrey, L. W. (2018). Is Host Filtering the Main Driver of Phylosymbiosis across the Tree of Life? Msystems, 3(5). doi:10.1128/mSystems.00097-18
McMurdie, P. J., & Holmes, S. (2015). Shiny-phyloseq: Web application for interactive microbiome analysis with provenance tracking. Bioinformatics, 31(2), 282-283. doi:10.1093/bioinformatics/btu616
Minich, J. J., Poore, G. D., Jantawongsri, K., Johnston, C., Bowie, K., Bowman, J., . . . Allen, E. E. (2020). Microbial Ecology of Atlantic Salmon (Salmo salar) Hatcheries: Impacts of the Built Environment on Fish Mucosal Microbiota. Applied and Environmental Microbiology, 86(12). doi:10.1128/aem.00411-20
Miyake, S., Ngugi, D. K., & Stingl, U. (2015). Diet strongly influences the gut microbiota of surgeonfishes. Molecular ecology, 24(3), 656–672. https://doi.org/10.1111/mec.13050
Moeller, A. H., Li, Y. Y., Ngole, E. M., Ahuka-Mundeke, S., Lonsdorf, E. V., Pusey, A. E., . . . Ochman, H. (2014). Rapid changes in the gut microbiome during human evolution. Proceedings of the National Academy of Sciences of the United States of America, 111(46), 16431-16435. doi:10.1073/pnas.1419136111
Nater, A., Mattle-Greminger, M. P., Nurcahyo, A., Nowak, M. G., de Manuel, M., Desai, T., . . . Krutzen, M. (2017). Morphometric, Behavioral, and Genomic Evidence for a New Orangutan Species. Current Biology, 27(22), 3487-+. doi:10.1016/j.cub.2017.09.047
Nossa, C. W., Oberdorf, W. E., Yang, L., Aas, J. A., Paster, B. J., Desantis, T. Z., Brodie, E. L., Malamud, D., Poles, M. A., & Pei, Z. (2010). Design of 16S rRNA gene primers for 454 pyrosequencing of the human foregut microbiome. World journal of gastroenterology, 16(33), 4135–4144. https://doi.org/10.3748/wjg.v16.i33.4135
Novakova, E., Woodhams, D. C., Rodriguez-Ruano, S. M., Brucker, R. M., Leff, J. W., Maharaj, A., . . . Scott, J. (2017). Mosquito Microbiome Dynamics, a Background for Prevalence and Seasonality of West Nile Virus. Frontiers in Microbiology, 8. doi:10.3389/fmicb.2017.00526
Ochman, H., Worobey, M., Kuo, C. H., Ndjango, J. B. N., Peeters, M., Hahn, B. H., & Hugenholtz, P. (2010). Evolutionary Relationships of Wild Hominids Recapitulated by Gut Microbial Communities. Plos Biology, 8(11). doi:10.1371/journal.pbio.1000546
Phillips, C. D., Phelan, G., Dowd, S. E., McDonough, M. M., Ferguson, A. W., Hanson, J. D., . . . Baker, R. J. (2012). Microbiome analysis among bats describes influences of host phylogeny, life history, physiology and geography. Molecular Ecology, 21(11), 2617-2627. doi:10.1111/j.1365-294X.2012.05568.x
Pollock, F. J., McMinds, R., Smith, S., Bourne, D. G., Willis, B. L., Medina, M., . . . Zaneveld, J. R. (2018). Coral-associated bacteria demonstrate phylosymbiosis and cophylogeny. Nature Communications, 9. doi:10.1038/s41467-018-07275-x
Pratte, Z. A., Besson, M., Hollman, R. D., & Stewart, F. J. (2018). The Gills of Reef Fish Support a Distinct Microbiome Influenced by Host-Specific Factors. Applied and Environmental Microbiology, 84(9). doi:10.1128/aem.00063-18
Rennison, D. J., Stuart, Y. E., Bolnick, D. I., & Peichel, C. L. (2019). Ecological factors and morphological traits are associated with repeated genomic differentiation between lake and stream stickleback. Philosophical Transactions of the Royal Society B-Biological Sciences, 374(1777). doi:10.1098/rstb.2018.0241
Riiser, E. S., Haverkamp, T. H. A., Varadharajan, S., Borgan, O., Jakobsen, K. S., Jentoft, S., & Star, B. (2020). Metagenomic Shotgun Analyses Reveal Complex Patterns of Intra- and Interspecific Variation in the Intestinal Microbiomes of Codfishes. Applied and Environmental Microbiology, 86(6). doi:10.1128/aem.02788-19
Ross, A. A., Hoffmann, A. R., & Neufeld, J. D. (2019). The skin microbiome of vertebrates. Microbiome, 7. doi:10.1186/s40168-019-0694-6
Ross, A. A., Muller, K. M., Weese, J. S., & Neufeld, J. D. (2018). Comprehensive skin microbiome analysis reveals the uniqueness of human skin and evidence for phylosymbiosis within the class Mammalia. Proceedings of the National Academy of Sciences of the United States of America, 115(25), E5786-E5795. doi:10.1073/pnas.1801302115
Rothschild, D., Weissbrod, O., Barkan, E., Kurilshikov, A., Korem, T., Zeevi, D., . . . Segal, E. (2018). Environment dominates over host genetics in shaping human gut microbiota. Nature, 555(7695), 210-+. doi:10.1038/nature25973
Sanders, J. G., Powell, S., Kronauer, D. J. C., Vasconcelos, H. L., Frederickson, M. E., & Pierce, N. E. (2014). Stability and phylogenetic correlation in gut microbiota: lessons from ants and apes. Molecular Ecology, 23(6), 1268-1283. doi:10.1111/mec.12611
Segata, N., Izard, J., Waldron, L., Gevers, D., Miropolsky, L., Garrett, W. S., & Huttenhower, C. (2011). Metagenomic biomarker discovery and explanation. Genome Biology, 12(6). doi:10.1186/gb-2011-12-6-r60
Sevellec, M., Derome, N., & Bernatchez, L. (2018). Holobionts and ecological speciation: the intestinal microbiota of lake whitefish species pairs. Microbiome, 6. doi:10.1186/s40168-018-0427-2
Sevellec, M., Laporte, M., Bernatchez, A., Derome, N., & Bernatchez, L. (2019). Evidence for host effect on the intestinal microbiota of whitefish (Coregonus sp.) species pairs and their hybrids. Ecology and Evolution, 9(20), 11762-11774. doi:10.1002/ece3.5676
Shephard, K. L. (1994). Functions for fish mucus. Reviews in Fish Biology and Fisheries, 4(4), 401-429. doi:10.1007/bf00042888
Smith A.C., Ramos F. (1976). Occult haemoglobin in fish skin mucus as an indicator of early stress. Journal of Fish Biology, 9(537–541). doi: 10.1111/j.1095-8649.1976.tb04703.x.
Smith, C. C. R., Snowberg, L. K., Caporaso, J. G., Knight, R., & Bolnick, D. I. (2015). Dietary input of microbes and host genetic variation shape among-population differences in stickleback gut microbiota. Isme Journal, 9(11), 2515-2526. doi:10.1038/ismej.2015.64
Stecher, G., Tamura, K., & Kumar, S. (2020). Molecular Evolutionary Genetics Analysis (MEGA) for macOS. Molecular Biology and Evolution, 37(4), 1237-1239. doi:10.1093/molbev/msz312
Sullam, K. E., Rubin, B. E. R., Dalton, C. M., Kilham, S. S., Flecker, A. S., & Russell, J. A. (2015). Divergence across diet, time and populations rules out parallel evolution in the gut microbiomes of Trinidadian guppies. Isme Journal, 9(7), 1508-1522. doi:10.1038/ismej.2014.231
Sylvain, F., Holland, A., Audet, G., Val, A. L., & Derome, N. (2019). Amazon fish bacterial communities show structural convergence along widespread hydrochemical gradients. Molecular Ecology, 28(15), 3612-3626. doi:10.1111/mec.15184
Sylvain, F. E., & Derome, N. (2017). Vertically and horizontally transmitted microbial symbionts shape the gut microbiota ontogenesis of a skin-mucus feeding discus fish progeny. Scientific Reports, 7. doi:10.1038/s41598-017-05662-w
Sylvain, F. E., Holland, A., Bouslama, S., Audet-Gilbert, E., Lavoie, C., Val, A. L., & Derome, N. (2020). Fish Skin and Gut Microbiomes Show Contrasting Signatures of Host Species and Habitat. Applied and Environmental Microbiology, 86(16). doi:10.1128/aem.00789-20
Van der Sleen, A., Albert, J. S. (2018). Field guide to the fishes of the Amazon. Orinoco and Guianas. Oxford University Press.
Webster, T. M. U., Consuegra, S., Hitchings, M., & de Leaniz, C. G. (2018). Interpopulation Variation in the Atlantic Salmon Microbiome Reflects Environmental and Genetic Diversity. Applied and Environmental Microbiology, 84(16). doi:10.1128/aem.00691-18
Yang, Y., Sun, J., Sun, Y. N., Kwan, Y. H., Wong, W. C., Zhang, Y. J., . . . Qian, P. Y. (2020). Genomic, transcriptomic, and proteomic insights into the symbiosis of deep-sea tubeworm holobionts. Isme Journal, 14(1), 135-150. doi:10.1038/s41396-019-0520-y
Zhu, B. L., Wang, X., & Li, L. J. (2010). Human gut microbiome: the second genome of human body. Protein & Cell, 1(8), 718-725. doi:10.1007/s13238-010-0093-z
Zilber-Rosenberg, I., & Rosenberg, E. (2008). Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution. Fems Microbiology Reviews, 32(5), 723-735. doi:10.1111/j.1574-6976.2008.00123.x

Data accessibility
The raw sequence files and metadata are available from the Sequence Read Archive with BioProjectIDs: PRJNA691553 and PRJNA665058. The scripts used for the statistical analysis of sequence variants are available on the Open Science Network platform (URL: https://osf.io/uwp43/).

Author Contributions
FÉS, ND and ALV planned the project. FÉS, ND and AH collected the samples in the field. FÉS and AH processed fish samples in the laboratory. FÉS and EN performed the bioinformatical analysis of the GBS and COI sequences. FÉS analysed the 16S rRNA sequences. FÉS and ND wrote the manuscript. All authors reviewed the manuscript.

Figure and table legends

Figure 1: There are significant interspecific differences between the microbial communities of the 4 species of Serrasalmidae. (a) Principal Coordinates Analysis (PcoA) of the samples according to the phylogenetic structure of the skin and (b) gut microbiomes. (c) PCoA of the gut samples excluding the pacu species. PCoAs were built from the weighted UniFrac values and displayed p-values come from the PERMANOVA tests. (d) Linear Discriminant analysis Effect Size (LEfSe) of the skin and (e) gut microbiomes. Ellipses on (a, b, c) represent groups with default confidence intervals of 0.05. Asterisks indicate the level of confidence of the p-values of Adonis tests (NS for Non-Significant, * for pval < 0.05, ** for pval < 0.01, ** for pval < 0.001). PAC = Mylossoma duriventre, BP = Serrasalmus rhombeus, MAC = Serrasalmus maculatus, CAJ = Pygocentrus nattereri.

Figure 2: The diet is also species-specific but is not correlated to gut microbiome. (a) PCoA of the samples according to the phylogenetic structure of the fish diet of the 3 species of piranha (pacu is excluded).  (b) Heatmap showing the distribution of the 15 most abundant preys items between the different piranha species. (c) Significant Spearman correlations (p < 0.05 after Bonferroni correction) between prey items and bacterial taxa. A mantel test shows that variations between diet and the composition of the gut microbiota are not significantly correlated. Ellipses on (a) represent groups with default confidence intervals of 0.05. Asterisks indicate the level of confidence of the p-value of the Adonis test (NS for Non-Significant, * for pval < 0.05, ** for pval < 0.01, ** for pval < 0.001). PAC = Mylossoma duriventre, BP = Serrasalmus rhombeus, MAC = Serrasalmus maculatus, CAJ = Pygocentrus nattereri.

Figure 3: There is no significant correlation between the phylogenetic diversity of the microbiome, host allelic richness and expected heterozygosity. (a) Principal Components Analysis of samples according to the host genotype (based on a matrix of Jukes Cantor distances between GBS sequences). (b) Boxplot showing Faith's Phylogenetic Diversity metric of microbiome samples. Blue and red dots respectively represent host allelic richness and expected heterozygosity. PAC = Mylossoma duriventre, BP = Serrasalmus rhombeus, MAC = Serrasalmus maculatus, CAJ = Pygocentrus nattereri. “NS” stands for non-significant p-values of linear correlation tests.

Figure 4: Variations in the composition of the skin microbiome, but not gut microbiome, are strongly related to inter and intra-specific genotypic variations in Serrasalmidae. Panels represent correlations between the log10 of the genotypic distance between fish individuals (based on a matrix of Jukes Cantor distances between GBS sequences) and the Bray-Curtis dissimilarity of (a) the skin microbiome between fish at the interspecific level; (b) the gut microbiome between fish at the interspecific level; (c) the diet at the interspecific level; (d) the skin microbiome between fish at the intraspecific level; (e) the gut microbiome between fish at the intraspecific level; (f) the diet at the intraspecific level. The three mantel tests check whether there is a significant correlation between the distance matrices of the host genotype and three elements: variations in the composition of the skin microbiome, the gut microbiome, and the diet. Mantel tests are performed on combined inter and intraspecific data. Linear regressions were plotted based on the correlation model, with 95% confidence intervals (colored along the regression curve). Asterisks and “NS” indicate the level of confidence of the p-values of Adonis tests (NS for Non-Significant, * for pval < 0.05, ** for pval < 0.01, ** for pval < 0.001). Negative or non-significant correlations are represented in red (in b, e, f), while positive/significant correlations are represented in green (in a, c, d).

Figure 5: Combined ordination plots of the host genotype and the RF microbiome of skin and gut samples of four species of Serrasalmidae and summary statistics of ordinations with different dimensions. The best discrimination between species is obtained in the plot combining the dimensions from the host genotype and the RF microbiome. (a) NMDS combining the ordinations of the skin microbiome species-specific ASVs identified using a Random Forest (RF) machine-learning approach in the X axis and of the host genotype in the Y axis; (b) table showing the convex hull area and the average Euclidean distance between centroids from the ordinations with different combinations of dimensions. (c) NMDS combining the ordinations of the gut microbiome in the X axis and of the host genotype in the Y axis. Shaded areas in (a, c) represent the alpha hull area. Rows in bold characters in (b) represent the ordinations showing the highest alpha hull area and distance between centroids. PAC = Mylossoma duriventre, BP = Serrasalmus rhombeus, MAC = Serrasalmus maculatus, CAJ = Pygocentrus nattereri.


Top of Form
Bottom of Form
Bottom of Form
Top of Form
Table 1: The phylogenetic structure summary of different microbiome subsets. RF stands for Random Forest.
	Tissue
	Subset
	Nb. of taxa
	Nb. of Phyla
	Nb. of Genera
	5 Most Abundant Taxa
	Phylo. Diversity

	Skin
	Whole Microbiome
	16 176
	28
	1002
	Pseudomonas sp. 1
	4897.3

	
	
	
	
	
	Pseudomonas sp. 2
	

	
	
	
	
	
	Pseudomonas sp. 3
	

	
	
	
	
	
	Pseudomonas sp. 4
	

	
	
	
	
	
	Brochotrix sp.
	

	
	Abundant Taxa
	773
	12
	217
	Pseudomonas sp. 1
	783.46

	
	
	
	
	
	Pseudomonas sp. 2
	

	
	
	
	
	
	Pseudomonas sp. 3
	

	
	
	
	
	
	Pseudomonas sp. 4
	

	
	
	
	
	
	Brochotrix sp. 
	

	
	Rare Taxa
	15 403
	28
	996
	Silvanigrella sp.
	3779.36

	
	
	
	
	
	Duganella sp.
	

	
	
	
	
	
	Polynucleobacter sp. 
	

	
	
	
	
	
	Clostridium sp. 
	

	
	
	
	
	
	Nordella sp. 
	

	
	Core Microbiome
	7
	3
	4
	Pseudomonas sp. 1
	8.69

	
	
	
	
	
	Pseudomonas sp. 2
	

	
	
	
	
	
	Brochotrix sp. 
	

	
	
	
	
	
	Methylocystis sp.
	

	
	
	
	
	
	Actinobacterium (NCBI: AB604816.1)
	

	
	RF Microbiome
	50
	5
	22
	Pseudomonas sp. 1
	41.78

	
	
	
	
	
	Pseudomonas sp. 2
	

	
	
	
	
	
	Pseudomonas sp. 3
	

	
	
	
	
	
	Pseudomonas sp. 4
	

	
	
	
	
	
	Brochotrix sp. 
	

	Gut
	Whole Microbiome
	16 176
	28
	1002
	Cetobacterium sp. 
	4528.91

	
	
	
	
	
	Romboutsia sp. 
	

	
	
	
	
	
	Mycoplasma sp.
	

	
	
	
	
	
	Arsenophonus sp.
	

	
	
	
	
	
	Clostridium sp. 
	

	
	Abundant Taxa
	703
	10
	163
	Cetobacterium sp. 
	707.54

	
	
	
	
	
	Romboutsia sp. 
	

	
	
	
	
	
	Mycoplasma sp.
	

	
	
	
	
	
	Arsenophonus sp.
	

	
	
	
	
	
	Clostridium celatum
	

	
	Rare Taxa
	15 473
	28
	1000
	Corynebacterium sp. 
	3268.35

	
	
	
	
	
	Agrobacterium sp. 
	

	
	
	
	
	
	Paracraurococcus sp. 
	

	
	
	
	
	
	Serratia sp. 
	

	
	
	
	
	
	Pseudomonas sp. 
	

	
	Core Microbiome
	5
	4
	5
	Cetobacterium sp. 
	4.8

	
	
	
	
	
	Romboutsia sedimentorum
	

	
	
	
	
	
	Mycoplasma sp.
	

	
	
	
	
	
	Brevundimonas sp. 
	

	
	
	
	
	
	Moraxella sp. 
	

	
	RF Microbiome
	50
	5
	8
	Cetobacterium sp. 
	52.95

	
	
	
	
	
	Romboutsia sp. 
	

	
	
	
	
	
	Mycoplasma sp.
	

	
	
	
	
	
	Arsenophonus sp.
	

	
	
	
	
	
	Clostridium sp. 
	



Table 2: Analyses of the power of different microbiome subsets to differentiate samples based on their fish host identity. DCA: detrended correspondence analysis. Lines in bold show the highest results for the subsets of each tissue, for each analysis. Asterisks indicate level of significance.
	Tissue
	Community subset
	DCA
	Adonis

	
	
	Axis 1
	Axis 2
	Total
	F
	df res
	p-value

	
	
	%
	 
	 
	 

	Skin
	Whole Microbiome
	41.2
	23.5
	64.7
	6.09
	35
	***

	
	Abundant Taxa
	42.5
	24.7
	67.2
	6.54
	35
	***

	
	Rare Taxa
	25.1
	25.1
	50.2
	1.07
	35
	***

	
	Core Microbiome
	45.5
	16.1
	61.6
	12.84
	35
	***

	
	RF Microbiome
	39.5
	27.8
	67.3
	11.45
	32
	***

	Gut
	Whole Microbiome
	35.8
	28.3
	64.1
	4.62
	33
	***

	
	Abundant Taxa
	36.1
	28.5
	64.6
	4.74
	33
	***

	
	Rare Taxa
	25.5
	25.3
	50.8
	1.04
	33
	0.01

	
	Core Microbiome
	35.8
	20.7
	56.5
	3.29
	33
	0.002

	
	RF Microbiome
	41.3
	26
	67.3
	5.51
	32
	***
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